Next Article in Journal
SUPG Approximation for the Oseen Viscoelastic Fluid Flow with Stabilized Lowest-Equal Order Mixed Finite Element Method
Previous Article in Journal
A Method of Solving Compressible Navier Stokes Equations in Cylindrical Coordinates Using Geometric Algebra
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Estimates for the Commutators of p-Adic Hausdorff Operator on Herz-Morrey Spaces

Department of Mathematics, Quaid-I-Azam University, Islamabad 45320, Pakistan
*
Author to whom correspondence should be addressed.
Mathematics 2019, 7(2), 127; https://doi.org/10.3390/math7020127
Submission received: 4 December 2018 / Revised: 22 January 2019 / Accepted: 24 January 2019 / Published: 28 January 2019

Abstract

:
In this paper, we investigate the boundedness of commutators of matrix Hausdorff operator on the weighted p-adic Herz-Morrey space with the symbol functions in weighted central bounded mean oscillations (BMO) and Lipschitz spaces. In addition, a result showing boundedness of Hausdorff operator on weighted p-adic λ -central BMO spaces is provided as well.

1. Introduction

Let p be a fixed prime and x be a nonzero rational number. If x can be represented in the form x = p γ m / n , where the integers m , n and fixed prime p are coprime to each other then | x | p = p γ , where γ = γ ( x ) Z . If x = 0 then we have | 0 | p = 0 . The p-adic absolute value | · | p satisfies all conditions of norm along with the following two extra properties:
| x y | p = | x | p | y | p , | x + y | p max { | x | p , | y | p } .
The symbol Q p denotes the field of p-adic numbers and is the completion of the field of rational number Q with respect to ultrametric p-adic norm | · | p . In [1], it was shown that any x Q p \ { 0 } can be expressed in the canonical form as:
x = p γ k = 0 β k p k ,
where β k , γ Z , β 0 0 β k < p . The series (2) converges in p-adic norm because one has | p γ β k p k | p p γ k .
The space Q p n = Q p × × Q p consists of points x = ( x 1 , x 2 , , x n ) , where x k Q p , k = 1 , 2 , , n . If x Q p n then the following definition of norm is used on Q p n
| x | p = max 1 k n | x k | p .
Let us express
B γ ( a ) = { x Q p n : | x a | p p γ } ,
the ball with center at a Q p n and radius p γ . In a same manner, express by
S γ ( a ) = { x Q p n : | x a | p = p γ } ,
the sphere with center at a Q p and radius p γ . When a = 0 , we merely represent B γ ( 0 ) = B γ and S γ ( 0 ) = S γ . Also, for every a 0 Q p n , a 0 + B γ = B γ ( a 0 ) and a 0 + S γ = S γ ( a 0 ) .
Since Q p n is a locally compact commutative group under addition, therefore, there exists a Haar measure d x on Q p n , such that
B 0 ( 0 ) d x = | B 0 ( 0 ) | = 1 ,
where | B | denotes the Haar measure of a subset B of Q p n , and B is measurable. In addition, an easy computation yields | B γ ( a ) | = p n γ , | S γ ( a ) | = p n γ ( 1 p n ) , for any a Q p n .
The p-adic analysis has gained a lot of attention in the past few decades due to its importance in mathematical physics and its usefulness in science and technology (see, for instance, [2,3,4,5]). It is a fact that the theory of function from Q p n into C play a vital role in p-adic quantum mechanics [1]. In the last few years, many researchers have taken interest in the study of harmonic and wavelet analysis over p-adic fields which resulted in a number of reseach items, for instance, see [6,7,8].
The Hausdorff operator is considered very important in harmonic analysis due to its relation with the summability of classical Fourier series (see e.g., [9,10]). The matrix Hausdorff operator with kernel function Φ in Euclidean space R n , n 2 was studied by Lerner and Liflyand in [11] and is of the form
H Φ , A f ( x ) = R n Φ ( t ) f ( A ( t ) x ) d t .
where A ( t ) is n × n invertible matrix for almost everywhere t in the support of Φ . If the kernel function Φ is chosen wisely then the Hausdorff operator reduces to some classical operators like the Hardy operator, the adjoint Hardy operator, the Hardy-Littlewood averaging operator and the Cesàro operator. Here we would like to mention some important publications including [11,12,13,14,15,16,17,18,19,20,21,22,23,24] which discussed the boundedness of Hausdorff operator on function spaces.
On the other hand, the p-adic matrix Hausdorff operator was introduced by Volosivets [25], which is given by
H Φ , A ( f ) ( x ) = Q p n Φ ( t ) f ( A ( t ) x ) d t ,
where Φ ( t ) is locally integrable function on Q p n and A ( t ) is n × n nonsingular matrix for almost everywhere in the support of Φ . In recent times, the boundedness of the Hardy operator and the Hausdorff operator on p-adic field has become point of discussion for many authors (see, for instance, [26,27,28,29,30]). In [29], the Hausdorff operator was studied on weighted p-adic Morrey and Herz type spaces where, by imposing special conditions on the norm of the matrix A , sharp estimates were also obtained.
The boundedness properties of commutator operators is also an important aspect of harmonic analysis as these are useful in the study of characterization of function spaces and regularity theory of partial differential equations. The commutator of Hausdorff operator H Φ , A with locally integrable function b is given by
H Φ , A b f = b H Φ , A f H Φ , A ( b f ) .
The boundedness of the analog of H Φ , A b on R n and its special cases when A ( t ) = diag [ 1 / | t | , 1 / | t | , , 1 / | t | ] were discussed in [31,32,33,34,35,36,37]. However, this topic still needs further considerations in the sense of its boundedness on p-adic function spaces.
In this paper, we will mainly discuss the boundedness of H Φ , A b on p-adic weighted Herz type spaces when b is either from C M O q 2 ( w , Q p n ) or Λ δ ( Q p n ) . In addition an intermediate result stating the boundedness of p-adic matrix Hausdorff operator on λ -central bounded mean oscillations (BMO) spaces will be given at first.

