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Abstract 
We screened the gill and somatic muscle of 152 wild-caught invasive giant tiger prawns 
(GTPs), Penaeus monodon Fabricius, 1798 (Penaeoidea: Penaeidae) for infection by 
white spot syndrome virus (WSSV), infectious hypodermal and hematopoietic necrosis 
virus (IHHNV), and Taura syndrome virus (TSV) using molecular methods (PCR and 
qPCR) and transmission electron microscopy (TEM). The sampled GTPs comprised 
1 freshly-collected specimen from Mississippi Sound (Northern Gulf of Mexico) during 
2020; 54 frozen specimens originally captured from the Northern Gulf of Mexico 
off Mississippi, Alabama, and Florida during 2014–2016; 76 frozen specimens originally 
captured from the Northwestern Atlantic Ocean off North Carolina, South Carolina, 
Georgia, and Florida during 2014–2020; and 21 museum-accessioned specimens 
(19 initially ethanol-preserved; 2 initially formalin-fixed) captured from the Gulf of 
Mexico and Northwestern Atlantic Ocean off Florida during 1988, 2011–2013, and 2016. 
Molecular viral detection relied upon qPCR with TaqMan chemistry for WSSV, 
conventional PCR for IHHNV, and rt-PCR for Taura virus. TEM was performed on 
WSSV qPCR+ positive GTP gill to confirm viral infection. A total of 18 GTPs were 
positive for WSSV by qPCR, 1 was positive for IHHNV by conventional PCR, and 
none were positive for Taura virus. This is the first report of a WSSV or IHHNV 
infection in a wild-caught GTP from the Gulf of Mexico or Northwestern Atlantic 
Ocean and first detection of an IHHNV infection in a wild-caught host in the 
Northwestern Atlantic Ocean. The phylogenetic analyses indicated that, broadly, 
sympatric WSSV isolates (unless identical) do not share a recent common ancestor 
(they are paraphyletic), suggesting that the virus has been repeatedly translocated 
and introduced into the Gulf of Mexico and Northwestern Atlantic Ocean and that 
it originated from different localities. 
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Introduction 

The giant tiger prawn (GTP), Penaeus monodon Fabricius, 1798 (Penaeoidea: 
Penaeidae), is a large (270 mm maximum total length; 260 g total wet 
weight) and commercially-important penaeid. GTP capture fisheries historically 
existed off Indonesia, Malaysia, and the Philippines (Motoh 1981, 1985; 
Chan 1998). Lightner et al. (2012) reported that worldwide GTP production 
was only recently surpassed by domesticated whiteleg shrimp, Litopenaeus 
vannamei (Boone, 1931) (Penaeoidea: Penaeidae). The native geographic 
range of GTP comprises the Indo-West Pacific (between approximately 
30°E to 155°E longitude and 35°N to 35°S latitude) and includes Australia, 
Bangladesh, Hong Kong, India, Japan, Kenya, Korea, Madagascar, Oman, 
Pakistan, Papua New Guinea, Saudi Arabia, Somalia, South Africa, Sri Lanka, 
Taiwan, and Tanzania (Motoh 1985; Fuller et al. 2014). Commercial GTP 
landings have steadily declined from overfishing (Alam et al. 2022) and the 
destruction of mangrove nursery habitat (Mohamed 1967; Motoh 1985; 
Chaudhari and Jalihal 1993). The capture of live GTP broodstock and post-
larvae for spawning and grow-out have also likely contributed to population 
declines and decreased fisheries landings (Mohamed 1967; Chaudhari and 
Jalihal 1993; Kautsky et al. 2000; Shinji et al. 2019; Alam et al. 2022). 

GTPs were introduced for aquaculture in the Atlantic Ocean Basin and 
are now established in the Gulf of Mexico (Wakida-Kusunoki et al. 2013, 
2016), Northwestern Atlantic Ocean (Fuller et al. 2014; Zink et al. 2018; present 
study), Northeastern Atlantic Ocean off Africa, the Caribbean Sea (Altuve 
et al. 2008; Gómez-Lemos and Campos 2008; Giménez et al. 2014; Alfaro-
Montoya et al. 2015), and the Southwestern Atlantic Ocean off South America 
from Venezuela to Brazil (Coelho et al. 2001; Silva et al. 2002; Fuller et al. 
2014). Fuller et al. (2014) suggested three potential pathways of tiger shrimp 
introduction to the northwestern Atlantic Ocean, including larvae released 
from ballast water, migrations from established populations in the Caribbean 
Sea and South America, and escapement from aquaculture facilities. The 
first release of GTPs in North America was accidental and originated from a 
culture pond in South Carolina during 1988 (Fuller et al. 2014). Approximately 
300 GTPs were soon thereafter trawled from adjacent locales off South Carolina, 
Georgia, and northeastern Florida. No GTP was reported subsequently off the 
United States until a specimen was collected in 2006 from the Northern 
Gulf of Mexico (Mississippi Sound) off Dauphin Island, Alabama. A string 
of subsequent sightings and collections during 2006–2013 initially off the 
coast of North Carolina, South Carolina, Florida, and Louisiana and later 
confirmed along the coast of Texas, Mississippi, and Georgia (Fuller et al. 
2014) led to concern about the ecological impacts of an established GTP 
population as well as the concomitant introduction of viruses that could 
impact aquaculture production and wild fisheries. Especially concerning 
was that ~ 30 kg of GTPs were captured off northeastern Florida in 2013 
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and a putative juvenile GTP was captured in Biscayne Bay, Florida, in 2016 
(Zink et al. 2018); both indicating that an established, breeding population 
of GTP existed there. Despite the concerns about established populations 
of GTP in the Northwestern Atlantic Ocean and Gulf of Mexico, to date, 
relatively few studies have surveyed the viruses of wild-caught GTPs (de la 
Peña et al. 2007; Lightner 2011; Knibb et al. 2018; Oakey et al. 2019; Arbon 
et al. 2022). In fact, no record of a virus infecting a wild-caught GTP exists 
from North America. 

