Nuklearmedizin 2009; 48(03): 113-119
DOI: 10.3413/nukmed-0178
Original article
Schattauer GmbH

Modelling radioimmunotherapy with anti-CD45 antibody to obtain a more favourable biodistribution

Modellierung der Radioimmuntherapie mit anti-CD45-Antikörpern zur Verbesserung der Biodistribution
F. J. Király
1   Klinik für Nuklearmedizin, Universität Ulm, Germany
,
P. Kletting
1   Klinik für Nuklearmedizin, Universität Ulm, Germany
,
S. N. Reske
1   Klinik für Nuklearmedizin, Universität Ulm, Germany
,
G. Glatting
1   Klinik für Nuklearmedizin, Universität Ulm, Germany
› Author Affiliations
Further Information

Publication History

received: 09 April 2008

accepted in revised form: 29 January 2009

Publication Date:
22 January 2018 (online)

Summary

Radioimmunotherapy (RIT) is a method to selectively deliver radiation to malignant haemato logical cells by addressing specific antigens. One approach to improve the bio-distribution is to administer a preload of unlabelled antibodies. The aim of this study was to develop a model, which describes distribution of labelled and unlabelled antibodies based on the tissue blood flow and the competing binding behaviour of the antibodies. Such a model can be used to improve biodistribution in the particular case of RIT using anti-CD45 antibodies. Methods: A compartmental model for the interconnected organs was developed. Reaction constants and organ specific flow, antigen concentrations and distribution volumes were taken from the literature. The organ residence times were calculated for different amounts of given labelled and unlabelled antibodies and the time delay between their administrations. Results: The model is capable to describe the preloading effect. The biodistribution of labelled or unlabelled antibodies depends essentially on the specific blood flow to the organ and its antigen expression. The dose ratio of bone marrow to liver is maximized by applying sufficient unlabelled monoclonal antibody (mAb) to saturate antibody binding in the competing organs and by applying the labelled mAb with a delay of more than one hour. Conclusions: The developed model qualitatively describes how a preload can considerably increase selectivity of RIT due to different blood flows and antigen distribution in relevant organs. In addition, simulations can identify the optimal delay between the application of labelled and unlabelled antibody. For future analyses, i.e., to fit patient data, degradation and excretion should be incorporated into the model.

Zusammenfassung

Die Radioimmuntherapie (RIT) erlaubt die selektive Bestrahlung maligner hämatologischer Zellen durch Adressierung spezifischer Antigene. Ein Ansatz zur Verbesserung der Bioverteilung ist die vorherige Gabe von unmarkiertem Antikörper. Ziel war es, ein Modell für die pharmakokinetische Bioverteilung von markierten und unmarkierten monoklonalen anti-CD45-Antikörpern zu entwickeln, um die Abhängigkeit der Biodistribution von den Mengen verabreichter unmarkierter Antikörper und vom Zeitraum zwischen der Verabreichung markierter und unmarkierter Antikörper zu beschreiben. Solch ein Modell kann zur Verbesserung der RIT mit anti-CD45-Antikörpern eingesetzt werden. Methoden: Ein nichtlineares Kompartiment-Modell wurde entwickelt. Die Reaktionskonstanten, organspezifischen Flusskonstanten, Antigenkonzentrationen und Verteilungsvolumina wurden aus der Literatur übernommen. Die Verweildauern wurden in Abhängigkeit von verabreichten markierten und unmarkierten Antikörpern und dem Zeitraum zwischen ihrer Verabreichung untersucht. Ergebnisse: Das Modell kann den so genannten Preload-Effekt beschreiben. Die Biodistribution markierter und unmarkierter Antikörper ist abhängig vom organspezifischen Blutfluss und der Antigenexpression. Das Verhältnis der Verweildauern von Knochenmark und Leber wird bei Verabreichung einer für die Sättigung der konkurrierenden Antikörper-bindenden Organe ausreichenden Menge an unmarkierten Antikörpern und einer um eine Stunde verzögerten Applikation markierter Antikörper optimal. Schlussfolgerungen: Das entwickelte Modell kann qualitativ beschreiben, wie eine vorhergehende Verabreichung unmarkierter Antikörper die Selektivität der Radioimmuntherapie mit anti-CD45-Antikörpern aufgrund der verschiedenen Blutflüsse und Antigenmengen in den akkumulierenden Organen erhöht. Auch der optimale Zeitraum zwischen der Verabreichung kalter und heißer Antikörper ist durch Simulationen bestimmbar. Für weitere Analysen, d. h. um Patientendaten an das Modell anzupassen, müssen noch Abbau und Ausscheidung in das Modell integriert werden.