2. Preliminaries and the Main Results

Suppose w ( x ) is a weight function on Q p n , which is nonnegative and locally integrable function on Q p n . Let L q ( w ; Q p n ) , ( 0 < q < ) be the space of all complex-valued functions f on Q p n such that:
f L q ( w ; Q p n ) = Q p n | f ( x ) | q w ( x ) d x 1 q < .
If f L 1 ( Q p n ) , we will write
Q p n f ( x ) w ( x ) d x = γ Z S γ f ( x ) w ( x ) d x .
Definition 1.
Let λ < 1 n and 1 < q < . The space C M O q , λ ( w , Q p n ) is defined as follows.
f C M O q , λ ( w , Q p n ) = sup γ Z 1 w ( B γ ) 1 + λ q B γ | f ( x ) f B γ | q w ( x ) d x 1 / q < ,
where
f B γ = 1 | B γ | B γ f ( x ) d x .
Remark 1.
When λ = 0 , the space C M O q , λ ( w , Q p n ) is just reduced to C M O q ( w , Q p n ) with corresponding norm given as follows.
f C M O q ( w , Q p n ) = sup γ Z 1 w ( B γ ) B γ | f ( x ) f B γ | q w ( x ) d x 1 / q .
Definition 2.
Suppose α R , 0 < l , q < , the weighted Herz space K q α , l ( w , Q p n ) is defined by:
K q α , l ( w , Q p n ) = { f L loc q ( w , Q p n \ { 0 } ) : f K q α , l ( w , Q p n ) < } ,
where
f K q α , l ( w , Q p n ) = k = w ( B k ) α l / n f χ k L q ( w , Q p n ) l 1 / l ,
and χ k is the characteristic function of the sphere S k = B k \ B k 1 .
Remark 2.
Obviously K q 0 , q ( w , Q p n ) = L q ( w , Q p n ) .
Definition 3.
Suppose α R , 0 < l , q < , and λ be a non-negative real number. Then the weighted Morrey-Herz space M K l , q α , λ ( w , Q p n ) is defined as follows.
M K l , q α , λ ( w , Q p n ) = { f L l o c q ( w , Q p n \ { 0 } ) : f M K l , q α , λ ( w , Q p n ) < } ,
where
f M K l , q α , λ ( w , Q p n ) = sup k 0 Z w ( B k 0 ) λ / n k = k 0 w ( B k ) α l / n f χ k L q ( w , Q p n ) l 1 / l .
Remark 3.
It is evident that M K l , q α , 0 ( w , Q p n ) = K q α , l ( w , Q p n ) .
For the analog of Herz-Morrey space on Euclidean space R n , we refer the interested reader to the paper [38] by Lu and Xu. Recently, the study reported in [38] was extended to variable exponent Herz-Morrey spaces in [39,40].
Definition 4.
Suppose δ R + . The Lipschitz space Λ δ ( Q p n ) is the space of all measurable functions f on Q p n such that:
f Λ δ ( Q p n ) = sup x , h Q p n , h 0 | f ( x + h ) f ( x ) | | h | p δ < .
Lemma 1.
([30]) Let E be an n × n matrix with entries e i j Q p . Then the norm of E , regarded as an operator from Q p n to Q p n , is defined as:
E = max 1 i n max 1 j n | e i j | p .
Definition 5.
([26]) Let β R . The set W β consist of all measurable function w ( x ) on Q p n , Satisfying:
(a) 
w ( x ) > 0 a.e.,
(b) 
S 0 w ( x ) d x < ,
(c) 
w ( t x ) = | t | p β w ( x ) for all t Q p \ { 0 } , x Q p n .
It is not difficult to see that a weight w ( x ) W β needs not to be necessarily locally integrable function. Importantly, if w ( x ) = | x | p β , then w ( x ) W β but w ( x ) L loc 1 ( Q p n ) if and only if β > n .
Lemma 2.
([27]) Let w W β , β > n . Then for any γ Z , we have
w ( B γ ) = p ( n + β ) γ w ( B 0 ) a n d w ( S γ ) = p ( n + β ) γ w ( S 0 ) .
Here and in the sequel, for the sake of easiness, we use the following notation:
G ( E , δ β ) = E δ β if β > 0 , E 1 δ β if β 0 ,
where E is any invertible matrix, β R and δ is a non-zero positive real number.
It is easy to see that:
G ( E , β ( 1 / q + 1 / p ) ) = G ( E , β / q ) G ( E , β / p ) ,
where p , q Z + .
Proposition 1.
([29]) Let β > n , w ( x ) = | x | p β , E is any nonsingular matrix and x Q p n , then
w ( E x ) E β w ( x ) i f β > 0 , E 1 β w ( x ) i f β 0 , = G ( E , β ) w ( x ) .
Lemma 3.
([29]) Let β > n , w ( x ) = | x | p β and E is any nonsingular matrix, then we have
w ( E B γ ( a ) ) G ( E , β ) | det E | p w ( B γ ( a ) ) .
Now, we are in position to state our main results which are as under:

Main Results

Theorem 1.
Let 1 < q < , 0 λ < 1 / n , β > n and w ( x ) = | x | p β , then H Φ , A is bounded on C M O q , λ ( w , Q p n ) and satisfies the following inequality
H Φ , A f C M O q , λ ( w , Q p n ) K 1 f C M O q , λ ( w , Q p n ) ,
where
K 1 = Q p n | Φ ( t ) | | det A ( t ) | p λ G ( A 1 ( t ) , β / q ) G ( A ( t ) , β ( λ + 1 / q ) ) d t .
Our first result regarding boundedness of H Φ , A b with b C M O q ( w , Q p n ) can be stated as:
Theorem 2.
Let 1 l , q , q 1 , q 2 < , 1 / q 2 = 1 / q + 1 / q 1 , α 1 = α 2 + n / q , 0 λ > α 1 , β > n and w ( x ) = | x | p β . Assume that b C M O q ( w , Q p n ) and
φ ( t ) = | Φ ( t ) | | det A 1 ( t ) | p 1 / q 1 G ( A 1 ( t ) , β / q 1 ) max 1 , G ( A 1 ( t ) , β / q ) G ( A ( t ) , β / q ) .
Then the commutator operator H Φ , A b is bounded from M K l , q 1 α 1 , λ ( w , Q p n ) to M K l , q 2 α 2 , λ ( w , Q p n ) and satisfies the inequality:
H Φ , A b f M K l , q 2 α 2 , λ ( w , Q p n ) C K 2 b C M O q 2 ( w , Q p n ) f M K l , q 1 α 1 , λ ( w , Q p n ) ,
where
K 2 = A ( t ) 1 φ ( t ) A ( t ) ( λ α 1 ) ( n + β ) / n A ( t ) n | det A ( t ) | p + log p p A ( t ) d t + A ( t ) > 1 φ ( t ) A ( t ) ( λ α 1 ) ( n + β ) / n A ( t ) n | det A ( t ) | p + log p ( p A ( t ) ) d t .
In the following theorem we proved the boundedness of commutator of Hausdorff operator on Morrey Herz Space by taking b Λ δ ( Q p n ) .
Theorem 3.
Let 1 q 2 q 1 < , 0 < l , δ < , 1 / r = 1 / q 2 1 / q 1 , β > n and w ( x ) = | x | p β , α 1 = α 2 + n δ / ( n + β ) + n ( 1 / q 2 1 / q 1 ) , 0 λ > α 1 and b Λ δ ( Q p n ) . Then the commutator operator H Φ , A b is bounded from M K l , q 1 α 1 , λ ( w , Q p n ) to M K l , q 2 α 2 , λ ( w , Q p n ) and satisfies the inequality:
H Φ , A b f M K l , q 2 α 2 , λ ( w , Q p n ) C K 3 b Λ δ ( Q p n ) f M K l , q 1 α 1 , λ ( w , Q p n ) ,
where
K 3 = Q p n | Φ ( t ) | A ( t ) ( n + β ) ( λ / n α 1 / n ) max { 1 , A ( t ) δ } | det A 1 ( t ) | p 1 / q 1 G ( A 1 ( t ) , β / q 1 ) d t .
In the rest of the article, the character C denote the constant free from essential values and variables whose value may change from line to line.

3. Proofs of Main Results

3.1. Proof of Theorem 1

Suppose f C M O q , λ ( w , Q p n ) . By means of Fubini theorem and p-adic change of variables we have
H Φ , A f B γ = 1 | B γ | B γ Q p n Φ ( t ) f ( A ( t ) x ) d t d x = Q p n Φ ( t ) 1 | B γ | B γ f ( A ( t ) x ) d x d t = Q p n Φ ( t ) 1 | B γ | A ( t ) B γ f ( x ) d x | det A 1 ( t ) | p d t = Q p n Φ ( t ) 1 | A ( t ) B γ | A ( t ) B γ f ( x ) d x d t = Q p n Φ ( t ) f A ( t ) B γ d t .
Using Minkowski’s inequality, Proposition 1 and Lemma 3 with a = 0 , we are down to
1 w ( B γ ) 1 + λ q B γ | H Φ , A f ( x ) ( H Φ , A ) B γ | q w ( x ) d x 1 / q = 1 w ( B γ ) 1 + λ q B γ | Q p n Φ ( t ) ( f ( A ( t ) x ) f A ( t ) B γ ) d t | q w ( x ) d x 1 / q Q p n | Φ ( t ) | 1 w ( B γ ) 1 + λ q B γ | f ( A ( t ) x ) f A ( t ) B γ | q w ( x ) d x 1 / q d t Q p n | Φ ( t ) | | det A 1 ( t ) | p 1 / q G ( A 1 ( t ) , β / q ) × 1 w ( B γ ) 1 + λ q A ( t ) B γ | f ( x ) f A ( t ) B γ | q w ( x ) d x 1 / q d t Q p n | Φ ( t ) | | det A ( t ) | p λ G ( A 1 ( t ) , β / q ) G ( A ( t ) , β ( λ + 1 / q ) ) × 1 w ( A ( t ) B γ ) 1 + λ q A ( t ) B γ | f ( x ) f A ( t ) B γ | q w ( x ) d x 1 / q d t f C M O q , λ ( w , Q p n ) Q p n | Φ ( t ) | | det A ( t ) | p λ G ( A 1 ( t ) , β / q ) G ( A ( t ) , β ( λ + 1 / q ) ) d t .
Thus, we completed the proof of Theorem 1.