Shrimp viruses, as severe pathogens of cultured shrimps (Lightner 1993, 
1996a, b, 1999; Lightner and Redman 1998 a, b; Flegel 1997, 2006; Flegel 
and Alday-Sanz 1998), are of particular concern in the context of this 
biological invasion. As summarized by Lightner et al. (2012), the shrimp 
aquaculture industry grew rapidly world-wide and long before rapid and 
cost-effective nucleotide-based diagnostic tests were available to detect 
shrimp viruses. As live shrimp stocks and commodity shrimp (Durand et 
al. 2000) were translocated among countries and introduced outside of 
their native range, shrimp viruses were also likely unknowingly co-introduced 
and caused epizootics among naive (endemic) shrimps with scant or no 
innate resistance to exotic viruses (Lightner 2011). Lightner (2011) considered 
white spot syndrome virus (WSSV) and Taura syndrome virus (TSV) as 
the most virulent in this context, and, to a lesser extent, infectious hypodermal 
and hematopoietic necrosis virus (IHHNV), infectious myonecrosis virus 
(IMNV), and yellowhead virus (YHV). The collective economic impact of 
these viruses to the shrimp aquaculture industry in Asia and the Americas 
could exceed $12B in losses due to captive epizootics as well as lost jobs 
and export revenue (see Table 2 of Lightner [2011]). Stentiford et al. (2012) 
estimated that shrimp viruses cost the global industry ~ $3 B/yr (40% of 
tropical shrimp production). As a result, the industry began breeding 
specific-pathogen free (SPF) or specific-pathogen resistant (SPR) shrimp 
stocks (OIE 2020). Arbon et al. (2022) asserted that these technologies have 
resulted in a shift from culturing native shrimps to culturing domesticated 
lines of putatively disease resistant Pacific white shrimp. Likewise, 
domesticated stocks of GTP exist in Hawaii, Madagascar, and Thailand but 
the efficacy of these domesticated stocks regarding disease resistance is 
unknown and needs further investigation. Arbon et al. (2022) further 
noted that developing disease resistant GTP stocks and successful culture 
and biosecurity of broodstock benefits from knowledge of the pathogens 
that infect them in the wild. We concur and recognize this as further 
justification for screening wild decapod populations for these viruses. 

The viruses studied herein (WSSV, IHHNV, TSV) are known in the 
Americas and listed as reportable pathogens by the World Organization for 
Animal Health (WOAH) (formerly World Organization for Animal 
Health; OIE) (OIE 2022). The GTP is considered a natural host for WSSV 
and IHHNV (Lightner 1999) and has been experimentally infected with 
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TSV (Srisuvan et al. 2005). WSSV, IHHNV, and TSV emerged as problematic 
in shrimp aquaculture in 1992, 1981, and 1992, respectively (see Table 2 of 
Walker and Winton [2010]).  

WSSV (monotypic Whispovirus; monotypic Nimaviridae) is the etiological 
agent of white spot disease (WSD) (Wang et al. 1995). It is a large, enveloped, 
double stranded DNA virus with a rod-shaped particle having an apical 
envelope extension (Durand 1997). It infects numerous penaeid and non- 
penaeid decapod hosts and has been isolated from shrimps in every 
country supporting shrimp farming (Pradeep et al. 2012; Diggles 2017). It 
has been reported in wild-caught decapods (none from GTP) in the Gulf of 
Mexico and northwest Atlantic Ocean (Chang et al. 2001; Shields and 
Overstreet 2007; Blaylock et al. 2019; Muhammad et al. 2020; Vazquez-
Sauceda et al. 2016). WSSV was originally discovered in 1992 from an 
epizootic of kuruma shrimp, Penaeus japonicus Spence Bate, 1888 in northern 
Taiwan (Chou et al. 1995; Lightner et al. 1998). The first documented case 
of disease caused by WSSV in the Western Hemisphere was reported from 
pond-reared northern white shrimp, Penaeus setiferus (Linnaeus, 1776) in 
south Texas in 1995 (Lightner 1996b). 