 
  • References

  • 1 Baxter LT, Zhu H, Mackensen DG. et al. Biodistribution of Monoclonal Antibodies: Scale-up Mouse to Human using a Physiologically Based Pharmacokinetic Model. Cancer Res. 1995; 55: 4611-4622.
  • 2 Bindon CI, Hale G, Waldmann H. Importance of antigen specificity for complement-mediated lysis by monoclonal antibodies. Eur J Immunol 1988; 18: 1507-1514.
  • 3 Buchmann I, Meyer RG, Herr W. et al. Radioimmunotherapy for treatment of acute myeloid leukaemia and myelodysplastic syndrome: Conceptual changes. Nuklearmedizin 2005; 44: 107-117.
  • 4 Bunjes D, Buchmann I, Duncker C. et al. Rhenium 188-labeled anti-CD66 (a, b, c, e) monoclonal antibody to intensify the conditioning regimen prior to stem cell transplantation for patients with high-risk acute myeloid leukemia or myelodysplastic syndrome: results of a phase I-II study. Blood 2001; 98: 565-572.
  • 5 Clift RA, Buckner CD, Appelbaum FR. et al. Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: a randomized trial of two irradiation regimens. Blood 1990; 76: 1867-1871.
  • 6 Eger RR, Covell DG, Carrasquillo JA. et al. Kinetic model for the biodistribution of an 111In-labeled monoclonal antibody in humans. Cancer Res 1987; 47: 3328-3336.
  • 7 Garkavij M, Tennvall J, Strand SE. et al. Improving radioimmunotargeting of tumors: the impact of preloading unlabeled L6 monoclonal antibody on the biodistribution of 125I-L6 in rats. J Nucl Biol Med 1994; 38: 594-600.
  • 8 Giles F, O'Brien S, Cortes J. et al. Outcome of patients with acute myelogenous leukemia after second salvage therapy. Cancer 2005; 104: 547-554.
  • 9 Glatting G, Landmann M, Kull T. et al. Internal radionuclide therapy: The UlmDos software for treatment planning. Med Phys 2005; 32: 2399-2405.
  • 10 Glatting G, Kull T, Blumstein NM. et al. Dosimetry with 188Re-labelled monoclonal anti-CD66 antibodies. A simplified approach based on a single measurement 3 h p.i. Nuklearmedizin 2006; 45: 134-138.
  • 11 Glatting G, Landmann M, Wunderlich A. et al. Internal radionuclide therapy: Software for treatment planning using tomographic data. Nuklearmedizin 2006; 45: 269-272.
  • 12 Glatting G, Müller M, Koop B. et al. Anti-CD45 monoclonal antibody YAML568: A promising radioimmunoconjugate for targeted therapy of acute leukemia. J Nucl Med 2006; 47: 1335-1341.
  • 13 Glatting G, Reske SN. Determination of the immunoreactivity of radiolabeled monoclonal antibodies: A theoretical analysis. Cancer Biother Radiopharm 2006; 21: 15-21.
  • 14 Koizumi K, DeNardo GL, DeNardo SJ. et al. Multi-compartmental analysis of the kinetics of radio-iodinated monoclonal antibody in patients with cancer. J Nucl Med 1986; 27: 1243-1254.
  • 15 Kotzerke J, Glatting G, Seitz U. et al. Radioimmuno-therapy for the intensification of conditioning before stem cell transplantation: differences in dosimetry and biokinetics of 188Re- and 99mTc-labeled anti-NCA-95 MAbs. J Nucl Med 2000; 41: 531-537.
  • 16 Kotzerke J, Bunjes D, Scheinberg DA. Radio-immunoconjugates in acute leukemia treatment: the future is radiant. Bone Marrow Transplant 2005; 36: 1021-1026.