3.2. Proof of Theorem 2

Let f M K l , q 1 α 1 , λ ( w , Q p n ) and b C M O q ( w , Q p n ) ,
( H Φ , A b f ) χ k L q 2 ( w , Q p n ) = S k | Q p n Φ ( t ) ( b ( x ) b ( A ( t ) x ) ) f ( A ( t ) x ) d t | q 2 w ( x ) d x 1 / q 2 Q p n | Φ ( t ) | S k | ( b ( x ) b ( A ( t ) x ) ) f ( A ( t ) x ) | q 2 w ( x ) d x 1 / q 2 d t Q p n | Φ ( t ) | S k | ( b ( x ) b B k ) f ( A ( t ) x ) | q 2 w ( x ) d x 1 / q 2 d t + Q p n | Φ ( t ) | S k | ( b B k b A ( t ) B k ) f ( A ( t ) x ) | q 2 w ( x ) d x 1 / q 2 d t + Q p n | Φ ( t ) | S k | ( b ( A ( t ) x ) b A ( t ) B k ) f ( A ( t ) x ) | q 2 w ( x ) d x 1 / q 2 d t = I + I I + I I I .
By Hölder’s inequality, p-adic change of variables and Proposition 1, we estimate I as below:
I Q p n | Φ ( t ) | S k | b ( x ) b B k | q w ( x ) d x 1 / q S k | f ( A ( t ) x ) | q 1 w ( x ) d x 1 / q 1 d t Q p n | Φ ( t ) | B k | b ( x ) b B k | q w ( x ) d x 1 / q × A ( t ) S k | f ( x ) | q 1 | det A 1 ( t ) | p G ( A 1 ( t ) , β ) w ( x ) d x 1 / q 1 d t Q p n | Φ ( t ) | | det A 1 ( t ) | p 1 / q 1 G ( A 1 ( t ) , β / q 1 ) × B k | b ( x ) b B k | q w ( x ) d x 1 / q A ( t ) S k | f ( x ) | q 1 w ( x ) d x 1 / q 1 d t w ( B k ) 1 / q b C M O q ( w , Q p n ) × Q p n | Φ ( t ) | | det A 1 ( t ) | p 1 / q 1 G ( A 1 ( t ) , β / q 1 ) f χ A ( t ) S k L q 1 ( w , Q p n ) d t .
Similarly for I I I , first making p-adic change of variables and then applying Hölder’s inequality, we have
I I I Q p n | Φ ( t ) | S k | ( b ( A ( t ) x ) b A ( t ) B k ) f ( A ( t ) x ) | q 2 w ( x ) d x 1 / q 2 d t = Q p n | Φ ( t ) | det A 1 ( t ) | p 1 / q 2 G ( A 1 ( t ) , β / q 2 ) | × A ( t ) S k | ( b ( x ) b A ( t ) B k ) f ( x ) | q 2 w ( x ) d x 1 / q 2 d t Q p n | Φ ( t ) | det A 1 ( t ) | p 1 / q 2 G ( A 1 ( t ) , β / q 2 ) | × A ( t ) S k | b ( x ) b A ( t ) B k | q w ( x ) d x 1 / q A ( t ) S k | f ( x ) | q 1 w ( x ) d x 1 / q 1 d t Q p n | Φ ( t ) | det A 1 ( t ) | p 1 / q 2 G ( A 1 ( t ) , β / q 2 ) | × w ( A ( t ) B k ) 1 / q b C M O q ( w , Q p n ) f χ A ( t ) S k L q 1 ( w , Q p n ) d t .
Since 1 / q 2 = 1 / q + 1 / q 1 , therefore, by virtue of the property (8) and Lemma 3, the above inequality becomes
I I I b C M O q ( w , Q p n ) Q p n | Φ ( t ) | det A 1 ( t ) | p 1 / q 2 G ( A 1 ( t ) , β / q 1 ) G ( A 1 ( t ) , β / q ) | × G ( A ( t ) , β / q ) | det A ( t ) | p 1 / q w ( B k ) 1 / q f χ A ( t ) S k L q 1 ( w , Q p n ) d t = w ( B k ) 1 / q b C M O q ( w , Q p n ) Q p n | Φ ( t ) | | det A 1 ( t ) | p 1 / q 1 G ( A 1 ( t ) , β / q 1 ) × G ( A 1 ( t ) , β / q ) G ( A ( t ) , β / q ) f χ A ( t ) S k L q 1 ( w , Q p n ) d t .
The estimation of I I is very much similar to that of I and I I I except that in this case, additionally, we have to bound the term | b B k b A ( t ) B k | . Therefore, in this case, we will make use of the Hölder’s inequality, Lemma 2 and p-adic change of variables to have
I I Q p n | Φ ( t ) | S k | f ( A ( t ) x ) | q 1 w ( x ) d x 1 / q 1 S k w ( x ) d x 1 / q | b B k b A ( t ) B k | d t w ( S 0 ) 1 / q w ( B k ) 1 / q × Q p n | Φ ( t ) | | det A 1 ( t ) | p 1 / q 1 G ( A 1 ( t ) , β / q 1 ) f χ A ( t ) S k L q 1 ( w , Q p n ) | b B k b A ( t ) B k | d t .
Next, if A ( t ) > 1 , then there exists an integer j 0 , such that
p j < A ( t ) p j + 1 .
Therefore,
| b B k b A ( t ) B k | i = 0 j | b B k + i b B k + i + 1 | + | b B k + j + 1 b A ( t ) B k | .
A use of Hölder’s Inequality and the definition of C M O q ( w , Q p n ) yields