IHHNV, also known as Decapod penstylhamaparvovirus 1 [monotypic 
Penstylhamaparvovirus; Parvoviridae], is the etiological agent of infectious 
hypodermal and hematopoietic necrosis disease as well as runt deformity 
syndrome (RSD) (Bonami et al. 1990; Kalagayan et al. 1991; Lightner 
1996a, 1999, 2011; Walker and Winton 2010; Pénzes et al. 2020). Three 
genotypes are known: Type 1 from Australia; Type 2 from eastern Asia and 
the Americas; and Type 3 from Southeast Asia. Non-infectious homologous 
insertions into the genome of GTPs are also described as Type A and Type 
B (Shen et al. 2015; Tang et al. 2002, 2006, 2007). It is the smallest of the 
known shrimp viruses (22 nm in diameter) and has a non-enveloped 
icosahedron particle with a single strand of DNA genome. Approximately 
30 decapods, including GTPs, and non-decapod host have been reported to 
be infected with or carriers of IHHNV (Yu et al. 2021). The first reports of 
IHHNV are from late 1980 through 1981 from the University of Arizona’s 
experimental shrimp culture facility in Hawaii, with acute mortalities in 
cultured blue shrimp, Penaeus stylirostris Stimpson, 1871 (see Lightner et al. 
1983). IHHNV is known from each country where shrimp farming occurs 
and has been reported from wild stocks in the Indo-Pacific and along the 
Pacific coast of the Americas (Gulf of California to Peru) (Lightner 1996a; 
Aguilera et al. 2010). In the last 15 yrs, IHHNV has been reported from 
wild, native decapods from the Atlantic coast of Argentina, Brazil, and 
Mexico (Martorelli et al. 2010; Cavalli et al. 2013; Guzmán-Sáenz et al. 
2009; Hernández-Pérez et al. 2017). Guzmán-Sáenz et al. (2009) reported 
IHHNV in wild decapods collected during 2005–2006 from Tamaulipas 
(Mexico), which also comprises the northern-most locality record for a 
wild IHHNV infection within the Gulf of Mexico. 
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TSV (Apavirus; Discoviridae) is the etiological agent of Taura syndrome. 
The disease was originally blamed on a fungicide but later the true etiological 
viral agent was discovered (Brock 1997; Lightner 2011). TSV is a non-
enveloped, 31–32 nm in diameter, icosahedron with a positive sense single 
stranded RNA genome (Hasson et al. 1995; Bonami et al. 1997). 
Susceptible hosts are primarily penaeid shrimps; including greasyback 
shrimp (Metapenaeus ensis), northern brown shrimp (Penaeus aztecus), 
GTP, northern white shrimp, blue shrimp, Indian white shrimp (Penaeus 
indicus), kuruma shrimp, and whiteleg shrimp (= the most susceptible to 
Taura syndrome) (OIE 2019; Lightner 1996b, 2011; Lightner and Redman 
1998b; Tang et al. 2012; Brock 1997). Taura syndrome was first reported in 
1992 from shrimp farms near the Taura River, Gulf of Guayaquil, Ecuador. 
Shortly after being recognized as a viral disease, it spread to other shrimp 
farming regions of Latin America and parts of the United States (Jimenez 
1992; Brock 1997; Hasson et al. 1999; Lightner 1999). However, it has not 
been reported in wild shrimps along the Atlantic, Caribbean, or Gulf of 
Mexico coast of the Americas (Lightner 1996a; OIE 2019). In 1998, TSV 
was reported from whiteleg shrimp from Taiwan and is now recognized in 
most shrimp farming countries throughout Asia, the Middle East, and the 
Americas (Lightner 2011; Lightner et al. 2012). 

Materials and methods 

Shrimp samples and collections 

Gill or, if gill was not available, somatic muscle from 152 wild-caught GTP 
were screened for WSSV, IHHNV, and TSV. The sampled GTPs comprised 1 
freshly-collected specimen trawled by a commercial shrimper during 2020 
from Mississippi Sound (Northern Gulf of Mexico) (JDK and SAB collection; 
gill preserved in 95% ethanol); 54 specimens trawled by commercial shrimpers, 
recreational fishers, and researchers during 2014–2016 from the Northern 
Gulf of Mexico off Mississippi, Alabama, and Florida and initially frozen 
(JMH collection; whole frozen GTPs were gill biopsied by JDK at JMH’s 
laboratory and preserved in 95% ethanol before being shipped to the 
Southeastern Cooperative Fish Parasite and Disease Laboratory [SCFPDL]); 
76 specimens trawled by commercial shrimpers during 2014–2020 from 
the Northwestern Atlantic Ocean off North Carolina, South Carolina, Georgia, 
and Florida and initially frozen (PRKS, MRK, and ELG collection; whole 
frozen GTPs were gill biopsied and preserved in 95% ethanol before being 
shipped to the SCFPDL); and 21 specimens (19 initially ethanol-preserved; 
2 initially formalin-fixed) in the collection of the Florida Fish and Wildlife 
Conservation Commission’s Fish and Wildlife Research Institute (FWRI) 
that were trawled by commercial shrimpers and researchers during 1988, 
2011–2013, and 2016 from the Atlantic and Gulf of Mexico coast of Florida 
and initially fixed in formalin or preserved in 95% ethanol (gill was 
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biopsied and preserved in 95% ethanol before being shipped to the SCFPDL) 
(FSBC Nos. I–33739, I–078598, I–078599, I–078600, I–095572, I–102510, 
I–106260, I–112186, I–133251, I–138202) (Supplementary material Table S1). 
The code FSBC follows the annotated codes for natural history collections 
detailed by Sabaj (2020). Common names for penaeids and the use of 
“shrimp” and “prawn” (neither of which have any taxonomic standing nor 
define monophyletic groups) follows Chan (1998). 