  • 17 Leggett RW, Williams LR. A proposed blood circulation model for reference man. Health Physics 1995; 69: 187-201.
  • 18 Matthews DC, Badger CC, Fisher DR. et al. Selective radiation of hematolymphoid tissue delivered by anti-CD45 antibody. Cancer Res. 1992; 52: 1228-1234.
  • 19 Matthews DC. Development of a marrow transplant regimen for acute leukemia using targeted hematopoietic irradiation delivered by 131I-labeled anti-CD45 antibody, combined with cyclo-phosphamide and total body irradiation. Blood 1995; 85: 1122-1131.
  • 20 Matthews DC, Appelbaum FR, Eary JF. et al. Phase I study of 131I-anti-CD45 antibody plus cyclophos-phamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood 1999; 94: 1237-1247.
  • 21 Mulford DA, Scheinberg DA, Jurcic JG. The promise of targeted a-particle therapy. J Nucl Med 2005; 46: 199S-204S.
  • 22 Mutschler J, Steinbach G, Bunjes D. et al. Myelo-ablative radioimmunotherapy wirh 188Re-CD66 mAb before stem cell transplantion. Nuklearmedizin 2009; 48: 30-36.
  • 23 Nourigat C, Badger CC, Bernstein ID. Treatment of lymphoma with radiolabeled antibody: elimination of tumor cells lacking target antigen. J Natl Cancer Inst 1990; 82: 47-50.
  • 24 Oehme L, Dörr W, Wust P. et al. Influence of time-dose-relationships in therapeutic nuclear medicine applications on biological effectiveness of irradiation. Consequences for dosimetry. Nuklearmedizin 2008; 47: 205-209.
  • 25 Ong GL, Mattes MJ. Re-evaluation of the concept of functional affinity as applied to bivalent antibody binding to cell surface antigens. Mol Immunol 1993; 30: 1455-1462.
  • 26 Pagel JM, Appelbaum FR, Eary JF. et al. 131I-anti-CD45 antibody plus busulfan and cyclo-phosphamide before allogeneic hematopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood 2006; 107: 2184-2191.
  • 27 Reske SN, Bunjes D, Buchmann I. et al. Targeted bone marrow irradiation in the conditioning of high-risk leukaemia prior to stem cell transplantation. Eur J Nucl Med 2001; 28: 807-815.
  • 28 Ringhoffer M, Blumstein N, Neumaier B. et al. 188Re- or 90Y-labelled anti-CD66 antibody as part of a dose-reduced conditioning regimen for patients with acute leukaemia or myelodysplastic syndrome over the age of 55: results of a phase I-II study. Br J Haematol 2005; 130: 604-613.
  • 29 Sandmaier BM, Bethge WA, Wilbur DS. et al. Bismuth 213-labeled anti-CD45 radioimmuno-conjugate to condition dogs for nonmyeloablative allogeneic marrow grafts. Blood 2002; 100: 318-326.
  • 30 Sgouros G, Graham MC, Divgi CR. et al. Modeling and dosimetry of monoclonal antibody M195 (anti-CD33) in acute myelogenous leukemia. J Nucl Med 1993; 34: 422-430.
  • 31 Strand SE, Zanzonico P, Johnson TK. Pharmacokinetic modeling. Med Phys 1993; 20: 515-527.
  • 32 Thomas GD, Chappell MJ, Dykes PW. et al. Effect of dose, molecular size, affinity, and protein binding on tumor uptake of antibody or ligand: a bio-mathematical model. Cancer Res 1989; 49: 3290-3296.
  • 33 Zenz T, Glatting G, Schlenk RF. et al. Targeted marrow irradiation with radioactively labeled anti-CD66 monoclonal antibody prior to allogeneic stem cell transplantation for patients with leukemia: results of a phase I-II study. Haematologica 2006; 91: 285-286.