| b B k + i b B k + i + 1 | 1 | B k + i | B k + i | b ( x ) b B k + i + 1 | d x C | B k + i + 1 | B k + i + 1 | b ( x ) b B k + i + 1 | d x C | B k + i + 1 | B k + i + 1 | b ( x ) b B k + i + 1 | q w ( x ) d x 1 / q × B k + i + 1 w ( x ) q / q 1 / q C w ( B k + i + 1 ) 1 / q | B k + i + 1 | B k + i + 1 | x | p β q / q 1 / q b C M O q ( w , Q p n ) C p ( n + β ) ( k + i + 1 ) / q p ( k + i + 1 ) n p ( k + i + 1 ) ( β / q + n / q ) b C M O q ( w , Q p n ) = C b C M O q ( w , Q p n ) .
The other term can be treated in a similar way as below
| b B k + j + 1 b A ( t ) B k | 1 | A ( t ) B k | A ( t ) B k | b ( x ) b B k + j + 1 | d x 1 | A ( t ) B k | B k + j + 1 | b ( x ) b B k + j + 1 | q w ( x ) d x 1 / q × B k + j + 1 w ( x ) q / q 1 / q w ( B k + j + 1 ) 1 / q | A ( t ) B k | B k + j + 1 | x | p β q / q d x 1 / q × b C M O q ( w , Q p n ) p ( n + β ) ( k + j + 1 ) / q | det A ( t ) | p p k n p ( k + j + 1 ) ( β / q + n / q ) b C M O q ( w , Q p n ) = p ( j + 1 ) n | det A ( t ) | p b C M O q ( w , Q p n ) C A ( t ) n | det A ( t ) | p b C M O q ( w , Q p n ) .
Therefore, for A ( t ) > 1
| b B k b A ( t ) B k | C j + 1 + A ( t ) n | det A ( t ) | p b C M O q ( w , Q p n ) C log p ( A ( t ) p ) + A ( t ) n | det A ( t ) | p b C M O q ( w , Q p n ) .
When A ( t ) 1 , a similar argument yields
| b B k b A ( t ) B k | C log p p A ( t ) + A ( t ) n | det A ( t ) | p b C M O q ( w , Q p n ) .
Therefore,
I I C w ( B k ) 1 / q b C M O q ( w , Q p n ) Q p n | Φ ( t ) | det A 1 ( t ) | p 1 / q 1 G ( A 1 ( t ) , β / q 1 ) | × A ( t ) n | det A ( t ) | p + 1 + max log p A ( t ) , log p 1 A ( t ) f χ A ( t ) S k L q 1 ( w , Q p n ) d t .
Finally, we combine the estimates for I, I I and I I I to have
( H Φ , A b f ) χ k L q 2 ( w , Q p n ) C w ( B k ) 1 / q b C M O q ( w , Q p n ) × Q p n φ ( t ) A ( t ) n | det A ( t ) | p + 1 + max log p A ( t ) , log p 1 A ( t ) f χ A ( t ) S k L q 1 ( w , Q p n ) d t .
In order to avoid repetition of the same factor in the subsequent calculations, we let
ψ ( t ) = φ ( t ) A ( t ) n | det A ( t ) | p + 1 + max log p ( A t ) , log p 1 A ( t ) .
Also, it is easy to see that (see [29], Theorem 3.1)
f χ A ( t ) S k L q 1 ( w , Q p n ) = A ( t ) S k | f ( x ) | q 1 d x 1 / q 1 | x | p A ( t ) p k | f ( x ) | q 1 d x 1 / q 1 C m = log p A ( t ) f χ k + m L q 1 ( w , Q p n ) .
Therefore,
( H Φ , A b f ) χ k L q 2 ( w , Q p n ) C w ( B k ) 1 / q b C M O q ( w , Q p n ) Q p n ψ ( t ) m = log p A ( t ) f χ k + m L q 1 ( w , Q p n ) d t .
Now, by the definition of Morrey-Herz space, the inequality (11), Minkowski’s inequality and the condition α 1 = α 2 + n / q , we have
H Φ , A b f M K l , q 2 α 2 , λ ( w , Q p n ) = sup k 0 Z p k 0 λ ( n + β ) / n k = k 0 p k α 2 ( n + β ) l / n ( H Φ , A b f ) χ k L q ( w , Q p n ) l 1 / l C b C M O q ( w , Q p n ) Q p n ψ ( t ) sup k 0 Z p k 0 λ ( n + β ) / n × k = k 0 m = log p A ( t ) p k ( α 2 + n / q ) ( n + β ) / n f χ k + m L q 1 ( w , Q p n ) l 1 / l d t C b C M O q ( w , Q p n ) Q p n ψ ( t ) sup k 0 Z p k 0 λ ( n + β ) / n × k = k 0 m = log p A ( t ) p k α 1 ( n + β ) / n f χ k + m L q 1 ( w , Q p n ) l 1 / l d t C b C M O q ( w , Q p n ) Q p n ψ ( t ) m = log p A ( t ) p m ( λ α 1 ) ( n + β ) / n × sup k 0 Z p ( k 0 + m ) λ ( n + β ) / n k = k 0 + m p k α 1 ( n + β ) l / n f χ k L q 1 ( w , Q p n ) l 1 / l d t .
Since α 1 < λ , as a consequence
m = log p A ( t ) p m ( λ α 1 ) ( n + β ) / n = A ( t ) ( λ α 1 ) ( n + β ) / n 1 p ( α 1 λ ) ( n + β ) / n .
Hence,
H Φ , A b f M K l , q 2 α 2 , λ ( w , Q p n ) C b C M O q ( w , Q p n ) f M K l , q 1 α 1 , λ ( w , Q p n ) × Q p n ψ ( t ) A ( t ) ( λ α 1 ) ( n + β ) / n d t .
Thus the proof of the Theorem 2 is completed.