Nucleic acid extraction 

DNA and RNA were extracted from the gill and somatic muscle samples 
using the Qiagen DNeasy Blood and Tissue Kit and the Qiagen RNeasy 
plus mini kit, respectively, according to the manufacturer’s instructions. 
DNA and RNA were each eluted in 30 µL of RNase-free water, diluted to a 
50 ng/ µL concentration if needed, and stored at −20 °C until further 
testing. WSSV screening was performed using a Taqman qPCR assay with 
primers WSS1011F/WSS1079R and probe designed by Durand and 
Lightner (2002). We used a positive control to generate a standard curve 
(Muhammad et al. 2020). The assay was performed using Taqman Universal 
Mastermix II, with no UNG. A 5 µL of template DNA was added to the PCR 
master mix containing 0.3 µm of each primer plus 0.15 µm of Taqman 
probe for a 25 µL final reaction volume. Amplification was carried out using 
the following PCR cycle in a QuantStudio 5 Real Time PCR System: 50 °C 
for 2 min, 95 °C for 10 min followed by 40 cycles of 15 s at 95 °C and 1 min 
at 60 °C. A cut off CT value of < 38 was used to determine positive DNA 
amplification. Copy number of positive samples were calculated based on 
the oligonucleotide length and the assumption of average weight of a 
nucleotide base pair is 650 Da along with conversions from weight to volume 
as described by Blaylock et al. (2019). IHHNV detection first used recommended 
WHOA conventional PCR primer sets 309F/R (Tang et al. 2007) followed 
by primer set 389F/R (OIE 2009). The PCR reactions contained: 5 µL of 5x 
goTaq reaction buffer, 0.2 µm of each primer, 0.8 µm of dNTP mix, 2.5 mM 
MgCL2, and 0.15 µL Taq polymerase (5U/µL) for a 25 µL reaction volume. 
Amplification for primer set 309F/R was carried out using PCR cycle: 95 °C 
for 5 min, followed by 45 cycles of 30 s at 95 °C, 30 sec at 53 °C, and 1 min 
at 72 °C. Amplification using 389F/R primer set follows protocol detailed 
by OIE (2009). TSV screening used RT-PCR primers 9992F/9195R (Nunan 
et al. 1998; OIE 2009) and QIAGEN OneStep Ahead RT-PCR Kit according to 
the manufacturer's instructions with the extracted RNA. 

Sequencing 

WSSV qPCR positives with a Ct value < 25 were used for conventional 
PCR and sequencing using primer sets (146, USC4, USC5, VP28) as per 
Knibb et al. (2018). Three samples (Ocean Springs, Mississippi, 8 August 
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2014; Charleston Harbor, South Carolina, October 17 2017; Ashley River, 
South Carolina 28 July 2015) had CT values < 25, indicating higher viral 
concentrations than those with greater CT values, and were therefore specifically 
chosen to have a higher chance of containing enough intact DNA for 
amplification by all primer sets. PCR products for WSSV and IHHNV were 
analyzed on 1% agarose gels with ethidium bromide before being purified 
with QIAquick PCR purification kit and sequenced by Azenta life sciences 
(South Plainfield, New Jersey) using the same primer sets for amplification. 
All 18 WSSV+ gill tissue was processed for whole genome sequencing. 
Additional tissues were resampled and purified with Polyethylene glycol 
6,000 at 30% in 1.5 mole NaCl2 at a 2:1 volume for 2 hrs; 3 µL of RNase was 
subsequently added to the mixture and incubated for an additional 30 min 
at 37 °C to remove host RNA. The viral capsule was disrupted to release 
viral DNA using 3 µL proteinase K for 1 hr at 37 °C. Purification to further 
remove host DNA and amplification of genomic DNA used AMPure XP beads 
(Beckman Coulter) and GenomiPhi V2 DNA Amplification Kit (Cytiva) as 
per the manufacturer’s instructions. Amplified DNA was sent to the Genomics 
and Bioinformatics Resources Core at the University of Idaho for whole 
genome sequencing on an Illumina MiSeq using 2 × 300 bp chemistry. 
Given failures associated with genome sequencing (see Results), we 
amplified and sequenced four fragments of the genome for phylogenetic 
and network analyses; these fragments were chosen because proven-
effective primers exist for them. 

Genome assembly and phylogenetic analysis of WSSV 

Raw Illumina data were trimmed for low-quality reads and sequencing 
adapters using fastp and default settings (Chen et al. 2018). Genome assembly 
for the sequenced individual was done by mapping raw reads to the NCBI 
Reference Sequence for WSSV (NC_003225) with Bowtie2 (Langmead and 
Salzberg 2012) and default parameters. For phylogenetic analyses, we used 
Sanger-sequenced fragments (Ocean Springs, Mississippi, 8 August 2014; 
Charleston Harbor, South Carolina, October 17 2017; Ashley River, South 
Carolina, 28 July 2015) of WSSV and orthologous fragments of publicly 
available whole WSSV genomes. Orthologous genomic regions were retrieved 
by aligning Sanger sequenced fragments to whole genome sequences in 
Geneious Primer (Biomatters) with the Mauve Plugin for genome alignment 
(Darling et al. 2004) and then extracting the aligned regions. Aligned gene 
regions were concatenated with FASconCAT-G (Kück and Longo 2014). 
We inferred a maximum likelihood phylogeny with gaps (indels) coded as 
a fifth state because most of the sequence variation was in gappy regions 
of the alignment. The maximum likelihood tree, which was midpoint 
rooted, was inferred in RAxML-ng using the 5-character multistate model 
GTR + F0 + Γ. Branch support was estimated with non-parametric 
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bootstrapping; the appropriate number of bootstrap replicates was determined 
with bootstrapping method in RAxML and a maximum of 1000 replicates. 
Given the close relationship among sequenced WSSV isolates, we also inferred 
a median-joining network (Bandelt et al. 1999) in NETWORK (https://www. 
fluxus-engineering.com/) using the concatenated alignment. 

Transmission electron microscopy (TEM) 

TEM was performed using a Zeiss EM10 TEM using EtOH-preserved, 
WSSV qPCR+ gill. A 1.5 mm3 cube of gill tissue was placed in 6% glutaraldehyde 
for 24 hrs before post-fixing in 2% osmium tetraoxide for 1 hr in darkness 
and at room temperature. Samples were dehydrated in an ethanol series 
with 2 final 1-hr washes with absolute EtOH. Samples were transferred to 
100% propylene oxide for 8 hrs before transitioning to Spurr’s resin. Transition 
steps initially comprised a 3:1 ratio of propylene oxide to Spurr’s resin, then 
1:2, then 1:3, and finally 2 steps at 100% Spurr’s resin (each step for 8 hrs). 
Samples were finally placed in a BEEM embedding capsule with resin and 
hardened in a 65 °C oven for 24 hrs. A total of 60–70 1 μm sections were 
placed on a size 200 mesh copper grid. Grids were stained with uranyl acetate 
for 1 hr in the dark, washed 3 times with carbon dioxide free water, and 
stained for 15 min with lead citrate in a carbon dioxide reduced environment. 

Results 

qPCR and PCR 

A total of 152 GTPs (Table S1) were screened for WSSV, IHHNV, and 
TSV: 18 (12%) were qPCR+ for WSSV (3 from the northern Gulf of 
Mexico off Mississippi, 1 from the eastern Gulf of Mexico off Florida, and 
14 from the Northwestern Atlantic Ocean off South Carolina and Georgia), 
1 was PCR+ for IHHNV (Northwestern Atlantic Ocean off South Carolina), 
and none was positive by rtPCR for Taura Virus. The RNA was stored at 
−20 °C, which can lead to sample degradation, possibly affecting testing 
and leading to false negatives. Thus, this result should be viewed with 
skepticism and repeated upon collection of fresh GTPs for RNA viral screening. 
WSSV+ samples, CT value, and estimated copy number are detailed in 
Table 1. Gill from 2 of the WSSV qPCR+ samples (1 from the Gulf of 
Mexico; 1 from off South Carolina) were screened by TEM (Figure 1) for 
confirmation of viral infection (the gill of the IHHNV+ shrimp was 
inadequate for TEM). One sample from the Gulf of Mexico (Ocean Springs, 
Mississippi, 8 August 2014) and 2 from South Carolina (Charleston Harbor, 
South Carolina, 17 October 2017; Ashley River, South Carolina, 28 July 
2015) had relatively lower CT values of 22.36, 17.9, and 24.4, respectively, 
and were used for the phylogenetic analysis. One GTP (Cooper River, 
South Carolina, 7 July 2020) of 152 GTPs sampled was PCR+ for IHHNV 
using both primer sets 309F/R and 389F/R. 
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Table 1. Giant tiger prawn, Penaeus monodon, that were qPCR+ for WSSV infection in the present study. Copy number estimated 
from reported cycle threshold value. 