3.3. Proof of Theorem 3

Let f M K l , q 1 α 1 , λ ( w , Q p n ) , b Λ δ ( Q p n ) . By applying the Minkowski’s inequality and the Holder’s inequality, we get
( H Φ , A b f ) χ k L q 2 ( w , Q p n ) = S k | Q p n Φ ( t ) f ( A ( t ) x ) ( b ( x ) b ( A ( t ) x ) ) d t | q 2 w ( x ) d x 1 / q 2 Q p n | Φ ( t ) | S k | f ( A ( t ) x ) ( b ( x ) b ( A ( t ) x ) ) | q 2 w ( x ) d x 1 / q 2 d t Q p n | Φ ( t ) | S k | f ( A ( t ) x ) | q 1 w ( x ) d x 1 / q 1 × S k | b ( x ) b ( A ( t ) x ) | r w ( x ) d x 1 / r d t ,
where 1 / r = 1 / q 2 1 / q 1 . By the definition of Lipschitz space Λ δ ( Q p n ) we have
| b ( x ) b ( A ( t ) x ) | C b Λ δ ( Q p n ) | x A ( t ) x | p δ C b Λ δ ( Q p n ) max { | x | p , | A ( t ) x | p } δ C b Λ δ ( Q p n ) max { | x | p , A ( t ) | x | p } δ p k δ C b Λ δ ( Q p n ) max { 1 , A ( t ) δ } ,
for every x S k and for almost everywhere t Q p n .
By p-adic change of variables, Proposition 1, inequality (14) together with w ( S k ) w ( B 0 ) = w ( B k ) w ( S 0 ) , inequality (13) assumes the following form
( H Φ , A b f ) χ k L q 2 ( w , Q p n ) C b Λ δ ( Q p n ) Q p n | Φ ( t ) | w ( B k ) δ / ( n + β ) + 1 / r f χ A ( t ) S k L q 1 ( w , Q p n ) × max { 1 , A ( t ) δ } | det A 1 ( t ) | p 1 / q 1 G ( A 1 ( t ) , β / q 1 ) d t .
Furthermore, in view of inequality (10) and 1 / r = 1 / q 2 1 / q 1 , we get
( H Φ , A b f ) χ k L q 2 ( w , Q p n ) C b Λ δ ( Q p n ) w ( B k ) δ / ( n + β ) + 1 / q 2 1 / q 1 Q p n m = log p A ( t ) f χ k + m L q 1 ( w , Q p n ) × | Φ ( t ) | max { 1 , A ( t ) δ } | det A 1 ( t ) | p 1 / q 1 G ( A 1 ( t ) , β / q 1 ) d t .
The factor | Φ ( t ) | max { 1 , A ( t ) δ } | det A 1 ( t ) | p 1 / q 1 G ( A 1 ( t ) , β / q 1 ) repeats itself many times in the remaining proof of this theorem, so we let it be denoted by ϕ ( t ) . With this we break our proof in the following two cases:
Case 1: λ > 0 , in this case we first evaluate the inner norm f χ k + m L q 1 ( w , Q p n ) as below:
f χ k + m L q 1 ( w , Q p n ) w ( B k + m ) α 1 / n j = k + m w ( B j ) α 1 l / n f χ j L q 1 ( w , Q p n ) l 1 / l = w ( B k + m ) α 1 / n w ( B k + m ) λ / n × w ( B k + m ) λ / n j = k + m w ( B j ) α 1 l / n f χ j L q 1 ( w , Q p n ) l 1 / l = w ( B k + m ) ( λ α 1 ) / n f M K l , q 1 α 1 , λ ( w , Q p n ) p ( k + m ) ( n + β ) ( λ α 1 ) / n f M K l , q 1 α 1 , λ ( w , Q p n ) .
Next, by virtue of Equation (12), the inequality (16) becomes
( H Φ , A b f ) χ k L q 2 ( w , Q p n ) C b Λ δ ( Q p n ) f M K l , q 1 α 1 , λ ( w , Q p n ) p k ( n + β ) ( δ / ( n + β ) + 1 / q 2 1 / q 1 + ( λ α 1 ) / n ) × Q p n ϕ ( t ) | m = log p A ( t ) p m ( n + β ) ( λ α 1 ) / n d t C b Λ δ ( Q p n ) f M K l , q 1 α 1 , λ ( w , Q p n ) p k ( n + β ) ( δ / ( n + β ) + 1 / q 2 1 / q 1 + ( λ α 1 ) / n ) × Q p n ϕ ( t ) A ( t ) ( n + β ) ( λ α 1 ) / n d t .
Therefore, by definition of Morrey-Herz space and α 1 = α 2 + n δ / ( n + β ) + n ( 1 / q 2 1 / q 1 ) , we have
H Φ , A b f M K l , q 1 α 2 , λ ( w , Q p n ) C b Λ δ ( Q p n ) f M K l , q 1 α 1 , λ ( w , Q p n ) sup k 0 Z p k 0 ( n + β ) λ / n × [ k = k 0 p k l ( n + β ) ( α 2 / n + δ / ( n + β ) + 1 / q 2 1 / q 1 + ( λ α 1 ) / n ) × Q p n ϕ ( t ) A ( t ) ( n + β ) ( λ α 1 ) / n d t l ] 1 / l C b Λ δ ( Q p n ) f M K l , q 1 α 1 , λ ( w , Q p n ) Q p n ϕ ( t ) A ( t ) ( n + β ) ( λ α 1 ) / n d t × sup k 0 Z p k 0 ( n + β ) λ / n k = k 0 p k l ( n + β ) λ / n 1 / l C p ( n + β ) λ / n ( p l ( n + β ) λ / n 1 ) 1 / l C b Λ δ ( Q p n ) f M K l , q 1 α 1 , λ ( w , Q p n ) Q p n ϕ ( t ) A ( t ) ( n + β ) ( λ α 1 ) / n d t C b Λ δ ( Q p n ) f M K l , q 1 α 1 , λ ( w , Q p n ) Q p n ϕ ( t ) A ( t ) ( n + β ) ( λ α 1 ) / n d t ,
substituting back the value of ϕ ( t ) we get the desired result.
Case 2: λ = 0 and l [ 1 , ) .
In this case Morrey-Herz spaces are reduced to the Herz spaces. It is clear that
( H Φ , A b f ) χ k L q 2 ( w , Q p n ) C b Λ δ ( Q p n ) Q p n ϕ ( t ) p k ( n + β ) ( δ / ( n + β ) + 1 / q 2 1 / q 1 ) m = log p A ( t ) f χ k + m L q 1 ( w , Q p n ) d t .
Hence, by using the Minkowski’s inequality and α 1 = α 2 + n δ / ( n + β ) + n ( 1 / q 2 1 / q 1 ) , we obtain
H Φ , A b f K q 2 α 2 , l ( w , Q p n ) C b Λ δ ( Q p n ) { k = + p k ( n + β ) α 2 l / n × Q p n ϕ ( t ) p k ( n + β ) ( δ / ( n + β ) + 1 / q 2 1 / q 1 ) m = log p A ( t ) f χ k + m L q 1 ( w , Q p n ) d t l } 1 / l C b Λ δ ( Q p n ) Q p n ϕ ( t ) k = + m = log p A ( t ) p k ( n + β ) α 1 / n f χ k + m L q 1 ( w , Q p n ) l 1 / l d t C b Λ δ ( Q p n ) Q p n ϕ ( t ) m = log p A ( t ) p m ( n + β ) α 1 / n k = + p k l ( n + β ) α 1 / n f χ k L q 1 ( w , Q p n ) l 1 / l d t C b Λ δ ( Q p n ) f K q 1 α 1 , l ( w , Q p n ) × Q p n | Φ ( t ) | max { 1 , A ( t ) δ } | det A 1 ( t ) | p 1 / q 1 G ( A 1 ( t ) , β / q 1 ) A ( t ) ( n + β ) α 1 / n d t .
From the inequalities (18) and (19), we get the proof.