WSSV Positives Location Collection Date Ct value Copy Number 
Northwest Atlantic Ocean Coosaw Creek, SC 7/23/2014 37.017 11 
 Folly River, SC 7/24/2014 32.78 241 
 Murrells Inlet, SC 8/18/2014 37.66 7 
 Cooper River, SC 10/30/2014 37.3 9 
 Folly River, SC 7/13/2015 33.56 136 
 Ashley River, SC 7/28/2015 24.14 140, 672 
 Ashley River, SC 7/28/2015 35.32 37 
 Rock Springs Creek, SC 7/29/2015 36.8 12 
 Cowen Creek, SC 9/19/2015 35.11 43 
 Atlantic Ocean (off GA) 10/8/2015 37.79 6 
 Winyah Bay, SC 7/20/2017 36.7 13 
 Charleston Harbor, SC 10/17/2017 17.904 13, 984, 489 
 Ashley River, SC 8/13/2019 33.56 136 
 Bull Creek, SC 10/15/2020 35.7 28 
Gulf of Mexico Ocean Springs, MS 8/15/2014 22.36 522, 383 
 Gulf of Mexico 10/12/2015 37.838 6 
 Peace River, FL 5/26/2016 35.64 29 
 D’Iberville, MS 10/1/2020 37.9 6 

 
Figure 1. Gill tissue of giant tiger prawn (GTP), Penaeus monodon, that were qPCR+ for WSSV infection and imaged using 
transmission electron microscopy. (a) Virions (arrows) from GTP from the NW Atlantic Ocean off South Carolina. Scale bar = 2 μm. 
(b) Virions showing nucleocapsid lumen (nc) and segments of partly intact trilamilar envelope (arrows) from GTP from the NW 
Atlantic Ocean off South Carolina. Scale bar = 500 nm. (c) A virion showing the nucleocapsid lumen (nc) and the cuticle (cu) of 
GTP from the Gulf of Mexico off Mississippi. Scale bar = 500 nm. (d) A virion showing the nucleocapsid lumen (nc) within the 
subcuticular cytoplasmic sheet (cs) adjacent to the thick cuticle (cu) from a GTP from the NW Atlantic Ocean off South Carolina. 
Scale bar = 500 nm. 
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Figure 2. RAxML-g inferred maximum likelihood cladogram (midpoint rooted). Branches are 
labelled with non-parametric bootstrap support. GenBank accession numbers comprise the endnodes; 
gray boxes are sequences generated from the present study. 

Phylogenetic analysis 

The 2 WSSV isolates from the Northwestern Atlantic Ocean off South Carolina 
were identical and comprised a lineage distinct from the WSSV isolate from 
the Gulf of Mexico (Figures 2, 3). The phylogenetic and network analyses 
(RAxML-g inferred maximum likelihood cladogram (Figure 2) and the 
median joining network (Figure 3)) indicated that at least 2 lineages of WSSV 
infect GTPs in United States coastal waters off South Carolina, Georgia, 
Florida, and Mississippi (Figures 1–4). The WSSV isolates from the Northwestern 
Atlantic Ocean off South Carolina were sister to WSSV isolates from Mexico 
and Brazil and hence collectively comprise a clade of WSSV isolates from 
the Americas (Figure 2). This clade was sister to an isolate from South 
Korea (JX515788). The other WSSV isolate analyzed herein (from the Gulf 
of Mexico) was recovered within a clade of isolates from China and India 
(Figure 2). Genome sequencing for WSSV failed as a result of too few reads 
per sample mapping to the reference genome. Raw sequencing data will 
not be made publicly available. 

Transmission electron microscopy 

TEM of the sectioned gill tissue was challenged by the extremely poor 
condition of the frozen or EtOH-preserved shrimp tissues: the gill was 
expectedly extremely degraded and generally poor for TEM. Recognizable 
tissues primarily constituted the cuticle and residual subcuticular cytoplasmic 
sheet only. Within the tissue sections for 2 shrimp (Charleston Harbor, 
South Carolina, 17 October 2017; Ashley River, South Carolina, 28 July 2015) 
from off South Carolina and 1 shrimp (Ocean Springs, Mississippi, 8 August 
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Figure 3. Median joining network of WSSV DNA sequences. Node size is proportional to the 
number of isolates with the same haplotype; gray nodes are inferred haplotypes; line ticks are 
mutations between isolates. 

2014) from off Mississippi, we observed several viral particles that resembled 
published descriptions of WSSV (Figure 1; Durand et al. 1997; Lightner 
2011). The gill tissue we studied was never initially fixed (sensu stricto; 
rather they were initially preserved in EtOH or frozen), and the resulting 
poor TEM images and poor differentiation at the cellular level was likely 
related to poor tissue stabilization. Our observations of virions in the 
studied gill tissue seemingly confirmed previous assertions that ethanol-
based preservatives/solutions induce demonstrable artifactitious structural 
changes in virion particles and the virion envelop itself (Martín-González 
et al. 2020; Watts et al. 2021). Hence, the virions we observed with TEM in 
the WSSV+ gill samples cannot be definitively identified as WSSV based 
on morphology alone: they were ovoid or rod-shaped, with some 
specimens having a trilaminar envelope (Figure 1A–D). No tail like appendage 
could be discerned in a virion studied. 
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Figure 4. Geographic localities for the giant tiger prawns, Penaeus monodon, sampled herein 
that were qPCR+ for WSSV infection. The star represents the locality of the IHHNV+ detection. 

The morphology of virions from TEM sections from South Carolina 
GTP (Figure 1A, B, D) follows: virion 220.55–311.45 nm (274.13 nm) long, 
128.31–207.56 nm (173.35 nm) in maximum width at midsection, approximately 
2.5× longer than wide; virion envelope 5.3–7.31 nm (6.42 nm) thick; gap 
between envelope and nucleocapsid 4.69–8.74 nm (6.33 nm) in breadth; 
nucleocapsid 191.08–286.37 nm (247.58 nm) long, 90.73–181.03 nm 
(146.48 nm) in maximum width at midsection. Morphology of virus from 
Gulf of Mexico GTP (Figure 1C): virion 281.69–310.81 nm (293.49 nm) 
long, 188.96–215.15 nm (211.51 nm) in maximum width at midsection; 
virion envelope 14.9–25.76 nm (22.17 nm) thick; gap between envelope 
and nucleocapsid 5.39–7.54 nm (6.02 nm) in breadth; nucleocapsid 
237.49–265.35 nm (249.09 nm) long, 129.4–164.29 nm (148.35 nm) in 
maximum width at midsection. The envelope of the virions from the Gulf 
of Mexico (collected 3 yrs before the South Carolina samples) was degraded 
compared to that of the specimens from South Carolina. 

Discussion 

The present study documents the presence of WSSV and IHHNV 
infections among wild-caught GTP off North America (Northwestern 
Atlantic Ocean and Gulf of Mexico) and comprises the first published 
detection of a virus in a wild-caught GTP in the Atlantic Ocean Basin 
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(inclusive of the Gulf of Mexico). Whereas WSSV had been previously 
reported from decapods in the northern Gulf of Mexico and Northwest 
Atlantic Ocean (Chang et al. 2001; Vazquez-Sauceda et al. 2016; Blaylock et al. 
2019; Muhammad et al. 2020), IHHNV has only been reported as far north 
as off Tamaulipas (Mexico) in the Atlantic Ocean Basin (Guzmán-Sáenz et al. 
2009). The geographic gaps between previously reported infections and the 
infections reported herein are likely due to lack of sampling. Funding for 
conducting pathogen surveillance among apparently “healthy” wild aquatic 
animal populations can be difficult to attain. Hence, very little sampling 
effort has been focused on invasive GTP and their pathogens. 

We herein detected 2 lineages of WSSV from the Gulf of Mexico and 
Northwestern Atlantic Ocean, respectively, based on a relatively small sample 
size. These lineages were not genetically related (they were paraphyletic) 
(Figures 2, 3). In specific and considering all available/comparable nucleotide 
sequences for WSSV, the phylogenetic analyses indicated that (i) WSSV 
isolates do not clade by locality (they are paraphyletic; an exception comprises 
the identical isolates of WSSV from South Carolina), (ii) the virus has been 
repeatedly translocated and introduced, and (iii) the Gulf of Mexico isolate 
and Northwestern Atlantic Ocean isolates do not share a recent common 
ancestor and were likely introduced independently and from different 
geographic localities. Analyzing additional viral isolates could reveal additional 
lineages that could further indicate independent WSSV introductions to 
the Atlantic Ocean Basin. However, too few WSSV isolates were studied 
herein to assess genetic variability as a tool for theorizing the time of this 
introduction. As an invasive species susceptible to both WSSV and IHHNV, 
GTP likely is a natural vector for both viruses, including different WSSV 
and IHHNV genotypes, to new geographic areas and naive hosts. Differential 
pathology attributable to viral strain/genotype is a concern for the conservation 
of native decapod populations (including commercially-important crabs 
and shrimps). In this way, describing these various strains is important in 
forecasting and/or understanding potential future disease outbreaks in 
wild and cultured populations. 