4. Conclusions

Here we employed some conditions on the norm of matrix A ( t ) to ensure the boundedness of the commutators of Hausdorff operator on p-adic Herz-Morrey spaces. An idea that can be employed on various situations to obtain boundedness results for the p-adic matrix Hausdorff operator and its commutators on different function spaces.

Author Contributions

All authors read and approved the final manuscript.

Funding

This research received no external funding.

Acknowledgments

We would like to thank anonymous referees for their valuable suggestions and comments which help us to improve the earlier version of this manuscript. This research was supported by Higher Education Commission (HEC) NRPU Programme 2017-18.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Vladimirov, V.S.; Volovich, I.V.; Zelenov, E.I. p-Adic Analysis and Mathematical Physics; World Scientific: Singapore, 1994. [Google Scholar]
  2. Avestisov, A.V.; Bikulov, A.H.; Kozyrev, S.V.; Osipov, V.A. p-adic models of ultrametric diffusion constrained by hierarchical energy landscape. J. Phys. A Math. Gen. 2002, 35, 177–189. [Google Scholar] [CrossRef]
  3. Avestisov, A.V.; Bikulov, A.H.; Osipov, V.A. p-adic description of Characterization relaxation in complex system. J. Phys. A Math. Gen. 2003, 36, 4239–4246. [Google Scholar] [CrossRef]
  4. Dragovich, B.; Khrennihov, A.Y.; Kozyrev, S.V.; Volovich, I.V. On p-adic mathematical physics. p-Adic Numb. Ultrametric Anal. Appl. 2009, 1, 1–17. [Google Scholar] [CrossRef]
  5. Vladimirov, V.S. Tables of integrals of complex Valued Functions of p- Adic Arguments. Proc. Steklov. Inst. Maths. 2014, 284, 1–59. [Google Scholar] [CrossRef]
  6. Haran, S. Riesz potential and explicit sums in arithemtic. Invent. Math. 1990, 101, 697–703. [Google Scholar] [CrossRef]
  7. Haran, S. Analytic potential theory over the p-adics. Ann. Inst. Fourier 1993, 43, 905–944. [Google Scholar] [CrossRef]
  8. Kozyrev, S.V. Methods and applications of ultrametric and p-adic analysis: From wavelet theory to biophysics. Proc. Steklov. Inst. Math. 2011, 274, 1–84. [Google Scholar] [CrossRef]
  9. Hausdorff, F. Summation methoden and Momentfolgen, I. Math. Z. 1921, 9, 74–109. [Google Scholar] [CrossRef]
  10. Hurwitz, W.A.; Silverman, L.L. The consistency and equivalence of certain definitions of summabilities. Trans. Amer. Math. Soc. 1917, 18, 1–20. [Google Scholar] [CrossRef]
  11. Lerner, A.; Liflyand, E. Multidimensional Hausdorff operators on the real Hardy spaces. J. Austr. Math. Soc. 2007, 83, 79–86. [Google Scholar] [CrossRef]
  12. Burenkov, V.I.; Liflyand, E. On the boundedness of Hausdorff operators on Morrey-type spaces. Eurasian Math. J. 2017, 8, 97–104. [Google Scholar]
  13. Chen, J.; Dai, J.; Fan, D.; Zhu, X. Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces. Sci. China Math. 2018, 61, 1647–1664. [Google Scholar] [CrossRef]
  14. Chen, J.; Fan, D.; Li, J. Hausdorff operators on function spaces. Chin. Ann. Math. 2012, 33, 537–556. [Google Scholar] [CrossRef]
  15. Chen, J.; He, S.; Zhu, X. Boundedness of Hausdorff operators on the power weighted Hardy spaces. Appl. Math. 2017, 32, 462–476. [Google Scholar] [CrossRef]
  16. Fan, D.; Zhao, F. Sharp constants for multivariate Hausdorff q-inequalities. J. Aust. Math. Soc. 2018. [Google Scholar] [CrossRef]
  17. Ho, K.-P. Dilation operators and integral operators on amalgam space (Lp,lq). Ricerche Mat. 2019. [Google Scholar] [CrossRef]
  18. Ho, K.-P. Hardy’s inequality and Hausdorff operators on rearrangement-invariant Morrey spaces. Publ. Math. Debr. 2018, 88, 201–215. [Google Scholar] [CrossRef]
  19. Ho, K.-P. Hardy-Littlewood-Polya inequalities and Hausdorff operators on block spaces. Math. Inequal. Appl. 2016, 19, 697–707. [Google Scholar] [CrossRef]
  20. Huy, D.Q.; Ky, L.D. The multiparameter Hausdorff operators on H1 and Lp. Math. Inequal. Appl. 2018, 21, 497–510. [Google Scholar]