The presence of viral sequences integrated into the genome of a host i.e., 
endogenous viral elements (EVE), has obvious relevance to PCR-based 
diagnostic tests because it could result in a false positive for a replicating 
virus (Alday-Sanz et al. 2020). An EVE comprises a viral genome that is 
integrated into the host germline leading to fixation and is most common 
among retroviruses as integration with the host genome is an obligatory 
component of the retroviral life cycle (Holmes 2011). DNA and RNA 
viruses can integrate with the host genome by interacting with cellular 
retroviral elements or via non-homologous recombination (Holmes 2011). 
WSSV and WSSV-like EVEs have been found in GTPs, kuruma shrimp, 
whiteleg shrimp, brush-clawed shore crab (Hemigrapsus takanoi), greasyback 
shrimp (Metapenaeus ensis), and flower crab (Sesarma intermedium) 
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(Hossain et al. 2021; Bao et al. 2020). The known variety and number of 
EVE present in crustacean genomes is continually growing with 
representatives from more than just the retroviruses (Thézé et al. 2014). 
The presence of EVEs of IHHNV were first reported by Tang and Lightner 
(2006, and these authors demonstrated the potential for false positives 
using the recommended WHOA primer sets. Saksmerprome et al. (2011) 
studied IHHNV EVEs in GTP genomes showing that the primer set 
309F/R developed by Tang et al. (2007) to differentiate between exogenous 
IHHNV and endogenous elements had false positives in some instances 
because it detected unexpected endogenous elements. For this purpose, if 
there is an unexpected positive in otherwise healthy shrimp it has been 
recommended to use two confirmatory tests or primer sets coding for 
different regions of the genome (OIE 2019). We doubt that the PCR 
diagnosis of WSSV and IHHNV in our sample set was due to EVEs 
because our chemistry amplified multiple distinct gene fragments for both 
viruses. EVEs have the potential to benefit the host either by modulating 
the host response to exogenous viruses or, in the case of functional EVEs, 
by directly coding for proteins that act as immunogens (Holmes 2011). 
This has led to the study of EVEs for developing specific pathogen free/ 
specific pathogen resistant (SPF/SPR) shrimp stocks against some of the 
major viruses in the industry (Taengchaiyaphum et al. 2019). 

The epidemiology of WSSV and IHHNV in wild decapod populations is 
understudied. We are aware of only 1 study that has documented the 
prevalence and intensity of viral infections among non-commercial decapods 
sympatric with invasive GTPs in the Gulf of Mexico (Muhammad et al. 2020). 
Muhammad et al. (2020) studied 11 non-penaeid decapod species native to 
the Gulf of Mexico and concluded that nearly all (10 of 11; 91%) were 
qPCR+ for WSSV. Given that WSSV is widespread throughout the Gulf of 
Mexico and northwest Atlantic Ocean (Chang et al. 2001; Chapman et al. 
2004; Baumgartner et al. 2009; Muhammad 2016; Blaylock et al. 2019), 
Muhammad et al. (2020) theorized that the processing of imported seafood 
could comprise a chronic and long-term source of WSSV introductions on 
a regional scale. Given that these processing plants receive shrimp from 
across the world, this could lead to a genetically heterogenous WSSV 
population. 

Surveying wild crustaceans for viral infections could improve the collective 
understanding of the natural geographic distribution, host specificity, and 
natural history of these viruses. Increased screening of wild decapods for 
shrimp viruses is needed from both applied and basic research perspectives. 
As parasites, viruses can show specificity to specific host lineages or to 
hosts that occupy a specific niche or habitat (Bandín and Dopazo 2011; 
Rothenburg and Brennan 2020). However, we lack host specificity 
information for most shrimp viruses. Each of these shrimp viruses could 
have evolved as a parasite of other decapods and crossed over to commercially-
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valued shrimps, which are intensively screened for diseases by diagnostics 
laboratories and are thereby relatively less well documented from wild 
decapod populations. Regarding the applied value of viral diagnostics of 
wild decapod communities, given that shrimp farms are sited within aquatic 
ecosystems that also harbor a diverse decapod community, knowledge of 
crustacean vectors, pathways, and host life cycle specificity have obvious 
biosecurity relevance and best management practices implications. 

Our data show that WSSV and IHHNV have been infecting GTP in their 
invasive range off North America since at least 2014 and 2020, respectively. 
All but 20 specimens were collected during 2014 through 2020. The lack of 
WSSV positives prior to 2014 could, in part, be a result of the small number of 
specimens available. Viral DNA could have also degraded beyond the 
detection threshold; as we suspect with the RNA virus TSV. Although the 
majority of GTPs with WSSV+ gill tissue were collected during June through 
October, this timeframe largely coincides with the commercial shrimping 
season. Thus, fewer prawns were collected outside of that period, which is 
bias. Without further and more consistent sampling, seasonality of WSSV 
in North America is indeterminate. There is also potential for false negatives or 
higher CT values due to degradation of viral DNA from the specimens 
being initially frozen at −20 °C (for years) and then post-preserved in EtOH. 

We doubt that IHHNV has moved from the western Gulf of Mexico to the 
South Carolina coast (or vice versa) without infecting decapods between these 
collection points. The IHHNV positive sample (Cooper River, South 
Carolina, 7 July 2020) was collected in 2020 from the coast of South Carolina 
and Guzmán-Sáenz et al. (2009) reported IHHNV in wild decapods from 
the coast of Tamaulipas, Mexico. As a single stranded DNA virus, IHHNV 
probably degraded more quickly than WSSV, perhaps preventing us from 
detecting it and therefore resulting in a false negative. Taura virus, as an 
RNA virus, would have fared the worst; with rapid degradation leading to 
decreased diagnostic sensitivity and a greater likelihood of false negatives. 
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