  21. Liflyand, E. Hausdorff operators on Hardy spaces. Eurasian Math. J. 2013, 4, 101–141. [Google Scholar]
  22. Liflyand, E.; Miyachi, A. Boundedness of Multidimensional Hausdorff operators in Hp spaces, 0 < p < 1. Trans. Am. Math. Soc. 2018. [Google Scholar] [CrossRef]
  23. Ruan, J.; Fan, D.; Wu, Q. Weighted Herz space estimates for Hausdorff operators on the Heisenberg group. Banach J. Math. Anal. 2017, 11, 513–535. [Google Scholar] [CrossRef]
  24. Wu, Q.; Fu, Z. Boundedness of Hausdorff operators on Hardy spaces in the Heisenberg group. Banach J. Math. Anal. 2018, 12, 909–934. [Google Scholar] [CrossRef]
  25. Volosivets, S.S. Multidimensinal Hausdorff operator on p-Adic Fields, p-Adic Numb. Ultrametric Anal. Appl. 2010, 2, 252–259. [Google Scholar] [CrossRef]
  26. Chung, N.M.; Duong, D.V. The p-Adic Weighted Hardy-Ceśaro Operators on Weighted Morrey-Herz Space. p-Adic Numb. Ultrametric Anal. Appl. 2016, 8, 204–216. [Google Scholar] [CrossRef]
  27. Chung, N.M.; Hung, H.D.; Hong, N.T. Bounds of p-Adic Weighted Hardy-Cesáro Operator and Their Commutators on p-Adic Weighted Spaces of Morrey Types, p-Adic Numb. Ultrametric Anal. Appl. 2016, 8, 31–44. [Google Scholar] [CrossRef]
  28. Hung, H.D. The p-adic weighted Hardy-Cesáro operator and an application to discrete Hardy inequalities. J. Math. Anal. Appl. 2014, 409, 868–879. [Google Scholar] [CrossRef]
  29. Hussain, A.; Sarfraz, N. The Hausdorff operator on weighted p-adic Morrey and Herz type spaces. p-Adic Numb. Ultrametric Anal. Appl. 2019, 11. (to appear). [Google Scholar]
  30. Volosivets, S.S. Hausdorff Operators on p-Adic Linear Spaces and Their Properties in Hardy, BMO, and Hölder Spaces. Math. Notes 2013, 93, 382–391. [Google Scholar] [CrossRef]
  31. Hussain, A.; Ajaib, A. Some results for the commutators of generalized Hausdorff operator. arXiv, 2018; arXiv:1804.05309v1. [Google Scholar]
  32. Hussain, A.; Ajaib, A. Some weighted inequalities for Hausdorff operators and commutators. J. Inequal. Appl. 2018, 2018, 19. [Google Scholar] [CrossRef]
  33. Hussain, A.; Ahmed, M. Weak and strong type estimates for the commutators of Hausdorff operator. Math. Inequal. Appl. 2017, 20, 49–56. [Google Scholar] [CrossRef]
  34. Hussain, A.; Gao, G. Some new estimates for the commutators of n-dimensional Hausdorff operator. Appl. Math. 2014, 29, 139–150. [Google Scholar] [CrossRef]
  35. Hussain, A.; Gao, G. Multidimensional Hausdorff operators and commutators on Herz-type spaces. J. Inequal. Appl. 2013, 2013, 594. [Google Scholar] [CrossRef] [Green Version]
  36. Ruan, J.; Fan, D.; Wu, Q. Weighted Morrey estimates for Hausdorff operator and its commutator on the Heisenberg group. arXiv, 2017; arXiv:1712.10328v1. [Google Scholar]
  37. Wu, X. Necessary and sufficient conditions for generalized Hausdorff operators and commutators. Ann. Funct. Anal. 2015, 6, 60–72. [Google Scholar] [CrossRef]
  38. Lu, S.; Xu, L. Boundedness of rough singular integral operators on the homogeneous Morrey-Herz spaces. Hokkaido Math. J. 2005, 34, 299–314. [Google Scholar] [CrossRef]
  39. Mizuta, Y. Duality of Herz-Morrey Spaces of Variable Exponent. Filomat 2016, 30, 1891–1898. [Google Scholar] [CrossRef]
  40. Xu, J.; Yang, X. Herz-Morrey-Hardy Spaces with Variable Exponents and Their Applications. J. Funct. Space 2015, 2015, 160635. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Sarfraz, N.; Hussain, A. Estimates for the Commutators of p-Adic Hausdorff Operator on Herz-Morrey Spaces. Mathematics 2019, 7, 127. https://doi.org/10.3390/math7020127

AMA Style

Sarfraz N, Hussain A. Estimates for the Commutators of p-Adic Hausdorff Operator on Herz-Morrey Spaces. Mathematics. 2019; 7(2):127. https://doi.org/10.3390/math7020127

Chicago/Turabian Style

Sarfraz, Naqash, and Amjad Hussain. 2019. "Estimates for the Commutators of p-Adic Hausdorff Operator on Herz-Morrey Spaces" Mathematics 7, no. 2: 127. https://doi.org/10.3390/math7020127

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop