Next Article in Journal
UMP Kinase Regulates Chloroplast Development and Cold Response in Rice
Next Article in Special Issue
MicroRNA Involvement in Allergic and Non-Allergic Mast Cell Activation
Previous Article in Journal
Application of Acyzol in the Context of Zinc Deficiency and Perspectives
Previous Article in Special Issue
Mast Cells in Early Rheumatoid Arthritis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer

by
Giuseppe Sammarco
1,†,
Gilda Varricchi
2,3,†,
Valentina Ferraro
4,
Michele Ammendola
1,*,
Michele De Fazio
5,
Donato Francesco Altomare
5,
Maria Luposella
6,
Lorenza Maltese
7,
Giuseppe Currò
1,8,
Gianni Marone
2,3,9,
Girolamo Ranieri
10 and
Riccardo Memeo
5,*
1
Department of Health Science, General Surgery, Magna Graecia University, Medicine School of Germaneto, 88100 Catanzaro, Italy
2
Department of Translational Medical Sciences (DISMET) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
3
WAO Center of Excellence, 80131 Naples, Italy
4
Department of Biomedical Sciences and Human Oncology, Unit of Endocrine, Digestive and Emergency Surgery, Aldo Moro University, 74124 Bari, Italy
5
Department of Emergency and Organ Transplantation, Aldo Moro University, 74124 Bari, Italy
6
Cardiovascular Disease Unit, San Giovanni di Dio Hospital, 88900 Crotone, Italy
7
Pathology Unit, Pugliese-Ciaccio Hospital, 88100 Catanzaro, Italy
8
Department of Human Pathology of Adult and Evolutive Age G. Barresi, University of Messina, 98122 Messina, Italy
9
Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy
10
Interventional Oncology Unit with Integrated Section of Translational Medical Oncology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, 74124 Bari, Italy
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Int. J. Mol. Sci. 2019, 20(9), 2106; https://doi.org/10.3390/ijms20092106
Submission received: 20 March 2019 / Revised: 15 April 2019 / Accepted: 19 April 2019 / Published: 29 April 2019
(This article belongs to the Special Issue Mast Cells in Health and Disease)

Abstract

:
Gastric cancer is diagnosed in nearly one million new patients each year and it remains the second leading cause of cancer-related deaths worldwide. Although gastric cancer represents a heterogeneous group of diseases, chronic inflammation has been shown to play a role in tumorigenesis. Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumour initiation and progression. The stromal microenvironment is important in maintaining normal tissue homeostasis or promoting tumour development. A plethora of immune cells (i.e., lymphocytes, macrophages, mast cells, monocytes, myeloid-derived suppressor cells, Treg cells, dendritic cells, neutrophils, eosinophils, natural killer (NK) and natural killer T (NKT) cells) are components of gastric cancer microenvironment. Mast cell density is increased in gastric cancer and there is a correlation with angiogenesis, the number of metastatic lymph nodes and the survival of these patients. Mast cells exert a protumorigenic role in gastric cancer through the release of angiogenic (VEGF-A, CXCL8, MMP-9) and lymphangiogenic factors (VEGF-C and VEGF-F). Gastric mast cells express the programmed death ligands (PD-L1 and PD-L2) which are relevant as immune checkpoints in cancer. Several clinical undergoing trials targeting immune checkpoints could be an innovative therapeutic strategy in gastric cancer. Elucidation of the role of subsets of mast cells in different human gastric cancers will demand studies of increasing complexity beyond those assessing merely mast cell density and microlocalization.

1. Introduction

Gastric cancer is the fourth-most-common cancer globally and the second-leading cause of cancer deaths [1,2,3]. It accounts for nearly one million cases annually, with East Asia accounting for more than half of those cases [1,4]. In addition to incidence, the clinicopathologic characteristics of gastric cancer also differ among regions, especially Asia and the West [4,5]. Compelling evidence indicates that gastric cancer is a heterogeneous disease [6,7,8,9] on the basis of anatomic site [10], histopathology [11], gene expression [12,13,14,15,16], gene amplification [13,17], DNA methylation [13,18,19,20], relevant genetic aberrations [13,17,21,22,23,24] and oncogenic pathways [13,25,26].
Cancer development is a multistep process characterized by genomic instability, gene expression dysregulation and epigenetic abnormality that drive tumour progression [27]. Gene mutations and mutant cells are constantly generated but the immunosurveillance system detects and eliminates these cells [28]. However, immune-resistant cells evolve sophisticated strategies to evade the immune system and go on to generate tumours. Angiogenesis, the formation of new blood vessels, is essential for tumour growth, whereas lymphangiogenesis, the development of new lymphatic vessels, is important in the formation of metastases [29,30].
The stromal microenvironment plays a major role in maintaining normal tissue homoeostasis or promoting tumour growth. Mounting evidence indicates that normal tissue microenvironment is a barrier to tumorigenesis, whereas incorrect proinflammatory signals (e.g., cytokines, chemokines, reactive oxygen species, low pH, hypoxia, adenosine, etc.) destabilize tissue homeostasis and promote tumorigenesis [31]. Prolonged and uncontrolled low-grade inflammation or smouldering inflammation is a hallmark of cancer and several immune cells (macrophages, mast cells, lymphocytes, neutrophils, NK and NKT cells, etc.) are stromal components of the inflammatory microenvironment that modulates the development of experimental and human tumours [32,33,34,35].
Mast cells are immune cells present in all classes of vertebrates [36] which were identified in human tumour and named by Paul Ehrlich [37]. These cells have a widespread distribution in close proximity to epithelia, fibroblasts, blood and lymphatic vessels and nerves [38]. Human mast cells form a highly heterogeneous population of cells with different morphology, mediators and surface receptors [39]. These cells derive from CD34+, CD117+ (KIT) pluripotent hematopoietic stem cells in the bone marrow [40]. Mast cell progenitors enter the circulation and complete their maturation in tissues. These cells are involved in several physiological and inflammatory processes, including organ development [41], skin barrier homeostasis [42], angiogenesis [43], lymphangiogenesis [44], wound healing [45], heart function [46,47], coagulation [48] and tumorigenesis [35,49,50,51,52,53,54,55].
Mast cells have the capacity to rapidly perceive metabolic and immunologic insults and initiate different biochemical programs of homeostasis or inflammation. These cells are activated not only by IgE [56], specific antigens [57] and superantigens [58,59], the mechanisms which account for their functions in allergic diseases but also by a plethora of immunologic and non-immunologic stimuli [60,61,62,63].
Mast cell activation leads to the release of a large repertoire of biologically active mediators that have potential positive or negative effects on various targets [30,64,65]. Mast cell mediators have been canonically associated with a detrimental role in allergic diseases [38,39,57,66]. Given their presence in nearly all tissues and the plethora of proinflammatory and immunoregulatory mediators they produce and their capacity to interact closely with several immune and non-immune cells, mast cells are involved in several pathophysiological processes [67].

2. Mast Cells and Tumour Biology

Mast cells in human tumour were initially described by Paul Ehrlich and extended by Eugen Westphal [68]. Tumour-associated mast cells (TAMCs) are a component of the microenvironment of nearly all solid [49,69,70,71,72,73,74,75,76,77,78,79,80,81,82] and haematologic human tumours [83,84,85,86,87,88,89,90,91,92,93]. TAMCs may exert pro- or anti-tumorigenic roles depending on but not limited to, the tumour model, the stage and the type of tumour and their localization within the tumour (i.e., intra-tumoral vs peri-tumoral) [35,94]. In a few cases, they appear to be inert bystanders [95,96,97,98]. Recent evidence indicates that mast cells [99,100], like macrophages [101,102,103] and neutrophils [104,105,106] are heterogeneous.
Mast cells are recruited into tumour microenvironment (TME) by several tumour cell-derived chemotactic factors. For example, stem cell factor (SCF) acts on the mast cell KIT receptor [62,107], vascular endothelial growth factors (VEGFs) act on VEGFR1 and VEGFR2 [44,79], angiopoietin 1 (ANGPT1) acts on TIE2 receptor [108] and CXCL8 acts on CXCR1 and CXCR2 [109]. Several chemokines (CCL2, CCL5, CXCL1, CXCL10 and CXCL12) produced by tumour and stromal cells activate their specific mast cell receptors (CCR2, CCR3, CXCR2, CXCR3 and CXCR4), which are important for TAMC localization in TME [49,79,110,111,112,113,114,115,116].
Histamine, a major proinflammatory mediator released by activated mast cells, exerts a paracrine chemotactic effect through the engagement of histamine H4 receptor on mast cells [117]. PGE2, produced by several tumours, is chemotactic for mast cells through the activation of EP3 receptor [118]. Finally, osteopontin, which is upregulated in human cancer [49], affects mast cell migration [119].
Within the tumour microenvironment, TAMCs are exposed to and activated by several factors. Adenosine, produced by tumour cells and mast cells [120], is markedly increased in the TME [121,122] and potentiates the production of angiogenic factors from human mast cells and macrophages [109,123,124]. Hypoxia, a prominent feature of TME [121], activates human mast cells to release IL-6 [125] and VEGF-A [126]. Cyclooxygenase 2 (COX-2), overexpressed in tumours, [121] produces PGE2 which fosters angiogenic and lymphangiogenic factors from human mast cells [44]. Several chemokines (i.e., CXCL1, CXCL10, CXCL12) activate mast cells and enhance mast cell secretion of CXCL8 [79,115] which promotes epithelial-to-mesenchymal transition of cancer cells [109,124]. Increased expression of immunoglobulin free light chains (FLCs) was found in various human cancers, activates mast cells [127,128] and promotes tumour growth in a murine B16-F10 melanoma model [61]. Gastric cancer-derived adrenomedullin induced mast cell degranulation [129].
TAMCs modulate recruitment and activation of other immune cells at tumour sites. For example, TAMCs mobilize myeloid-derived suppressor cells (MDSCs) that foster tumour growth owing through their immunosuppressive properties [130]. Moreover, mast cells enhance MDSCs functions in vitro and in vivo [131,132,133,134].

3. Mast Cells in Tumour Angiogenesis and Lymphangiogenesis

Angiogenesis and lymphangiogenesis occur vigorously during embryogenesis but are restricted during adulthood [135]. In adults, angiogenesis and lymphangiogenesis are limited to sites of wound healing [136] and inflammation [137]. Angiogenesis is a hallmark of cancer because its induction is indispensable to fuel tumour growth [138]. Several innate immune cells can drive angiogenesis during tumour growth, primarily through the production of angiogenic molecules within the TME [65]. Tumour lymphangiogenesis may occur both within the primary tumour and/or in the tumour periphery [139] and plays a central role in the formation of metastasis [139,140]. Angiogenesis and lymphangiogenesis are controlled by stimulatory and inhibitory signals [29,135,141]. VEGF-A is a potent agonist of vascular endothelial growth factor receptor 2 (VEGFR2) on blood endothelial cells (BECs) [142]. VEGF-C and VEGF-D are crucial for the survival, proliferation and migration of lymphatic endothelial cells (LECs) [143] through the engagement of VEGFR3 [144].
VEGF-A, VEGF-B, VEGF-C, VEGF-D and placenta growth factor (PlGF) bind to three endothelial receptors: VEGFR1, VEGFR2 and VEFGR3 [145]. VEGF-A induces the survival, proliferation, sprouting and migration of BECs, increases endothelial permeability [146,147] and promotes inflammation [44,148,149]. VEGF-A also modulates lymphangiogenesis by binding to VEGFR2/VEGFR3 heterodimer receptor [142] and indirectly by recruiting immune cells (e.g., macrophages, mast cells) that produce VEGF-C and VEGF-D [44,150]. PlGF and VEGF-B bind to VEGFR1 on BECs [151], some immune cells and pericytes [148,149,152]. Angiopoietins (ANGPT1 and ANGPT2) modulate angiogenesis and lymphangiogenesis [153] through the engagement of TIE1 and TIE2 receptors [154]. ANGPT1 expressed by pericytes fosters BEC survival, whereas ANGPT2, secreted by BECs, acts autocrinally and paracrinally as TIE2 ligand [153]. Human lung mast cells express TIE1 and TIE2 and ANGPT1 induces migration of these cells by binding to TIE2 [108]. Certain chemokines also modulate angiogenesis and lymphangiogenesis [155,156].
Figure 1 shows that several immune cells produce a variety of angiogenic and lymphangiogenic factors [43,44,51,123,137,147,149,156,157]. Immunologic and non-immunologic stimuli induce the release of VEGF-A from human mast cells [44,158,159,160]. These cells express different isoforms of VEGF-A (121, 165, 189 and 206) and their activation induces the release of VEGF-A [44]. Mast cells also express two isoforms of VEGF-B (167 and 186) and VEGF-C and VEGF-D. VEGFs induce mast cell chemotaxis in vitro [44] and in vivo [79] by binding to both VEGFR1 and VEGFR2. These cells also promote tumour growth by increasing the angiogenic supply, degradation of the extracellular matrix (ECM) and immunosuppression [161].

4. Mast Cells in the Immune Contexture of Cancer

Several studies have contributed to the characterization of the immune microenvironment of human gastric cancer. Figure 1 schematically illustrates the immune landscape of human gastric cancer. Several immune cells (M2 macrophages, TAM, mast cells, basophils, monocytes, PMN-MDSC, M-MDSC, Treg cells, Th2 cells, TAN, immature DCs and Th17/Tc17 cells), localized in human gastric cancer, release a wide spectrum of proinflammatory, angiogenic, lymphangiogenic and immunomodulatory mediators that play a protumorigenic role. Other immune cells (M1 macrophages, cytotoxic CD8+ T cells, NK cells, Th1 cells and mature DCs) and their mediators can play an anti-tumorigenic role in cancer. Eosinophils are component of the immune microenvironment that modulates tumour initiation and progression [162,166]. There are several bidirectional mast cell-eosinophil interactions in inflammatory disorders and cancer [167]. Increasing evidence indicates that eosinophils play an anti-tumorigenic role in different cancers [162,163,164]. The pro- (Tfh cells, type II NKT cells) or anti-tumorigenic role (γδ T cells, type I NKT cells and Th9 cells) of several immune cells have been demonstrated in other human cancers or are still under investigation in gastric cancer.
In the majority of tumours, such as thyroid [79,109], gastric [168,169,170,171], pancreas [78,172,173,174,175,176], bladder [177] and colorectal [178,179,180,181] cancers, hepatocellular carcinoma [182,183,184], Merkel cell carcinoma [75], Hodgkin’s [85,86,88] and non-Hodgkin’s lymphoma [87,89,92] and plasmacytoma [90,185], mast cells conferred poor prognosis. In breast cancer mast cells appear to play an antitumorigenic role [186,187,188]. These findings indicate that the contribution of mast cells to cancer is tumour dependent.
Low mast cell density in perilesional stroma of invasive melanomas predicts poor prognosis [82], whereas, mast cell count was not correlated with survival in superficially invasive melanomas. Mast cells were pro-tumorigenic in the initial stages of prostate cancer but became dispensable at later stages [80,189]. A recent study examining a total of 9393 prostatectomy samples found that mast cell density was associated with better prognosis (i.e., distant metastasis-free survival) [190]. Peritumoral, but not intratumoral mast cell density, conferred a survival advantage in stage I non-small-cell lung cancer (NSCLC) but not in stage II [191]. The contributory role of mast cells in cancer varies according to the stage of tumorigenesis.
In prostate cancer, increased intratumoral mast cell density was associated with favourable prognosis [84]. Intratumoral mast cells inhibited tumour growth, whereas peritumoral mast cells stimulated human prostate cancer [76]. In NSCLC, mast cell in tumour islets was associated with a good prognosis [192,193], whereas only in stage I NSCLC increased peritumoral mast cells were conferred a survival advantage [191]. In pancreatic carcinoma, mast cell density in the intratumoral border zone but not the peritumoral or the intratumoral zone, was associated with disease progression [194]. The role of mast cells in melanoma depends on both the microlocalization of these cells [82] and the subtypes of tumour [195]. Mast cell density at the periphery of the tumours correlated with disease progression in both cutaneous T- and B-cell lymphoma [89]. Collectively, these findings indicate that the contribution of mast cells in tumours varies according to their microlocalization.
In conclusion, the results of several studies indicate that the pro- or anti-tumorigenic role(s) of mast cells in different tumours is cancer specific, depends on the stage of tumorigenesis and on their microlocalization. It is possible that different subtypes of mast cells play a protective role whereas other types play a protumorigenic role. Single-cell mapping of peritumoral and intratumoral mast cells could help to elucidate the roles of different subsets of mast cells in the onset and progression of different tumours.

5. Mast Cells in the Immune Contexture of Human Gastric Cancer

Mast cells were first identified in small groups of Italian patients with gastric cancer more than 50 years ago [196,197]. Mast cell density was also found increased in Japanese patients with gastric cancer compared to macroscopically normal tissue [198]. Mast cells in gastric cancer were found to be chymase+ and it was suggested that patients with high number of mast cells had a poor prognosis [199]. Helicobacter pylori (H. pylori) is the etiologic agent of chronic gastritis and is recognized as a class 1 carcinogen [3]. Mast cells, eosinophils and basophils are increased in H.pylori-induced gastritis [200,201,202]. An increased density of mast cells was reported in patients with chronic gastritis [203]. Interestingly, elevated eosinophil density was found in the gastric cancer low-risk area, whereas in the high-risk area the eosinophil infiltrate was reduced. The authors speculated that eosinophils may promote or limit chronic inflammation and tumorigenesis depending on the surrounding immune environment.
Ribatti and collaborators highlighted the correlation between mast cells and angiogenesis in gastric cancer [204]. A correlation was also found between mast cell density and both Foxp3+ Treg cells and different stages of gastric cancer [205]. A correlation was also found between KIT+ mast cells and angiogenesis evaluated as microvascular density [169] and between tryptase+ mast cells and the number of metastatic lymph nodes in different stages of gastric cancer [168]. Mast cell tryptase is one of the proangiogenic factors stored and released by human mast cells [35,51,66,206]. Tryptase activates the protease-activated receptor-2 (PAR-2) on endothelial cells and a correlation was found between mast cell density and PAR-2 on endothelial cells in gastric cancer [207]. Based on the above findings it has been proposed that targeting tryptase could be a potential anti-angiogenic strategy in gastric cancer [208]. Ammendola and co-workers made an interesting observation looking at mast cells in bone metastases from gastric cancer patients [209]. They described the presence of mast cells near blood vessels in bone metastases from gastric cancer and found a correlation between mast cell density and microvascular density. The latter observation led to suggest that tryptase inhibitors or KIT tyrosine kinase inhibitors could represent a novel strategy to inhibit tumour-induced angiogenesis and osteoclastic bone resorption [210].
IL-17 is a pleiotropic cytokine [211] identified in several tumours including gastric cancer [212,213]. Although it has long been considered that the major source of IL-17 are CD4+ T lymphocytes (Th17 cells), this cytokine can be produced by several immune cells, including cytotoxic CD8+ T cells (Tc17), γδ T cells, NKT and NK cells, macrophages, granulocytes and mast cells [214,215,216]. It has been shown that activated mast cells are capable of expanding Th17 cells through the release of IL-1β [217]. In a study of gastric cancer patients, it was found that mast cells and to a lesser extent macrophages stained positively for IL-17 [218]. Furthermore, endothelial cells expressed IL-17 receptor (IL-17R) and intratumor mast cells IL-17+ were associated with worse overall survival. Recently, the prognostic value of IL-17 mRNA and IL-17A+ cells has been studied in two independent large cohorts of Chinese gastric cancer patients [171]. The overall survival was longer in the high intratumoral IL-17A+ cell group than in the low intratumoral IL-17A+ cell group. The authors also examined the immune contexture in different IL-17A mRNA expression status. High IL-17A mRNA expression was associated with high proportion of activated mast cells, NK cells and Tregs, while it was associated with low proportion of M2 macrophages and resting mast cells. Finally, it has been reported that activated mast cells release IL-17A which promoted the in vitro proliferation of gastric cancer cells [129].
The role of mast cells has also been started to be evaluated in metastatic lymph nodes of gastric cancer patients. Although mast cells are rarely found in normal lymph nodes, local mastocytosis was demonstrated in lymph node metastases from primary gastric cancer [219]. Figure 2A illustrates the localization of tryptase+ mast cells in primary gastric cancer. Interestingly, tryptase+ mast cells were also found in lymph node metastasis from primary gastric cancer (Figure 2B). The role of metastasis-associated mast cells is of great interest considering the contribution of these cells to lymphangiogenesis through the production of lymphangiogenic factors [44,220,221].
Recently, the spatial distribution of mast cells and vessels in peritumoral and intratumoral gastric cancer has been started to be investigated. It was found that tryptase+ chymase+ mast cells were preferentially located near the gastric glands and blood vessels [222]. In two large groups of patients with gastric cancer, peritumoral (area ≥ 2 cm from the tumour margin) and intratumoral (tumour centre area) mast cells were identified [171]. This study also examined the immune contexture of gastric cancer. CD4+ and CD8+ T cells, B cells, DCs, M0, M1 and M2 macrophages, monocytes, eosinophils, neutrophils, Tfh cells, Tregs, NK cells and plasma cells, in addition to mast cells, were found in the tumour microenvironment of gastric cancer [171]. The presence of mast cells and macrophages in gastric tumour microenvironment has been correlated to microvascular density [223]. The microlocalization of intratumoral, marginal, peritumoral and non-tumour issues of mast cells has been examined in gastric cancer patients [129]. These patients showed a higher mast cell infiltration in intratumoral tissues than marginal, peritumoral and non-tumour tissues. Moreover, as the cancer progressed from stage I to IV, the intratumoral mast cells increased, suggesting a possible protumorigenic role for these cells. It has been reported that mast cells accumulate in gastric cancer through the engagement of the chemokine receptor CXCR4 by CXCL12 produced by tumour cells [170].
Mast cells are immune sentinels in the surrounding microenvironment and rapidly perceive biochemical and immunological insults [39,67] through the engagement of a constellation of surface receptors [66]. These cells also express co-receptors for T-cells such as CD40 ligand (CD40L), tumour necrosis factor superfamily member 4 (OX40L), inducible costimulator ligand (ICOS-L). T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) and programmed death ligands (PD-L1 and PD-L2) [224,225,226]. The latter receptors are particularly relevant as immune checkpoint inhibitors (ICIs) [227,228]. Controversial results are reported about the impact of PD-L1 expression in gastric cancer [229,230]. Interestingly, intratumoral mast cells from gastric cancer constitutively expressed PD-L1 but not other molecules with immunosuppression potential such as CTLA-4 and ICOS [170]. TNF-α selectively induced the overexpression of PD-L1 on gastric mast cells. When mast cells from tumour and non-tumour tissues of gastric cancer patients were co-cultured with autologous peripheral blood CD3+ T cells, only tumour infiltrating mast cells inhibited T cell proliferation and IFN-γ production suggesting a specific immunosuppressive function. This hypothesis was extended in in vivo experiments using the NOD/SCID mice bearing SGC-7901-derived gastric cancer. In this model PD-L1 blocking antibody reduced gastric cancer progression. These important studies have identified a novel mechanism by which mast cells can promote tumorigenesis in gastric cancer and provide a rationale for the treatment of gastric cancer patients with immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 pathway.

6. Outstanding Questions and Conclusions

Gastric cancer is a heterogeneous disease [6,7,8,9] and several subtypes have been described anatomically [10], histologically [11] and genetically [12,14,15,16]. Several groups have identified tryptase+ and tryptase+ chymase+ mast cells in human gastric cancer patients in Europe [168,204,207,219,222,223] and in Asia [198,199,205,218]. Mast cell density in tumour microenvironment was associated with poor prognosis [129,168,170,198,199,218], tumour angiogenesis [169,198,199,204,219] and the formation of lymph node [168,219] and bone metastases [209]. These observations led to suggest that angiogenesis blockade could represent a promising target for the treatment of gastric cancer [207,210,231,232]. The results of several clinical trials indicate that anti-angiogenic agents improve overall survival, progression-free survival and disease control rate in gastric cancer [233]. Unfortunately, no studies thus far have identified a predictive biomarker to assist patient selection for benefit from anti-angiogenic agents. It would be interesting to verify whether mast cell density and/or activation in gastric tumours represent a biomarker of response to anti-angiogenic agents in these patients.
Mast cells are rarely found in normal lymph nodes. Figure 2B and elegant studies by Ammendola and collaborators have demonstrated that the density of mast cells is markedly increased in metastatic draining lymph nodes of gastric cancer patients [168,219]. This suggests that mast cells can migrate to tumour draining lymph nodes (TDLNs) where they can act as non-professional antigen presenting cells [234,235]. The mast cell contribution to the evolving microenvironment of TDLNs remains poorly understood. High-dimensional analysis, particularly single-cell RNA-seq, will be necessary to better characterize mast cells in TDLNs.
Tumour cells evade host immune attack by expressing several immune checkpoints such as PD-1 and its ligands (PD-L1 and PD-L2) in TME. Monoclonal antibodies targeting the PD-1/PD-L1 pathway unleash anti-tumour immunity and have revolutionized the management of a wide spectrum of malignancies [236]. PD-L1 is overexpressed in up to 50% of gastric cancers [237,238] and a large number of clinical trials are evaluating the efficacy of mAbs anti-PD-1 (i.e., nivolumab, pembrolizumab) (Table S1) and anti-PD-L1 (i.e., atezolizumab, avelumab, durvalumab) (Table S2) as monotherapy or in combination with anti-CTLA-4 (i.e., ipilimumab) or targeted therapies in the management of advanced-stage gastric cancer. Human mast cells express PD-L1 and, to a lesser extent, PD-L2 [224,225,226]. An interesting task will be to investigate whether the expression of PD-L1 on mast cells is correlated with PD-L1+ cancer cells in the context of immunotherapy of gastric cancer.
As shown for tumour-associated macrophages (M1, M2, etc.) [101,102,103] and tumour-associated neutrophils (N1 and N2) [104,105,106], subpopulations of mast cells are recently begun to emerge [99,100] and could play different, even opposite effects in various types of tumours. Mast cells, like other immune cells, are endowed with phenotypic and functional plasticity depending on environmental factors [239] which may vary in composition in the different cancers [240,241]. The complex heterogeneity (spatial, temporal, intratumoral) of the TME adds a further layer of complexity. Simultaneous single-cell analysis of the immune contexture of TME of different subtypes of human gastric cancers characterized by genetic markers can greatly expand our knowledge of the role of mast cells in tumour initiation and progression.
All the above implies that clarification of the roles of subsets of mast cells in different human gastric cancers will demand studies of complexity beyond those assessing merely mast cell density, their microlocalization and the interactions with other immune cells. Therefore, many fundamental questions need to be addressed before understanding how mast cells play a protumorigenic role in gastric tumours.

Supplementary Materials

Supplementary materials can be found at https://www.mdpi.com/1422-0067/20/9/2106/s1.

Author Contributions

All authors have contributed to the preparation of this manuscript and have critically revised and accepted the final version for publication.

Funding

This work was supported in part by grants from the Regione Campania CISI-Lab Project, the CRèME Project and the TIMING Project.

Acknowledgments

The authors apologize to the many researchers who have contributed importantly to this field and whose work has not been cited due to space and citation restrictions. The authors thank Gjada Criscuolo for critical reading of the manuscript, scientists from the CISI Laboratory not listed as authors for invaluable collaborations, medical graphic artist Fabrizio Fiorbianco for preparing the figures and the administrative staff (Roberto Bifulco and Anna Ferraro), without whom we could not function as an integrated team.

Conflicts of Interest

The authors have no relevant affiliation or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending or royalties.

Abbreviations

ANGPTangiopoietin
BECblood endothelial cell
CD40cluster of differentiation 40 protein
CD40Lcluster of differentiation 40 ligand
COXcyclooxygenase
DCdendritic cell
ECMextracellular matrix
FLCfree light chain
ICIimmune checkpoint inhibitor
ICOSinducible costimulator
ICOS-Linducible costimulator ligand
IFNinterferon
ILinterleukin
KITstem cell factor receptor
LEClymphatic endothelial cell
mAbmonoclonal antibody
MDCSmyeloid-derived suppressor cell
MMPmatrix metalloproteinase
NKnatural killer cell
NKTnatural killer T cell
NSCLCnon-small-cell lung cancer
PARprotease-activated receptor
PD-1programmed death-1
PD-L1programmed death ligand 1
PD-L2programmed death ligand 2
PGEprostaglandin E
PlGFplacental growth factor
PMNpolymorphonuclear leukocyte
SCFstem cell factor
SCIDsevere combined immunodeficiency
TAMtumour-associated macrophage
TAMCtumour-associated mast cell
TANtumour-associated neutrophils
TDLNtumour draining lymph node
TfhT follicular helper cells
TIETyrosine kinase with immunoglobulin-like and EGF-like domains
TIM-3T cell immunoglobulin and mucin domain-containing protein 3
TMEtumour microenvironment
TNFtumour necrosis factor
VEGFVascular endothelial growth factor
VEGFRVascular endothelial growth factor receptor

References

  1. Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef]
  2. Lott, P.C.; Carvajal-Carmona, L.G. Resolving gastric cancer aetiology: An update in genetic predisposition. Lancet Gastroenterol Hepatol. 2018, 3, 874–883. [Google Scholar] [CrossRef]
  3. Van Cutsem, E.; Sagaert, X.; Topal, B.; Haustermans, K.; Prenen, H. Gastric cancer. Lancet. 2016, 388, 2654–2664. [Google Scholar] [CrossRef]
  4. Russo, A.E.; Strong, V.E. Gastric Cancer Etiology and Management in Asia and the West. Annu. Rev. Med. 2019, 70, 353–367. [Google Scholar] [CrossRef]
  5. Shim, J.H.; Song, K.Y.; Jeon, H.M.; Park, C.H.; Jacks, L.M.; Gonen, M.; Shah, M.A.; Brennan, M.F.; Coit, D.G.; Strong, V.E. Is gastric cancer different in Korea and the United States? Impact of tumor location on prognosis. Ann. Surg. Oncol. 2014, 21, 2332–2339. [Google Scholar] [CrossRef]
  6. Gullo, I.; Carneiro, F.; Oliveira, C.; Almeida, G.M. Heterogeneity in Gastric Cancer: From Pure Morphology to Molecular Classifications. Pathobiology 2018, 85, 50–63. [Google Scholar] [CrossRef]
  7. Gao, J.P.; Xu, W.; Liu, W.T.; Yan, M.; Zhu, Z.G. Tumor heterogeneity of gastric cancer: From the perspective of tumor-initiating cell. World J. Gastroenterol. 2018, 24, 2567–2581. [Google Scholar] [CrossRef] [PubMed]
  8. Chia, N.Y.; Tan, P. Molecular classification of gastric cancer. Ann. Oncol. 2016, 27, 763–769. [Google Scholar] [CrossRef] [PubMed]
  9. Cislo, M.; Filip, A.A.; Arnold Offerhaus, G.J.; Cisel, B.; Rawicz-Pruszynski, K.; Skierucha, M.; Polkowski, W.P. Distinct molecular subtypes of gastric cancer: From Lauren to molecular pathology. Oncotarget 2018, 9, 19427–19442. [Google Scholar] [CrossRef] [PubMed]
  10. Wang, G.; Hu, N.; Yang, H.H.; Wang, L.; Su, H.; Wang, C.; Clifford, R.; Dawsey, E.M.; Li, J.M.; Ding, T.; et al. Comparison of global gene expression of gastric cardia and noncardia cancers from a high-risk population in china. PLoS ONE 2013, 8, e63826. [Google Scholar] [CrossRef]
  11. Shah, M.A.; Khanin, R.; Tang, L.; Janjigian, Y.Y.; Klimstra, D.S.; Gerdes, H.; Kelsen, D.P. Molecular classification of gastric cancer: A new paradigm. Clin. Cancer Res. 2011, 17, 2693–2701. [Google Scholar] [CrossRef]
  12. Tay, S.T.; Leong, S.H.; Yu, K.; Aggarwal, A.; Tan, S.Y.; Lee, C.H.; Wong, K.; Visvanathan, J.; Lim, D.; Wong, W.K.; et al. A combined comparative genomic hybridization and expression microarray analysis of gastric cancer reveals novel molecular subtypes. Cancer Res. 2003, 63, 3309–3316. [Google Scholar]
  13. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [Green Version]
  14. Chen, X.; Leung, S.Y.; Yuen, S.T.; Chu, K.M.; Ji, J.; Li, R.; Chan, A.S.; Law, S.; Troyanskaya, O.G.; Wong, J.; et al. Variation in gene expression patterns in human gastric cancers. Mol. Biol. Cell 2003, 14, 3208–3215. [Google Scholar] [CrossRef] [PubMed]
  15. Tan, I.B.; Ivanova, T.; Lim, K.H.; Ong, C.W.; Deng, N.; Lee, J.; Tan, S.H.; Wu, J.; Lee, M.H.; Ooi, C.H.; et al. Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy. Gastroenterology 2011, 141, 476–485, 485.e1–485.e11. [Google Scholar] [CrossRef] [PubMed]
  16. Cho, J.Y.; Lim, J.Y.; Cheong, J.H.; Park, Y.Y.; Yoon, S.L.; Kim, S.M.; Kim, S.B.; Kim, H.; Hong, S.W.; Park, Y.N.; et al. Gene expression signature-based prognostic risk score in gastric cancer. Clin. Cancer Res. 2011, 17, 1850–1857. [Google Scholar] [CrossRef] [PubMed]
  17. Deng, N.; Goh, L.K.; Wang, H.; Das, K.; Tao, J.; Tan, I.B.; Zhang, S.; Lee, M.; Wu, J.; Lim, K.H.; et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut 2012, 61, 673–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  18. An, C.; Choi, I.S.; Yao, J.C.; Worah, S.; Xie, K.; Mansfield, P.F.; Ajani, J.A.; Rashid, A.; Hamilton, S.R.; Wu, T.T. Prognostic significance of CpG island methylator phenotype and microsatellite instability in gastric carcinoma. Clin. Cancer Res. 2005, 11, 656–663. [Google Scholar]
  19. Liu, Z.; Zhang, J.; Gao, Y.; Pei, L.; Zhou, J.; Gu, L.; Zhang, L.; Zhu, B.; Hattori, N.; Ji, J.; et al. Large-scale characterization of DNA methylation changes in human gastric carcinomas with and without metastasis. Clin. Cancer Res. 2014, 20, 4598–4612. [Google Scholar] [CrossRef] [Green Version]
  20. Zouridis, H.; Deng, N.; Ivanova, T.; Zhu, Y.; Wong, B.; Huang, D.; Wu, Y.H.; Wu, Y.; Tan, I.B.; Liem, N.; et al. Methylation subtypes and large-scale epigenetic alterations in gastric cancer. Sci. Transl. Med. 2012, 4, 156ra140. [Google Scholar] [CrossRef] [PubMed]
  21. Wang, K.; Yuen, S.T.; Xu, J.; Lee, S.P.; Yan, H.H.; Shi, S.T.; Siu, H.C.; Deng, S.; Chu, K.M.; Law, S.; et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 2014, 46, 573–582. [Google Scholar] [CrossRef]
  22. Kakiuchi, M.; Nishizawa, T.; Ueda, H.; Gotoh, K.; Tanaka, A.; Hayashi, A.; Yamamoto, S.; Tatsuno, K.; Katoh, H.; Watanabe, Y.; et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat. Genet. 2014, 46, 583–587. [Google Scholar] [CrossRef]
  23. Liu, J.; McCleland, M.; Stawiski, E.W.; Gnad, F.; Mayba, O.; Haverty, P.M.; Durinck, S.; Chen, Y.J.; Klijn, C.; Jhunjhunwala, S.; et al. Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer. Nat. Commun. 2014, 5, 3830. [Google Scholar] [CrossRef] [Green Version]
  24. Wong, S.S.; Kim, K.M.; Ting, J.C.; Yu, K.; Fu, J.; Liu, S.; Cristescu, R.; Nebozhyn, M.; Gong, L.; Yue, Y.G.; et al. Genomic landscape and genetic heterogeneity in gastric adenocarcinoma revealed by whole-genome sequencing. Nat. Commun. 2014, 5, 5477. [Google Scholar] [CrossRef] [Green Version]
  25. Ooi, C.H.; Ivanova, T.; Wu, J.; Lee, M.; Tan, I.B.; Tao, J.; Ward, L.; Koo, J.H.; Gopalakrishnan, V.; Zhu, Y.; et al. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet. 2009, 5, e1000676. [Google Scholar] [CrossRef]
  26. Wu, Y.; Grabsch, H.; Ivanova, T.; Tan, I.B.; Murray, J.; Ooi, C.H.; Wright, A.I.; West, N.P.; Hutchins, G.G.; Wu, J.; et al. Comprehensive genomic meta-analysis identifies intra-tumoural stroma as a predictor of survival in patients with gastric cancer. Gut 2013, 62, 1100–1111. [Google Scholar] [CrossRef]
  27. Dawson, M.A.; Kouzarides, T.; Huntly, B.J. Targeting epigenetic readers in cancer. N. Engl. J. Med. 2012, 367, 647–657. [Google Scholar] [CrossRef]
  28. Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Andre, F.; Tesniere, A.; Kroemer, G. The anticancer immune response: Indispensable for therapeutic success? J. Clin. Investig. 2008, 118, 1991–2001. [Google Scholar] [CrossRef]
  29. Marone, G.; Granata, F. Angiogenesis, lymphangiogenesis and clinical implications. Preface. Chem. Immunol. Allergy 2014, 99, XI–XII. [Google Scholar]
  30. Varricchi, G.; Pecoraro, A.; Marone, G.; Criscuolo, G.; Spadaro, G.; Genovese, A. Thymic Stromal Lymphopoietin Isoforms, Inflammatory Disorders and Cancer. Front. Immunol. 2018, 9, 1595. [Google Scholar] [CrossRef]
  31. Bissell, M.J.; Hines, W.C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 2011, 17, 320–329. [Google Scholar] [CrossRef] [Green Version]
  32. Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef] [Green Version]
  33. Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012, 21, 309–322. [Google Scholar] [CrossRef]
  34. Galdiero, M.R.; Garlanda, C.; Jaillon, S.; Marone, G.; Mantovani, A. Tumor associated macrophages and neutrophils in tumor progression. J. Cell. Physiol. 2013, 228, 1404–1412. [Google Scholar] [CrossRef]
  35. Varricchi, G.; Galdiero, M.R.; Marone, G.; Granata, F.; Borriello, F. Controversial role of mast cells in skin cancers. Exp. Dermatol. 2017, 26, 11–17. [Google Scholar] [CrossRef]
  36. Mulero, I.; Sepulcre, M.P.; Meseguer, J.; Garcia-Ayala, A.; Mulero, V. Histamine is stored in mast cells of most evolutionarily advanced fish and regulates the fish inflammatory response. Proc. Natl. Acad. Sci. USA 2007, 104, 19434–19439. [Google Scholar] [CrossRef] [Green Version]
  37. Ehrlich, P. Beitrage zur Theorie und Praxis der Histologischen Farbung. Master’s Thesis, University of Leipzig, Leipzig, Germany, 1878. [Google Scholar]
  38. Marone, G.; Galli, S.J.; Kitamura, Y. Probing the roles of mast cells and basophils in natural and acquired immunity, physiology and disease. Trends Immunol. 2002, 23, 425–427. [Google Scholar] [CrossRef]
  39. Varricchi, G.; Raap, U.; Rivellese, F.; Marone, G.; Gibbs, B.F. Human mast cells and basophils-How are they similar how are they different? Immunol. Rev. 2018, 282, 8–34. [Google Scholar] [CrossRef]
  40. Kirshenbaum, A.S.; Goff, J.P.; Semere, T.; Foster, B.; Scott, L.M.; Metcalfe, D.D. Demonstration that human mast cells arise from a progenitor cell population that is CD34(+), c-kit(+) and expresses aminopeptidase N (CD13). Blood 1999, 94, 2333–2342. [Google Scholar]
  41. Liu, J.; Fu, T.; Song, F.; Xue, Y.; Xia, C.; Liu, P.; Wang, H.; Zhong, J.; Li, Q.; Chen, J.; et al. Mast Cells Participate in Corneal Development in Mice. Sci Rep. 2015, 5, 17569. [Google Scholar] [CrossRef] [Green Version]
  42. Kurashima, Y.; Amiya, T.; Fujisawa, K.; Shibata, N.; Suzuki, Y.; Kogure, Y.; Hashimoto, E.; Otsuka, A.; Kabashima, K.; Sato, S.; et al. The enzyme Cyp26b1 mediates inhibition of mast cell activation by fibroblasts to maintain skin-barrier homeostasis. Immunity 2014, 40, 530–541. [Google Scholar] [CrossRef]
  43. Marone, G.; Varricchi, G.; Loffredo, S.; Granata, F. Mast cells and basophils in inflammatory and tumor angiogenesis and lymphangiogenesis. Eur. J. Pharmacol. 2016, 778, 146–151. [Google Scholar] [CrossRef]
  44. Detoraki, A.; Staiano, R.I.; Granata, F.; Giannattasio, G.; Prevete, N.; de Paulis, A.; Ribatti, D.; Genovese, A.; Triggiani, M.; Marone, G. Vascular endothelial growth factors synthesized by human lung mast cells exert angiogenic effects. J. Allergy Clin. Immunol. 2009, 123, 1142–1149. [Google Scholar] [CrossRef]
  45. Douaiher, J.; Succar, J.; Lancerotto, L.; Gurish, M.F.; Orgill, D.P.; Hamilton, M.J.; Krilis, S.A.; Stevens, R.L. Development of mast cells and importance of their tryptase and chymase serine proteases in inflammation and wound healing. Adv. Immunol. 2014, 122, 211–252. [Google Scholar]
  46. Reid, A.C.; Silver, R.B.; Levi, R. Renin: At the heart of the mast cell. Immunol. Rev. 2007, 217, 123–140. [Google Scholar] [CrossRef]
  47. Ngkelo, A.; Richart, A.; Kirk, J.A.; Bonnin, P.; Vilar, J.; Lemitre, M.; Marck, P.; Branchereau, M.; Le Gall, S.; Renault, N.; et al. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction. J. Exp. Med. 2016, 213, 1353–1374. [Google Scholar] [CrossRef] [Green Version]
  48. Mulloy, B.; Lever, R.; Page, C.P. Mast cell glycosaminoglycans. Glycoconj. J. 2017, 34, 351–361. [Google Scholar] [CrossRef]
  49. Giannou, A.D.; Marazioti, A.; Spella, M.; Kanellakis, N.I.; Apostolopoulou, H.; Psallidas, I.; Prijovich, Z.M.; Vreka, M.; Zazara, D.E.; Lilis, I.; et al. Mast cells mediate malignant pleural effusion formation. J. Clin. Investig. 2015, 125, 2317–2334. [Google Scholar] [CrossRef]
  50. Galdiero, M.R.; Varricchi, G.; Marone, G. The immune network in thyroid cancer. Oncoimmunology 2016, 5, e1168556. [Google Scholar] [CrossRef] [Green Version]
  51. Varricchi, G.; Galdiero, M.R.; Loffredo, S.; Marone, G.; Iannone, R.; Granata, F. Are Mast Cells MASTers in Cancer? Front. Immunol. 2017, 8, 424. [Google Scholar] [CrossRef]
  52. Oskeritzian, C.A. Mast cell plasticity and sphingosine-1-phosphate in immunity, inflammation and cancer. Mol. Immunol. 2015, 63, 104–112. [Google Scholar] [CrossRef] [Green Version]
  53. Rigoni, A.; Colombo, M.P.; Pucillo, C. Mast cells, basophils and eosinophils: From allergy to cancer. Semin. Immunol. 2018, 35, 29–34. [Google Scholar] [CrossRef]
  54. Jarido, V.; Kennedy, L.; Hargrove, L.; Demieville, J.; Thomson, J.; Stephenson, K.; Francis, H. The emerging role of mast cells in liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 313, G89–G101. [Google Scholar] [CrossRef]
  55. Oldford, S.A.; Marshall, J.S. Mast cells as targets for immunotherapy of solid tumors. Mol. Immunol. 2015, 63, 113–124. [Google Scholar] [CrossRef]
  56. Jimenez-Andrade, G.Y.; Ibarra-Sanchez, A.; Gonzalez, D.; Lamas, M.; Gonzalez-Espinosa, C. Immunoglobulin E induces VEGF production in mast cells and potentiates their pro-tumorigenic actions through a Fyn kinase-dependent mechanism. J. Hematol. Oncol. 2013, 6, 56. [Google Scholar] [CrossRef]
  57. Galli, S.J.; Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 2012, 18, 693–704. [Google Scholar] [CrossRef] [Green Version]
  58. Genovese, A.; Borgia, G.; Bjorck, L.; Petraroli, A.; de Paulis, A.; Piazza, M.; Marone, G. Immunoglobulin superantigen protein L induces IL-4 and IL-13 secretion from human Fc epsilon RI+ cells through interaction with the kappa light chains of IgE. J. Immunol. 2003, 170, 1854–1861. [Google Scholar] [CrossRef]
  59. Marone, G.; Rossi, F.W.; Detoraki, A.; Granata, F.; Genovese, A.; Spadaro, G. Role of superallergens in allergic disorders. Chem. Immunol. Allergy. 2007, 93, 195–213. [Google Scholar]
  60. Andreu, P.; Johansson, M.; Affara, N.I.; Pucci, F.; Tan, T.; Junankar, S.; Korets, L.; Lam, J.; Tawfik, D.; DeNardo, D.G.; et al. FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell. 2010, 17, 121–134. [Google Scholar] [CrossRef]
  61. Groot Kormelink, T.; Powe, D.G.; Kuijpers, S.A.; Abudukelimu, A.; Fens, M.H.; Pieters, E.H.; Kassing van der Ven, W.W.; Habashy, H.O.; Ellis, I.O.; Blokhuis, B.R.; et al. Immunoglobulin free light chains are biomarkers of poor prognosis in basal-like breast cancer and are potential targets in tumor-associated inflammation. Oncotarget 2014, 5, 3159–3167. [Google Scholar] [CrossRef] [Green Version]
  62. Huang, B.; Lei, Z.; Zhang, G.M.; Li, D.; Song, C.; Li, B.; Liu, Y.; Yuan, Y.; Unkeless, J.; Xiong, H.; et al. SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 2008, 112, 1269–1279. [Google Scholar] [CrossRef] [Green Version]
  63. Oldford, S.A.; Haidl, I.D.; Howatt, M.A.; Leiva, C.A.; Johnston, B.; Marshall, J.S. A critical role for mast cells and mast cell-derived IL-6 in TLR2-mediated inhibition of tumor growth. J. Immunol. 2010, 185, 7067–7076. [Google Scholar] [CrossRef]
  64. Krystel-Whittemore, M.; Dileepan, K.N.; Wood, J.G. Mast Cell: A Multi-Functional Master Cell. Front. Immunol. 2015, 6, 620. [Google Scholar] [CrossRef]
  65. Varricchi, G.; Loffredo, S.; Galdiero, M.R.; Marone, G.; Cristinziano, L.; Granata, F. Innate effector cells in angiogenesis and lymphangiogenesis. Curr. Opin. Immunol. 2018, 53, 152–160. [Google Scholar] [CrossRef]
  66. Borriello, F.; Granata, F.; Varricchi, G.; Genovese, A.; Triggiani, M.; Marone, G. Immunopharmacological modulation of mast cells. Curr. Opin. Pharmacol. 2014, 17, 45–57. [Google Scholar] [CrossRef]
  67. Varricchi, G.; Rossi, F.W.; Galdiero, M.R.; Granata, F.; Criscuolo, G.; Spadaro, G.; de Paulis, A.; Marone, G. Physiological roles of mast cells. Int. Arch. Allergy Immunol. 2019, in press. [Google Scholar] [CrossRef]
  68. Westphal, E. Uber Mastzellen. In Farbenanalytische Untersuchungen; Ehrlich, P., Ed.; Hirschwald: Berlin, Germany, 1891; pp. 17–41. [Google Scholar]
  69. Dvorak, A.M.; Mihm, M.C., Jr.; Osage, J.E.; Dvorak, H.F. Melanoma. An ultrastructural study of the host inflammatory and vascular responses. J. Investig. Dermatol. 1980, 75, 388–393. [Google Scholar] [CrossRef]
  70. Takahashi, K.; Mulliken, J.B.; Kozakewich, H.P.; Rogers, R.A.; Folkman, J.; Ezekowitz, R.A. Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J. Clin. Investig. 1994, 93, 2357–2364. [Google Scholar] [CrossRef]
  71. Toth-Jakatics, R.; Jimi, S.; Takebayashi, S.; Kawamoto, N. Cutaneous malignant melanoma: Correlation between neovascularization and peritumor accumulation of mast cells overexpressing vascular endothelial growth factor. Hum. Pathol. 2000, 31, 955–960. [Google Scholar]
  72. Aoki, M.; Pawankar, R.; Niimi, Y.; Kawana, S. Mast cells in basal cell carcinoma express VEGF, IL-8 and RANTES. Int. Arch. Allergy Immunol. 2003, 130, 216–223. [Google Scholar] [CrossRef]
  73. Ribatti, D.; Ennas, M.G.; Vacca, A.; Ferreli, F.; Nico, B.; Orru, S.; Sirigu, P. Tumor vascularity and tryptase-positive mast cells correlate with a poor prognosis in melanoma. Eur. J. Clin. Investig. 2003, 33, 420–425. [Google Scholar] [CrossRef]
  74. Ribatti, D.; Vacca, A.; Ria, R.; Marzullo, A.; Nico, B.; Filotico, R.; Roncali, L.; Dammacco, F. Neovascularisation, expression of fibroblast growth factor-2 and mast cells with tryptase activity increase simultaneously with pathological progression in human malignant melanoma. Eur. J. Cancer 2003, 39, 666–674. [Google Scholar] [CrossRef]
  75. Beer, T.W.; Ng, L.B.; Murray, K. Mast cells have prognostic value in Merkel cell carcinoma. Am. J. Dermatopathol. 2008, 30, 27–30. [Google Scholar] [CrossRef]
  76. Johansson, A.; Rudolfsson, S.; Hammarsten, P.; Halin, S.; Pietras, K.; Jones, J.; Stattin, P.; Egevad, L.; Granfors, T.; Wikstrom, P.; et al. Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am. J. Pathol. 2010, 177, 1031–1041. [Google Scholar] [CrossRef]
  77. Ng, L.; Beer, T.W.; Murray, K. Vascular density has prognostic value in Merkel cell carcinoma. Am. J. Dermatopathol. 2008, 30, 442–445. [Google Scholar] [CrossRef]
  78. Ma, Y.; Hwang, R.F.; Logsdon, C.D.; Ullrich, S.E. Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer. Cancer Res. 2013, 73, 3927–3937. [Google Scholar] [CrossRef] [Green Version]
  79. Melillo, R.M.; Guarino, V.; Avilla, E.; Galdiero, M.R.; Liotti, F.; Prevete, N.; Rossi, F.W.; Basolo, F.; Ugolini, C.; de Paulis, A.; et al. Mast cells have a protumorigenic role in human thyroid cancer. Oncogene 2010, 29, 6203–6215. [Google Scholar] [CrossRef] [Green Version]
  80. Pittoni, P.; Tripodo, C.; Piconese, S.; Mauri, G.; Parenza, M.; Rigoni, A.; Sangaletti, S.; Colombo, M.P. Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res. 2011, 71, 5987–5997. [Google Scholar] [CrossRef]
  81. Johnson, C.; Huynh, V.; Hargrove, L.; Kennedy, L.; Graf-Eaton, A.; Owens, J.; Trzeciakowski, J.P.; Hodges, K.; DeMorrow, S.; Han, Y.; et al. Inhibition of Mast Cell-Derived Histamine Decreases Human Cholangiocarcinoma Growth and Differentiation via c-Kit/Stem Cell Factor-Dependent Signaling. Am. J. Pathol. 2016, 186, 123–133. [Google Scholar] [CrossRef]
  82. Siiskonen, H.; Poukka, M.; Bykachev, A.; Tyynela-Korhonen, K.; Sironen, R.; Pasonen-Seppanen, S.; Harvima, I.T. Low numbers of tryptase+ and chymase+ mast cells associated with reduced survival and advanced tumor stage in melanoma. Melanoma Res. 2015, 25, 479–485. [Google Scholar] [CrossRef]
  83. Acikalin, M.F.; Oner, U.; Topcu, I.; Yasar, B.; Kiper, H.; Colak, E. Tumour angiogenesis and mast cell density in the prognostic assessment of colorectal carcinomas. Dig. Liver Dis. 2005, 37, 162–169. [Google Scholar] [CrossRef]
  84. Fleischmann, A.; Schlomm, T.; Kollermann, J.; Sekulic, N.; Huland, H.; Mirlacher, M.; Sauter, G.; Simon, R.; Erbersdobler, A. Immunological microenvironment in prostate cancer: High mast cell densities are associated with favorable tumor characteristics and good prognosis. Prostate 2009, 69, 976–981. [Google Scholar] [CrossRef]
  85. Andersen, M.D.; Kamper, P.; Nielsen, P.S.; Bendix, K.; Riber-Hansen, R.; Steiniche, T.; Hamilton-Dutoit, S.; Clausen, M.; d’Amore, F. Tumour-associated mast cells in classical Hodgkin’s lymphoma: Correlation with histological subtype, other tumour-infiltrating inflammatory cell subsets and outcome. Eur. J. Haematol. 2016, 96, 252–259. [Google Scholar] [CrossRef]
  86. Englund, A.; Molin, D.; Enblad, G.; Karlen, J.; Glimelius, I.; Ljungman, G.; Amini, R.M. The role of tumour-infiltrating eosinophils, mast cells and macrophages in Classical and Nodular Lymphocyte Predominant Hodgkin Lymphoma in children. Eur. J. Haematol. 2016, 97, 430–438. [Google Scholar] [CrossRef] [Green Version]
  87. Franco, G.; Guarnotta, C.; Frossi, B.; Piccaluga, P.P.; Boveri, E.; Gulino, A.; Fuligni, F.; Rigoni, A.; Porcasi, R.; Buffa, S.; et al. Bone marrow stroma CD40 expression correlates with inflammatory mast cell infiltration and disease progression in splenic marginal zone lymphoma. Blood 2014, 123, 1836–1849. [Google Scholar] [CrossRef] [Green Version]
  88. Molin, D.; Edstrom, A.; Glimelius, I.; Glimelius, B.; Nilsson, G.; Sundstrom, C.; Enblad, G. Mast cell infiltration correlates with poor prognosis in Hodgkin’s lymphoma. Br. J. Haematol. 2002, 119, 122–124. [Google Scholar] [CrossRef]
  89. Rabenhorst, A.; Schlaak, M.; Heukamp, L.C.; Forster, A.; Theurich, S.; von Bergwelt-Baildon, M.; Buttner, R.; Kurschat, P.; Mauch, C.; Roers, A.; et al. Mast cells play a protumorigenic role in primary cutaneous lymphoma. Blood 2012, 120, 2042–2054. [Google Scholar] [CrossRef] [Green Version]
  90. Ribatti, D.; Vacca, A.; Nico, B.; Quondamatteo, F.; Ria, R.; Minischetti, M.; Marzullo, A.; Herken, R.; Roncali, L.; Dammacco, F. Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma. Br. J. Cancer 1999, 79, 451–455. [Google Scholar] [CrossRef] [Green Version]
  91. Taskinen, M.; Karjalainen-Lindsberg, M.L.; Leppa, S. Prognostic influence of tumor-infiltrating mast cells in patients with follicular lymphoma treated with rituximab and CHOP. Blood 2008, 111, 4664–4667. [Google Scholar] [CrossRef] [Green Version]
  92. Tripodo, C.; Gri, G.; Piccaluga, P.P.; Frossi, B.; Guarnotta, C.; Piconese, S.; Franco, G.; Vetri, V.; Pucillo, C.E.; Florena, A.M.; et al. Mast cells and Th17 cells contribute to the lymphoma-associated pro-inflammatory microenvironment of angioimmunoblastic T-cell lymphoma. Am. J. Pathol. 2010, 177, 792–802. [Google Scholar] [CrossRef]
  93. Vyzoukaki, R.; Tsirakis, G.; Pappa, C.A.; Devetzoglou, M.; Tzardi, M.; Alexandrakis, M.G. The Impact of Mast Cell Density on the Progression of Bone Disease in Multiple Myeloma Patients. Int. Arch. Allergy Immunol. 2015, 168, 263–268. [Google Scholar] [CrossRef]
  94. Marichal, T.; Tsai, M.; Galli, S.J. Mast cells: Potential positive and negative roles in tumor biology. Cancer Immunol. Res. 2013, 1, 269–279. [Google Scholar] [CrossRef]
  95. Antsiferova, M.; Martin, C.; Huber, M.; Feyerabend, T.B.; Forster, A.; Hartmann, K.; Rodewald, H.R.; Hohl, D.; Werner, S. Mast cells are dispensable for normal and activin-promoted wound healing and skin carcinogenesis. J. Immunol. 2013, 191, 6147–6155. [Google Scholar] [CrossRef]
  96. Xia, Q.; Wu, X.J.; Zhou, Q.; Jing, Z.; Hou, J.H.; Pan, Z.Z.; Zhang, X.S. No relationship between the distribution of mast cells and the survival of stage IIIB colon cancer patients. J. Transl. Med. 2011, 9, 88. [Google Scholar] [CrossRef]
  97. Dundar, E.; Oner, U.; Peker, B.C.; Metintas, M.; Isiksoy, S.; Ak, G. The significance and relationship between mast cells and tumour angiogenesis in non-small cell lung carcinoma. J. Int. Med. Res. 2008, 36, 88–95. [Google Scholar] [CrossRef]
  98. Tuna, B.; Yorukoglu, K.; Unlu, M.; Mungan, M.U.; Kirkali, Z. Association of mast cells with microvessel density in renal cell carcinomas. Eur. Urol. 2006, 50, 530–534. [Google Scholar] [CrossRef]
  99. Gentek, R.; Ghigo, C.; Hoeffel, G.; Bulle, M.J.; Msallam, R.; Gautier, G.; Launay, P.; Chen, J.; Ginhoux, F.; Bajenoff, M. Hemogenic Endothelial Fate Mapping Reveals Dual Developmental Origin of Mast Cells. Immunity 2018, 48, 1160–1171.e5. [Google Scholar] [CrossRef]
  100. Li, Z.; Liu, S.; Xu, J.; Zhang, X.; Han, D.; Liu, J.; Xia, M.; Yi, L.; Shen, Q.; Xu, S.; et al. Adult Connective Tissue-Resident Mast Cells Originate from Late Erythro-Myeloid Progenitors. Immunity 2018, 49, 640–653.e5. [Google Scholar] [CrossRef]
  101. Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416. [Google Scholar] [CrossRef]
  102. Chevrier, S.; Levine, J.H.; Zanotelli, V.R.T.; Silina, K.; Schulz, D.; Bacac, M.; Ries, C.H.; Ailles, L.; Jewett, M.A.S.; Moch, H.; et al. An Immune Atlas of Clear Cell Renal Cell Carcinoma. Cell 2017, 169, 736–749.e18. [Google Scholar] [CrossRef]
  103. Aran, D.; Looney, A.P.; Liu, L.; Wu, E.; Fong, V.; Hsu, A.; Chak, S.; Naikawadi, R.P.; Wolters, P.J.; Abate, A.R.; et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 2019, 20, 163–172. [Google Scholar] [CrossRef]
  104. Jaillon, S.; Galdiero, M.R.; Del Prete, D.; Cassatella, M.A.; Garlanda, C.; Mantovani, A. Neutrophils in innate and adaptive immunity. Semin. Immunopathol. 2013, 35, 377–394. [Google Scholar] [CrossRef]
  105. Shaul, M.E.; Levy, L.; Sun, J.; Mishalian, I.; Singhal, S.; Kapoor, V.; Horng, W.; Fridlender, G.; Albelda, S.M.; Fridlender, Z.G. Tumor-associated neutrophils display a distinct N1 profile following TGFbeta modulation: A transcriptomics analysis of pro- vs. antitumor TANs. Oncoimmunology 2016, 5, e1232221. [Google Scholar] [CrossRef]
  106. Galdiero, M.R.; Varricchi, G.; Loffredo, S.; Mantovani, A.; Marone, G. Roles of neutrophils in cancer growth and progression. J. Leukoc. Biol. 2018, 103, 457–464. [Google Scholar] [CrossRef]
  107. Yamamoto, T.; Katayama, I.; Nishioka, K. Expression of stem cell factor in basal cell carcinoma. Br. J. Dermatol. 1997, 137, 709–713. [Google Scholar] [CrossRef]
  108. Prevete, N.; Staiano, R.I.; Granata, F.; Detoraki, A.; Necchi, V.; Ricci, V.; Triggiani, M.; De Paulis, A.; Marone, G.; Genovese, A. Expression and function of Angiopoietins and their tie receptors in human basophils and mast cells. J. Biol. Regul. Homeost. Agents 2013, 27, 827–839. [Google Scholar]
  109. Visciano, C.; Liotti, F.; Prevete, N.; Cali, G.; Franco, R.; Collina, F.; de Paulis, A.; Marone, G.; Santoro, M.; Melillo, R.M. Mast cells induce epithelial-to-mesenchymal transition and stem cell features in human thyroid cancer cells through an IL-8-Akt-Slug pathway. Oncogene 2015, 34, 5175–5186. [Google Scholar] [CrossRef]
  110. Fischer, M.; Juremalm, M.; Olsson, N.; Backlin, C.; Sundstrom, C.; Nilsson, K.; Enblad, G.; Nilsson, G. Expression of CCL5/RANTES by Hodgkin and Reed-Sternberg cells and its possible role in the recruitment of mast cells into lymphomatous tissue. Int. J. Cancer 2003, 107, 197–201. [Google Scholar] [CrossRef] [Green Version]
  111. Kryczek, I.; Lange, A.; Mottram, P.; Alvarez, X.; Cheng, P.; Hogan, M.; Moons, L.; Wei, S.; Zou, L.; Machelon, V.; et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res. 2005, 65, 465–472. [Google Scholar]
  112. Romagnani, P.; De Paulis, A.; Beltrame, C.; Annunziato, F.; Dente, V.; Maggi, E.; Romagnani, S.; Marone, G. Tryptase-chymase double-positive human mast cells express the eotaxin receptor CCR3 and are attracted by CCR3-binding chemokines. Am. J. Pathol. 1999, 155, 1195–1204. [Google Scholar] [CrossRef]
  113. Zhu, X.Q.; Lv, J.Q.; Lin, Y.; Xiang, M.; Gao, B.H.; Shi, Y.F. Expression of chemokines CCL5 and CCL11 by smooth muscle tumor cells of the uterus and its possible role in the recruitment of mast cells. Gynecol. Oncol. 2007, 105, 650–656. [Google Scholar] [CrossRef]
  114. Polajeva, J.; Sjosten, A.M.; Lager, N.; Kastemar, M.; Waern, I.; Alafuzoff, I.; Smits, A.; Westermark, B.; Pejler, G.; Uhrbom, L.; et al. Mast cell accumulation in glioblastoma with a potential role for stem cell factor and chemokine CXCL12. PLoS ONE 2011, 6, e25222. [Google Scholar] [CrossRef]
  115. Lin, T.J.; Issekutz, T.B.; Marshall, J.S. SDF-1 induces IL-8 production and transendothelial migration of human cord blood-derived mast cells. Int. Arch. Allergy Immunol. 2001, 124, 142–145. [Google Scholar] [CrossRef]
  116. Juremalm, M.; Hjertson, M.; Olsson, N.; Harvima, I.; Nilsson, K.; Nilsson, G. The chemokine receptor CXCR4 is expressed within the mast cell lineage and its ligand stromal cell-derived factor-1alpha acts as a mast cell chemotaxin. Eur. J. Immunol. 2000, 30, 3614–3622. [Google Scholar] [CrossRef]
  117. Godot, V.; Arock, M.; Garcia, G.; Capel, F.; Flys, C.; Dy, M.; Emilie, D.; Humbert, M. H4 histamine receptor mediates optimal migration of mast cell precursors to CXCL12. J. Allergy Clin. Immunol. 2007, 120, 827–834. [Google Scholar] [CrossRef]
  118. Weller, C.L.; Collington, S.J.; Hartnell, A.; Conroy, D.M.; Kaise, T.; Barker, J.E.; Wilson, M.S.; Taylor, G.W.; Jose, P.J.; Williams, T.J. Chemotactic action of prostaglandin E2 on mouse mast cells acting via the PGE2 receptor 3. Proc. Natl. Acad. Sci. USA 2007, 104, 11712–11717. [Google Scholar] [CrossRef] [Green Version]
  119. Nagasaka, A.; Matsue, H.; Matsushima, H.; Aoki, R.; Nakamura, Y.; Kambe, N.; Kon, S.; Uede, T.; Shimada, S. Osteopontin is produced by mast cells and affects IgE-mediated degranulation and migration of mast cells. Eur. J. Immunol. 2008, 38, 489–499. [Google Scholar] [CrossRef] [Green Version]
  120. Marquardt, D.L.; Gruber, H.E.; Wasserman, S.I. Adenosine release from stimulated mast cells. Proc. Natl. Acad. Sci. USA 1984, 81, 6192–6196. [Google Scholar] [CrossRef]
  121. Gottfried, E.; Kreutz, M.; Mackensen, A. Tumor metabolism as modulator of immune response and tumor progression. Semin. Cancer Biol. 2012, 22, 335–341. [Google Scholar] [CrossRef]
  122. Di Virgilio, F.; Sarti, A.C.; Falzoni, S.; De Marchi, E.; Adinolfi, E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer 2018, 18, 601–618. [Google Scholar] [CrossRef]
  123. Granata, F.; Frattini, A.; Loffredo, S.; Staiano, R.I.; Petraroli, A.; Ribatti, D.; Oslund, R.; Gelb, M.H.; Lambeau, G.; Marone, G.; et al. Production of vascular endothelial growth factors from human lung macrophages induced by group IIA and group X secreted phospholipases A2. J. Immunol. 2010, 184, 5232–5241. [Google Scholar] [CrossRef]
  124. Visciano, C.; Prevete, N.; Liotti, F.; Marone, G. Tumor-Associated Mast Cells in Thyroid Cancer. Int. J. Endocrinol. 2015, 2015, 705169. [Google Scholar] [CrossRef]
  125. Gulliksson, M.; Carvalho, R.F.; Ulleras, E.; Nilsson, G. Mast cell survival and mediator secretion in response to hypoxia. PLoS ONE 2010, 5, e12360. [Google Scholar] [CrossRef]
  126. Walczak-Drzewiecka, A.; Ratajewski, M.; Wagner, W.; Dastych, J. HIF-1alpha is up-regulated in activated mast cells by a process that involves calcineurin and NFAT. J. Immunol. 2008, 181, 1665–1672. [Google Scholar] [CrossRef]
  127. Redegeld, F.A.; van der Heijden, M.W.; Kool, M.; Heijdra, B.M.; Garssen, J.; Kraneveld, A.D.; Van Loveren, H.; Roholl, P.; Saito, T.; Verbeek, J.S.; et al. Immunoglobulin-free light chains elicit immediate hypersensitivity-like responses. Nat. Med. 2002, 8, 694–701. [Google Scholar] [CrossRef]
  128. Thio, M.; Groot Kormelink, T.; Fischer, M.J.; Blokhuis, B.R.; Nijkamp, F.P.; Redegeld, F.A. Antigen binding characteristics of immunoglobulin free light chains: Crosslinking by antigen is essential to induce allergic inflammation. PLoS ONE 2012, 7, e40986. [Google Scholar] [CrossRef]
  129. Lv, Y.P.; Peng, L.S.; Wang, Q.H.; Chen, N.; Teng, Y.S.; Wang, T.T.; Mao, F.Y.; Zhang, J.Y.; Cheng, P.; Liu, Y.G.; et al. Degranulation of mast cells induced by gastric cancer-derived adrenomedullin prompts gastric cancer progression. Cell Death Dis. 2018, 9, 1034. [Google Scholar] [CrossRef]
  130. Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar] [CrossRef]
  131. Yang, Z.; Zhang, B.; Li, D.; Lv, M.; Huang, C.; Shen, G.X.; Huang, B. Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model. PLoS ONE 2010, 5, e8922. [Google Scholar] [CrossRef]
  132. Cheon, E.C.; Khazaie, K.; Khan, M.W.; Strouch, M.J.; Krantz, S.B.; Phillips, J.; Blatner, N.R.; Hix, L.M.; Zhang, M.; Dennis, K.L.; et al. Mast cell 5-lipoxygenase activity promotes intestinal polyposis in APCDelta468 mice. Cancer Res. 2011, 71, 1627–1636. [Google Scholar] [CrossRef]
  133. Danelli, L.; Frossi, B.; Gri, G.; Mion, F.; Guarnotta, C.; Bongiovanni, L.; Tripodo, C.; Mariuzzi, L.; Marzinotto, S.; Rigoni, A.; et al. Mast cells boost myeloid-derived suppressor cell activity and contribute to the development of tumor-favoring microenvironment. Cancer Immunol. Res. 2015, 3, 85–95. [Google Scholar] [CrossRef]
  134. Saleem, S.J.; Martin, R.K.; Morales, J.K.; Sturgill, J.L.; Gibb, D.R.; Graham, L.; Bear, H.D.; Manjili, M.H.; Ryan, J.J.; Conrad, D.H. Cutting edge: Mast cells critically augment myeloid-derived suppressor cell activity. J. Immunol. 2012, 189, 511–515. [Google Scholar] [CrossRef]
  135. Zheng, W.; Aspelund, A.; Alitalo, K. Lymphangiogenic factors, mechanisms and applications. J. Clin. Investig. 2014, 124, 878–887. [Google Scholar] [CrossRef]
  136. Lee, S.J.; Park, C.; Lee, J.Y.; Kim, S.; Kwon, P.J.; Kim, W.; Jeon, Y.H.; Lee, E.; Yoon, Y.S. Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Sci Rep. 2015, 5, 11019. [Google Scholar] [CrossRef] [Green Version]
  137. Kim, H.; Kataru, R.P.; Koh, G.Y. Inflammation-associated lymphangiogenesis: A double-edged sword? J. Clin. Investig. 2014, 124, 936–942. [Google Scholar] [CrossRef]
  138. Rivera, L.B.; Bergers, G. Intertwined regulation of angiogenesis and immunity by myeloid cells. Trends Immunol. 2015, 36, 240–249. [Google Scholar] [CrossRef]
  139. Dieterich, L.C.; Detmar, M. Tumor lymphangiogenesis and new drug development. Adv Drug Deliv Rev. 2016, 99, 148–160. [Google Scholar] [CrossRef]
  140. Randolph, G.J.; Ivanov, S.; Zinselmeyer, B.H.; Scallan, J.P. The Lymphatic System: Integral Roles in Immunity. Annu. Rev. Immunol. 2017, 35, 31–52. [Google Scholar] [CrossRef]
  141. Zachary, I. Neuropilins: Role in signalling, angiogenesis and disease. Chem. Immunol. Allergy 2014, 99, 37–70. [Google Scholar]
  142. Simons, M.; Gordon, E.; Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 2016, 17, 611–625. [Google Scholar] [CrossRef]
  143. Tammela, T.; Saaristo, A.; Lohela, M.; Morisada, T.; Tornberg, J.; Norrmen, C.; Oike, Y.; Pajusola, K.; Thurston, G.; Suda, T.; et al. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 2005, 105, 4642–4648. [Google Scholar] [CrossRef] [Green Version]
  144. Karaman, S.; Leppanen, V.M.; Alitalo, K. Vascular endothelial growth factor signaling in development and disease. Development 2018, 145, dev151019. [Google Scholar] [CrossRef]
  145. Heinolainen, K.; Karaman, S.; D’Amico, G.; Tammela, T.; Sormunen, R.; Eklund, L.; Alitalo, K.; Zarkada, G. VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling. Circ. Res. 2017, 120, 1414–1425. [Google Scholar] [CrossRef]
  146. Senger, D.R.; Galli, S.J.; Dvorak, A.M.; Perruzzi, C.A.; Harvey, V.S.; Dvorak, H.F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983, 219, 983–985. [Google Scholar] [CrossRef]
  147. Loffredo, S.; Borriello, F.; Iannone, R.; Ferrara, A.L.; Galdiero, M.R.; Gigantino, V.; Esposito, P.; Varricchi, G.; Lambeau, G.; Cassatella, M.A.; et al. Group V Secreted Phospholipase A2 Induces the Release of Proangiogenic and Antiangiogenic Factors by Human Neutrophils. Front. Immunol. 2017, 8, 443. [Google Scholar] [CrossRef]
  148. Barleon, B.; Sozzani, S.; Zhou, D.; Weich, H.A.; Mantovani, A.; Marme, D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996, 87, 3336–3343. [Google Scholar]
  149. de Paulis, A.; Prevete, N.; Fiorentino, I.; Rossi, F.W.; Staibano, S.; Montuori, N.; Ragno, P.; Longobardi, A.; Liccardo, B.; Genovese, A.; et al. Expression and functions of the vascular endothelial growth factors and their receptors in human basophils. J. Immunol. 2006, 177, 7322–7331. [Google Scholar] [CrossRef]
  150. Staiano, R.I.; Loffredo, S.; Borriello, F.; Iannotti, F.A.; Piscitelli, F.; Orlando, P.; Secondo, A.; Granata, F.; Lepore, M.T.; Fiorelli, A.; et al. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors. J. Leukoc. Biol. 2016, 99, 531–540. [Google Scholar] [CrossRef]
  151. Bry, M.; Kivela, R.; Leppanen, V.M.; Alitalo, K. Vascular endothelial growth factor-B in physiology and disease. Physiol. Rev. 2014, 94, 779–794. [Google Scholar] [CrossRef]
  152. Clauss, M.; Weich, H.; Breier, G.; Knies, U.; Rockl, W.; Waltenberger, J.; Risau, W. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J. Biol. Chem. 1996, 271, 17629–17634. [Google Scholar] [CrossRef]
  153. Eklund, L.; Kangas, J.; Saharinen, P. Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems. Clin. Sci. 2017, 131, 87–103. [Google Scholar] [CrossRef]
  154. Eklund, L.; Saharinen, P. Angiopoietin signaling in the vasculature. Exp. Cell Res. 2013, 319, 1271–1280. [Google Scholar] [CrossRef]
  155. Bosisio, D.; Ronca, R.; Salvi, V.; Presta, M.; Sozzani, S. Dendritic cells in inflammatory angiogenesis and lymphangiogenesis. Curr. Opin. Immunol. 2018, 53, 180–186. [Google Scholar] [CrossRef]
  156. Bosisio, D.; Salvi, V.; Gagliostro, V.; Sozzani, S. Angiogenic and antiangiogenic chemokines. Chem. Immunol. Allergy 2014, 99, 89–104. [Google Scholar]
  157. Varricchi, G.; Granata, F.; Loffredo, S.; Genovese, A.; Marone, G. Angiogenesis and lymphangiogenesis in inflammatory skin disorders. J. Am. Acad. Dermatol. 2015, 73, 144–153. [Google Scholar] [CrossRef]
  158. Boesiger, J.; Tsai, M.; Maurer, M.; Yamaguchi, M.; Brown, L.F.; Claffey, K.P.; Dvorak, H.F.; Galli, S.J. Mast cells can secrete vascular permeability factor/ vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of fc epsilon receptor I expression. J. Exp. Med. 1998, 188, 1135–1145. [Google Scholar] [CrossRef]
  159. Abdel-Majid, R.M.; Marshall, J.S. Prostaglandin E2 induces degranulation-independent production of vascular endothelial growth factor by human mast cells. J. Immunol. 2004, 172, 1227–1236. [Google Scholar] [CrossRef]
  160. Theoharides, T.C.; Zhang, B.; Kempuraj, D.; Tagen, M.; Vasiadi, M.; Angelidou, A.; Alysandratos, K.D.; Kalogeromitros, D.; Asadi, S.; Stavrianeas, N.; et al. IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc. Natl. Acad. Sci. USA 2010, 107, 4448–4453. [Google Scholar] [CrossRef]
  161. Wroblewski, M.; Bauer, R.; Cubas Cordova, M.; Udonta, F.; Ben-Batalla, I.; Legler, K.; Hauser, C.; Egberts, J.; Janning, M.; Velthaus, J.; et al. Mast cells decrease efficacy of anti-angiogenic therapy by secreting matrix-degrading granzyme B. Nat. Commun. 2017, 8, 269. [Google Scholar] [CrossRef] [Green Version]
  162. Varricchi, G.; Galdiero, M.R.; Loffredo, S.; Lucarini, V.; Marone, G.; Mattei, F.; Schiavoni, G. Eosinophils: The unsung heroes in cancer? Oncoimmunology 2018, 7, e1393134. [Google Scholar] [CrossRef]
  163. Carretero, R.; Sektioglu, I.M.; Garbi, N.; Salgado, O.C.; Beckhove, P.; Hammerling, G.J. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells. Nat. Immunol. 2015, 16, 609–617. [Google Scholar] [CrossRef]
  164. Lucarini, V.; Ziccheddu, G.; Macchia, I.; La Sorsa, V.; Peschiaroli, F.; Buccione, C.; Sistigu, A.; Sanchez, M.; Andreone, S.; D’Urso, M.T.; et al. IL-33 restricts tumor growth and inhibits pulmonary metastasis in melanoma-bearing mice through eosinophils. Oncoimmunology 2017, 6, e1317420. [Google Scholar] [CrossRef] [Green Version]
  165. Meng, X.; Yu, X.; Dong, Q.; Xu, X.; Li, J.; Xu, Q.; Ma, J.; Zhou, C. Distribution of circulating follicular helper T cells and expression of interleukin-21 and chemokine C-X-C ligand 13 in gastric cancer. Oncol. Lett. 2018, 16, 3917–3922. [Google Scholar] [CrossRef]
  166. Afferni, C.; Buccione, C.; Andreone, S.; Galdiero, M.R.; Varricchi, G.; Marone, G.; Mattei, F.; Schiavoni, G. The Pleiotropic Immunomodulatory Functions of IL-33 and Its Implications in Tumor Immunity. Front. Immunol. 2018, 9, 2601. [Google Scholar] [CrossRef] [PubMed]
  167. Galdiero, M.R.; Varricchi, G.; Seaf, M.; Marone, G.; Levi-Schaffer, F. Bidirectional Mast Cell-Eosinophil Interactions in Inflammatory Disorders and Cancer. Front. Med. 2017, 4, 103. [Google Scholar] [CrossRef] [PubMed]
  168. Ammendola, M.; Sacco, R.; Donato, G.; Zuccala, V.; Russo, E.; Luposella, M.; Vescio, G.; Rizzuto, A.; Patruno, R.; De Sarro, G.; et al. Mast cell positivity to tryptase correlates with metastatic lymph nodes in gastrointestinal cancer patients treated surgically. Oncology 2013, 85, 111–116. [Google Scholar] [CrossRef]
  169. Ammendola, M.; Sacco, R.; Sammarco, G.; Donato, G.; Zuccala, V.; Romano, R.; Luposella, M.; Patruno, R.; Vallicelli, C.; Verdecchia, G.M.; et al. Mast Cells Positive to Tryptase and c-Kit Receptor Expressing Cells Correlates with Angiogenesis in Gastric Cancer Patients Surgically Treated. Gastroenterol. Res. Pract. 2013, 2013, 703163. [Google Scholar] [CrossRef] [PubMed]
  170. Lv, Y.; Zhao, Y.; Wang, X.; Chen, N.; Mao, F.; Teng, Y.; Wang, T.; Peng, L.; Zhang, J.; Cheng, P.; et al. Increased intratumoral mast cells foster immune suppression and gastric cancer progression through TNF-alpha-PD-L1 pathway. J. Immunother. Cancer 2019, 7, 54. [Google Scholar] [CrossRef] [PubMed]
  171. Wang, J.T.; Li, H.; Zhang, H.; Chen, Y.F.; Cao, Y.F.; Li, R.C.; Lin, C.; Wei, Y.C.; Xiang, X.N.; Fang, H.J.; et al. Intratumoral IL17-producing cells infiltration correlate with antitumor immune contexture and improved response to adjuvant chemotherapy in gastric cancer. Ann. Oncol. 2019, 30, 266–273. [Google Scholar] [CrossRef] [PubMed]
  172. Chang, D.Z.; Ma, Y.; Ji, B.; Wang, H.; Deng, D.; Liu, Y.; Abbruzzese, J.L.; Liu, Y.J.; Logsdon, C.D.; Hwu, P. Mast cells in tumor microenvironment promotes the in vivo growth of pancreatic ductal adenocarcinoma. Clin. Cancer Res. 2011, 17, 7015–7023. [Google Scholar] [CrossRef] [PubMed]
  173. Esposito, I.; Menicagli, M.; Funel, N.; Bergmann, F.; Boggi, U.; Mosca, F.; Bevilacqua, G.; Campani, D. Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J. Clin. Pathol. 2004, 57, 630–636. [Google Scholar] [CrossRef] [Green Version]
  174. Soucek, L.; Buggy, J.J.; Kortlever, R.; Adimoolam, S.; Monclus, H.A.; Allende, M.T.; Swigart, L.B.; Evan, G.I. Modeling pharmacological inhibition of mast cell degranulation as a therapy for insulinoma. Neoplasia 2011, 13, 1093–1100. [Google Scholar] [CrossRef]
  175. Soucek, L.; Lawlor, E.R.; Soto, D.; Shchors, K.; Swigart, L.B.; Evan, G.I. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat. Med. 2007, 13, 1211–1218. [Google Scholar] [CrossRef]
  176. Strouch, M.J.; Cheon, E.C.; Salabat, M.R.; Krantz, S.B.; Gounaris, E.; Melstrom, L.G.; Dangi-Garimella, S.; Wang, E.; Munshi, H.G.; Khazaie, K.; et al. Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin. Cancer Res. 2010, 16, 2257–2265. [Google Scholar] [CrossRef] [Green Version]
  177. Rao, Q.; Chen, Y.; Yeh, C.R.; Ding, J.; Li, L.; Chang, C.; Yeh, S. Recruited mast cells in the tumor microenvironment enhance bladder cancer metastasis via modulation of ERbeta/CCL2/CCR2 EMT/MMP9 signals. Oncotarget 2016, 7, 7842–7855. [Google Scholar] [CrossRef]
  178. Suzuki, S.; Ichikawa, Y.; Nakagawa, K.; Kumamoto, T.; Mori, R.; Matsuyama, R.; Takeda, K.; Ota, M.; Tanaka, K.; Tamura, T.; et al. High infiltration of mast cells positive to tryptase predicts worse outcome following resection of colorectal liver metastases. BMC Cancer 2015, 15, 840. [Google Scholar] [CrossRef]
  179. Ammendola, M.; Sacco, R.; Sammarco, G.; Donato, G.; Montemurro, S.; Ruggieri, E.; Patruno, R.; Marech, I.; Cariello, M.; Vacca, A.; et al. Correlation between serum tryptase, mast cells positive to tryptase and microvascular density in colo-rectal cancer patients: Possible biological-clinical significance. PLoS ONE 2014, 9, e99512. [Google Scholar] [CrossRef]
  180. Malfettone, A.; Silvestris, N.; Saponaro, C.; Ranieri, G.; Russo, A.; Caruso, S.; Popescu, O.; Simone, G.; Paradiso, A.; Mangia, A. High density of tryptase-positive mast cells in human colorectal cancer: A poor prognostic factor related to protease-activated receptor 2 expression. J. Cell. Mol. Med. 2013, 17, 1025–1037. [Google Scholar] [CrossRef]
  181. Gulubova, M.; Vlaykova, T. Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. J. Gastroenterol. Hepatol. 2009, 24, 1265–1275. [Google Scholar] [CrossRef]
  182. Tu, J.F.; Pan, H.Y.; Ying, X.H.; Lou, J.; Ji, J.S.; Zou, H. Mast Cells Comprise the Major of Interleukin 17-Producing Cells and Predict a Poor Prognosis in Hepatocellular Carcinoma. Medicine 2016, 95, e3220. [Google Scholar] [CrossRef] [Green Version]
  183. Ammendola, M.; Sacco, R.; Sammarco, G.; Piardi, T.; Zuccala, V.; Patruno, R.; Zullo, A.; Zizzo, N.; Nardo, B.; Marech, I.; et al. Mast cells positive to tryptase, endothelial cells positive to protease-activated receptor-2 and microvascular density correlate among themselves in hepatocellular carcinoma patients who have undergone surgery. Oncol. Targets Ther. 2016, 9, 4465–4471. [Google Scholar]
  184. Ju, M.J.; Qiu, S.J.; Gao, Q.; Fan, J.; Cai, M.Y.; Li, Y.W.; Tang, Z.Y. Combination of peritumoral mast cells and T-regulatory cells predicts prognosis of hepatocellular carcinoma. Cancer Sci. 2009, 100, 1267–1274. [Google Scholar] [CrossRef] [Green Version]
  185. Nakayama, T.; Yao, L.; Tosato, G. Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J. Clin. Investig. 2004, 114, 1317–1325. [Google Scholar] [CrossRef]
  186. Amini, R.M.; Aaltonen, K.; Nevanlinna, H.; Carvalho, R.; Salonen, L.; Heikkila, P.; Blomqvist, C. Mast cells and eosinophils in invasive breast carcinoma. BMC Cancer 2007, 7, 165. [Google Scholar] [CrossRef]
  187. Dabiri, S.; Huntsman, D.; Makretsov, N.; Cheang, M.; Gilks, B.; Bajdik, C.; Gelmon, K.; Chia, S.; Hayes, M. The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Mod. Pathol. 2004, 17, 690–695. [Google Scholar] [CrossRef] [Green Version]
  188. Rajput, A.B.; Turbin, D.A.; Cheang, M.C.; Voduc, D.K.; Leung, S.; Gelmon, K.A.; Gilks, C.B.; Huntsman, D.G. Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: A study of 4,444 cases. Breast Cancer Res. Treat. 2008, 107, 249–257. [Google Scholar] [CrossRef]
  189. Pittoni, P.; Colombo, M.P. The dark side of mast cell-targeted therapy in prostate cancer. Cancer Res. 2012, 72, 831–835. [Google Scholar] [CrossRef]
  190. Zhao, S.G.; Lehrer, J.; Chang, S.L.; Das, R.; Erho, N.; Liu, Y.; Sjostrom, M.; Den, R.B.; Freedland, S.J.; Klein, E.A.; et al. The Immune Landscape of Prostate Cancer and Nomination of PD-L2 as a Potential Therapeutic Target. J. Natl. Cancer Inst. 2019, 111, 301–310. [Google Scholar] [CrossRef]
  191. Carlini, M.J.; Dalurzo, M.C.; Lastiri, J.M.; Smith, D.E.; Vasallo, B.C.; Puricelli, L.I.; Lauria de Cidre, L.S. Mast cell phenotypes and microvessels in non-small cell lung cancer and its prognostic significance. Hum. Pathol. 2010, 41, 697–705. [Google Scholar] [CrossRef]
  192. Shikotra, A.; Ohri, C.M.; Green, R.H.; Waller, D.A.; Bradding, P. Mast cell phenotype, TNFalpha expression and degranulation status in non-small cell lung cancer. Sci. Rep. 2016, 6, 38352. [Google Scholar] [CrossRef]
  193. Welsh, T.J.; Green, R.H.; Richardson, D.; Waller, D.A.; O’Byrne, K.J.; Bradding, P. Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J. Clin. Oncol. 2005, 23, 8959–8967. [Google Scholar] [CrossRef]
  194. Cai, S.W.; Yang, S.Z.; Gao, J.; Pan, K.; Chen, J.Y.; Wang, Y.L.; Wei, L.X.; Dong, J.H. Prognostic significance of mast cell count following curative resection for pancreatic ductal adenocarcinoma. Surgery 2011, 149, 576–584. [Google Scholar] [CrossRef]
  195. Holzel, M.; Landsberg, J.; Glodde, N.; Bald, T.; Rogava, M.; Riesenberg, S.; Becker, A.; Jonsson, G.; Tuting, T. A Preclinical Model of Malignant Peripheral Nerve Sheath Tumor-like Melanoma Is Characterized by Infiltrating Mast Cells. Cancer Res. 2016, 76, 251–263. [Google Scholar] [CrossRef]
  196. Caruso, R.A.; Fedele, F.; Rigoli, L.; Inferrera, C. Mast cell interaction with tumor cells in small early gastric cancer: Ultrastructural observations. Ultrastruct. Pathol. 1997, 21, 173–181. [Google Scholar] [CrossRef]
  197. Bruni, C.; Caschera, F. Quantità e distribuzione delle Mastzellen nel carcinoma dello stomaco-Ricerca sistematica. Lav. Anat. Pat. Perugia 1952, 12, 5–20. [Google Scholar]
  198. Yano, H.; Kinuta, M.; Tateishi, H.; Nakano, Y.; Matsui, S.; Monden, T.; Okamura, J.; Sakai, M.; Okamoto, S. Mast cell infiltration around gastric cancer cells correlates with tumor angiogenesis and metastasis. Gastric Cancer 1999, 2, 26–32. [Google Scholar] [CrossRef]
  199. Kondo, K.; Muramatsu, M.; Okamoto, Y.; Jin, D.; Takai, S.; Tanigawa, N.; Miyazaki, M. Expression of chymase-positive cells in gastric cancer and its correlation with the angiogenesis. J. Surg. Oncol. 2006, 93, 36–43, discussion 42-3. [Google Scholar] [CrossRef]
  200. Nakajima, S.; Bamba, N.; Hattori, T. Histological aspects and role of mast cells in Helicobacter pylori-infected gastritis. Aliment. Pharmacol. Ther. 2004, 20 (Suppl. 1), 165–170. [Google Scholar] [CrossRef] [Green Version]
  201. Moorchung, N.; Srivastava, A.N.; Gupta, N.K.; Malaviya, A.K.; Achyut, B.R.; Mittal, B. The role of mast cells and eosinophils in chronic gastritis. Clin. Exp. Med. 2006, 6, 107–114. [Google Scholar] [CrossRef]
  202. de Paulis, A.; Prevete, N.; Rossi, F.W.; Rivellese, F.; Salerno, F.; Delfino, G.; Liccardo, B.; Avilla, E.; Montuori, N.; Mascolo, M.; et al. Helicobacter pylori Hp(2-20) promotes migration and proliferation of gastric epithelial cells by interacting with formyl peptide receptors in vitro and accelerates gastric mucosal healing in vivo. J. Immunol. 2009, 183, 3761–3769. [Google Scholar] [CrossRef]
  203. Piazuelo, M.B.; Camargo, M.C.; Mera, R.M.; Delgado, A.G.; Peek, R.M., Jr.; Correa, H.; Schneider, B.G.; Sicinschi, L.A.; Mora, Y.; Bravo, L.E.; et al. Eosinophils and mast cells in chronic gastritis: Possible implications in carcinogenesis. Hum. Pathol. 2008, 39, 1360–1369. [Google Scholar] [CrossRef] [Green Version]
  204. Ribatti, D.; Guidolin, D.; Marzullo, A.; Nico, B.; Annese, T.; Benagiano, V.; Crivellato, E. Mast cells and angiogenesis in gastric carcinoma. Int. J. Exp. Pathol. 2010, 91, 350–356. [Google Scholar] [CrossRef]
  205. Zhao, Y.; Wu, K.; Cai, K.; Zhai, R.; Tao, K.; Wang, G.; Wang, J. Increased numbers of gastric-infiltrating mast cells and regulatory T cells are associated with tumor stage in gastric adenocarcinoma patients. Oncol. Lett. 2012, 4, 755–758. [Google Scholar] [CrossRef] [Green Version]
  206. Blair, R.J.; Meng, H.; Marchese, M.J.; Ren, S.; Schwartz, L.B.; Tonnesen, M.G.; Gruber, B.L. Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. J. Clin. Investig. 1997, 99, 2691–2700. [Google Scholar] [CrossRef]
  207. Ammendola, M.; Sacco, R.; Vescio, G.; Zuccala, V.; Luposella, M.; Patruno, R.; Zizzo, N.; Gadaleta, C.; Marech, I.; Ruggieri, R.; et al. Tryptase mast cell density, protease-activated receptor-2 microvascular density and classical microvascular density evaluation in gastric cancer patients undergoing surgery: Possible translational relevance. Ther. Adv. Gastroenterol. 2017, 10, 353–360. [Google Scholar] [CrossRef]
  208. Ammendola, M.; Sacco, R.; Sammarco, G.; Luposella, M.; Patruno, R.; Gadaleta, C.D.; Sarro, G.D.; Ranieri, G. Mast Cell-Targeted Strategies in Cancer Therapy. Transfus. Med. Hemother. 2016, 43, 109–113. [Google Scholar] [CrossRef] [Green Version]
  209. Ammendola, M.; Marech, I.; Sammarco, G.; Zuccala, V.; Luposella, M.; Zizzo, N.; Patruno, R.; Crovace, A.; Ruggieri, E.; Zito, A.F.; et al. Infiltrating mast cells correlate with angiogenesis in bone metastases from gastric cancer patients. Int. J. Mol. Sci. 2015, 16, 3237–3250. [Google Scholar] [CrossRef]
  210. Leporini, C.; Ammendola, M.; Marech, I.; Sammarco, G.; Sacco, R.; Gadaleta, C.D.; Oakley, C.; Russo, E.; De Sarro, G.; Ranieri, G. Targeting mast cells in gastric cancer with special reference to bone metastases. World J. Gastroenterol. 2015, 21, 10493–10501. [Google Scholar] [CrossRef]
  211. Gaffen, S.L.; Jain, R.; Garg, A.V.; Cua, D.J. The IL-23-IL-17 immune axis: From mechanisms to therapeutic testing. Nat. Rev. Immunol. 2014, 14, 585–600. [Google Scholar] [CrossRef]
  212. Yamada, Y.; Saito, H.; Ikeguchi, M. Prevalence and clinical relevance of Th17 cells in patients with gastric cancer. J. Surg. Res. 2012, 178, 685–691. [Google Scholar] [CrossRef]
  213. Zhuang, Y.; Peng, L.S.; Zhao, Y.L.; Shi, Y.; Mao, X.H.; Chen, W.; Pang, K.C.; Liu, X.F.; Liu, T.; Zhang, J.Y.; et al. CD8(+) T cells that produce interleukin-17 regulate myeloid-derived suppressor cells and are associated with survival time of patients with gastric cancer. Gastroenterology 2012, 143, 951–962.e8. [Google Scholar] [CrossRef]
  214. Hueber, A.J.; Asquith, D.L.; Miller, A.M.; Reilly, J.; Kerr, S.; Leipe, J.; Melendez, A.J.; McInnes, I.B. Mast cells express IL-17A in rheumatoid arthritis synovium. J. Immunol. 2010, 184, 3336–3340. [Google Scholar] [CrossRef] [PubMed]
  215. Lin, A.M.; Rubin, C.J.; Khandpur, R.; Wang, J.Y.; Riblett, M.; Yalavarthi, S.; Villanueva, E.C.; Shah, P.; Kaplan, M.J.; Bruce, A.T. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J. Immunol. 2011, 187, 490–500. [Google Scholar] [CrossRef] [PubMed]
  216. Taams, L.S.; Steel, K.J.A.; Srenathan, U.; Burns, L.A.; Kirkham, B.W. IL-17 in the immunopathogenesis of spondyloarthritis. Nat. Rev. Rheumatol. 2018, 14, 453–466. [Google Scholar] [CrossRef]
  217. Suurmond, J.; Habets, K.L.; Dorjee, A.L.; Huizinga, T.W.; Toes, R.E. Expansion of Th17 Cells by Human Mast Cells Is Driven by Inflammasome-Independent IL-1beta. J. Immunol. 2016, 197, 4473–4481. [Google Scholar] [CrossRef] [PubMed]
  218. Liu, X.; Jin, H.; Zhang, G.; Lin, X.; Chen, C.; Sun, J.; Zhang, Y.; Zhang, Q.; Yu, J. Intratumor IL-17-positive mast cells are the major source of the IL-17 that is predictive of survival in gastric cancer patients. PLoS ONE 2014, 9, e106834. [Google Scholar] [CrossRef] [PubMed]
  219. Ammendola, M.; Sacco, R.; Zuccala, V.; Luposella, M.; Patruno, R.; Gadaleta, P.; Zizzo, N.; Gadaleta, C.D.; De Sarro, G.; Sammarco, G.; et al. Mast Cells Density Positive to Tryptase Correlate with Microvascular Density in both Primary Gastric Cancer Tissue and Loco-Regional Lymph Node Metastases from Patients That Have Undergone Radical Surgery. Int. J. Mol. Sci. 2016, 17, 1905. [Google Scholar] [CrossRef]
  220. Varricchi, G.; Loffredo, S.; Borriello, F.; Pecoraro, A.; Rivellese, F.; Genovese, A.; Marone, G.; Spadaro, G. Superantigenic Activation of Human Cardiac Mast Cells. Int. J. Mol. Sci. 2019, 20, 1828. [Google Scholar] [CrossRef]
  221. Varricchi, G.; Pecoraro, A.; Loffredo, S.; Poto, R.; Rivellese, F.; Genovese, A.; Marone, G.; Spadaro, G. Heterogeneity of human mast cells with respect to MRGPRX2 receptor expression and function. Front. Cell. Neurosci. 2019, in press. [Google Scholar]
  222. Guidolin, D.; Ruggieri, S.; Annese, T.; Tortorella, C.; Marzullo, A.; Ribatti, D. Spatial distribution of mast cells around vessels and glands in human gastric carcinoma. Clin. Exp. Med. 2017, 17, 531–539. [Google Scholar] [CrossRef]
  223. Sammarco, G.; Gadaleta, C.D.; Zuccala, V.; Albayrak, E.; Patruno, R.; Milella, P.; Sacco, R.; Ammendola, M.; Ranieri, G. Tumor-Associated Macrophages and Mast Cells Positive to Tryptase Are Correlated with Angiogenesis in Surgically-Treated Gastric Cancer Patients. Int. J. Mol. Sci. 2018, 19, 1176. [Google Scholar] [CrossRef]
  224. Nakae, S.; Suto, H.; Iikura, M.; Kakurai, M.; Sedgwick, J.D.; Tsai, M.; Galli, S.J. Mast cells enhance T cell activation: Importance of mast cell costimulatory molecules and secreted TNF. J. Immunol. 2006, 176, 2238–2248. [Google Scholar] [CrossRef]
  225. Rabenhorst, A.; Leja, S.; Schwaab, J.; Gehring, M.; Forster, A.; Arock, M.; Reiter, A.; Raap, U.; Hartmann, K. Expression of programmed cell death ligand-1 in mastocytosis correlates with disease severity. J. Allergy Clin. Immunol. 2016, 137, 314–318. [Google Scholar] [CrossRef]
  226. Lavin, Y.; Kobayashi, S.; Leader, A.; Amir, E.D.; Elefant, N.; Bigenwald, C.; Remark, R.; Sweeney, R.; Becker, C.D.; Levine, J.H.; et al. Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses. Cell 2017, 169, 750–765. [Google Scholar] [CrossRef]
  227. Varricchi, G.; Galdiero, M.R.; Tocchetti, C.G. Cardiac Toxicity of Immune Checkpoint Inhibitors: Cardio-Oncology Meets Immunology. Circulation 2017, 136, 1989–1992. [Google Scholar] [CrossRef]
  228. Tocchetti, C.G.; Galdiero, M.R.; Varricchi, G. Cardiac Toxicity in Patients Treated With Immune Checkpoint Inhibitors: It Is Now Time for Cardio-Immuno-Oncology. J. Am. Coll. Cardiol. 2018, 71, 1765–1767. [Google Scholar] [CrossRef]
  229. Seo, A.N.; Kang, B.W.; Kwon, O.K.; Park, K.B.; Lee, S.S.; Chung, H.Y.; Yu, W.; Bae, H.I.; Jeon, S.W.; Kang, H.; et al. Intratumoural PD-L1 expression is associated with worse survival of patients with Epstein-Barr virus-associated gastric cancer. Br. J. Cancer 2017, 117, 1753–1760. [Google Scholar] [CrossRef]
  230. De Rosa, S.; Sahnane, N.; Tibiletti, M.G.; Magnoli, F.; Vanoli, A.; Sessa, F.; Chiaravalli, A.M. EBV(+) and MSI Gastric Cancers Harbor High PD-L1/PD-1 Expression and High CD8(+) Intratumoral Lymphocytes. Cancers 2018, 10, 102. [Google Scholar] [CrossRef]
  231. Ammendola, M.; Leporini, C.; Marech, I.; Gadaleta, C.D.; Scognamillo, G.; Sacco, R.; Sammarco, G.; De Sarro, G.; Russo, E.; Ranieri, G. Targeting mast cells tryptase in tumor microenvironment: A potential antiangiogenetic strategy. Biomed. Res. Int. 2014, 2014, 154702. [Google Scholar] [CrossRef]
  232. Yu, J.; Zhang, Y.; Leung, L.H.; Liu, L.; Yang, F.; Yao, X. Efficacy and safety of angiogenesis inhibitors in advanced gastric cancer: A systematic review and meta-analysis. J. Hematol. Oncol. 2016, 9, 111. [Google Scholar] [CrossRef]
  233. Chan, D.L.; Sjoquist, K.M.; Goldstein, D.; Price, T.J.; Martin, A.J.; Bang, Y.J.; Kang, Y.K.; Pavlakis, N. The effect of anti-angiogenic agents on overall survival in metastatic oesophago-gastric cancer: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0172307. [Google Scholar] [CrossRef] [PubMed]
  234. Lotfi-Emran, S.; Ward, B.R.; Le, Q.T.; Pozez, A.L.; Manjili, M.H.; Woodfolk, J.A.; Schwartz, L.B. Human mast cells present antigen to autologous CD4(+) T cells. J. Allergy Clin. Immunol. 2018, 141, 311–321. [Google Scholar] [CrossRef]
  235. Kritikou, E.; van der Heijden, T.; Swart, M.; van Duijn, J.; Slutter, B.; Wezel, A.; Smeets, H.J.; Maffia, P.; Kuiper, J.; Bot, I. Hypercholesterolemia Induces a Mast Cell-CD4(+) T Cell Interaction in Atherosclerosis. J. Immunol. 2019, 202, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
  236. Zaidi, N.; Jaffee, E.M. Immunotherapy transforms cancer treatment. J. Clin. Investig. 2019, 129, 46–47. [Google Scholar] [CrossRef]
  237. Wu, C.; Zhu, Y.; Jiang, J.; Zhao, J.; Zhang, X.G.; Xu, N. Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem. 2006, 108, 19–24. [Google Scholar] [CrossRef] [PubMed]
  238. Derks, S.; Liao, X.; Chiaravalli, A.M.; Xu, X.; Camargo, M.C.; Solcia, E.; Sessa, F.; Fleitas, T.; Freeman, G.J.; Rodig, S.J.; et al. Abundant PD-L1 expression in Epstein-Barr Virus-infected gastric cancers. Oncotarget 2016, 7, 32925–32932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  239. Galli, S.J.; Borregaard, N.; Wynn, T.A. Phenotypic and functional plasticity of cells of innate immunity: Macrophages, mast cells and neutrophils. Nat. Immunol. 2011, 12, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
  240. Schiavoni, G.; Gabriele, L.; Mattei, F. The tumor microenvironment: A pitch for multiple players. Front. Oncol. 2013, 3, 90. [Google Scholar] [CrossRef] [PubMed]
  241. Valkenburg, K.C.; de Groot, A.E.; Pienta, K.J. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 2018, 15, 366–381. [Google Scholar] [CrossRef]
Figure 1. Representation of the immune landscape of human gastric cancer. The immune network in gastric cancer is a complex and dynamic system characterized by multiple interactions between a wide spectrum of immune cells, their mediators and tumour cells. Tumour-associated macrophages (TAM), M2 macrophages, tumour-associated mast cells, basophils, monocytes, polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs), monocyte-derived suppressor cells (M-MDSCs), Tregs, Th2 cells, tumour-associated neutrophils (TAN), immature DCs (iDCs), Th17 cells and their mediators play protumorigenic roles. M1 macrophages, cytotoxic CD8+ T cells, NK cells, Th1 cells, mature DCs (mDCs) and their mediators play an anti-tumorigenic role in gastric cancer. VEGF-A and CXCL8 produced by tumour cells can activate tumour angiogenesis. Mast cells and macrophages are major producers of lymphangiogenic factors (VEGF-C and VEGF-D). The anti-tumorigenic role of Th9 cells, type I NKT cells and γδ T cells (grey and dashed lines) have been demonstrated in several other human cancers or are under investigation in gastric cancer. There is increasing evidence that eosinophils play an anti-tumorigenic role in different cancers [162,163,164]. The protumorigenic role of circulating Tfh cells [165] and of type II NKT cells has been preliminarily shown in gastric cancer or in several other human tumours, respectively (grey and dashed lines).
Figure 1. Representation of the immune landscape of human gastric cancer. The immune network in gastric cancer is a complex and dynamic system characterized by multiple interactions between a wide spectrum of immune cells, their mediators and tumour cells. Tumour-associated macrophages (TAM), M2 macrophages, tumour-associated mast cells, basophils, monocytes, polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs), monocyte-derived suppressor cells (M-MDSCs), Tregs, Th2 cells, tumour-associated neutrophils (TAN), immature DCs (iDCs), Th17 cells and their mediators play protumorigenic roles. M1 macrophages, cytotoxic CD8+ T cells, NK cells, Th1 cells, mature DCs (mDCs) and their mediators play an anti-tumorigenic role in gastric cancer. VEGF-A and CXCL8 produced by tumour cells can activate tumour angiogenesis. Mast cells and macrophages are major producers of lymphangiogenic factors (VEGF-C and VEGF-D). The anti-tumorigenic role of Th9 cells, type I NKT cells and γδ T cells (grey and dashed lines) have been demonstrated in several other human cancers or are under investigation in gastric cancer. There is increasing evidence that eosinophils play an anti-tumorigenic role in different cancers [162,163,164]. The protumorigenic role of circulating Tfh cells [165] and of type II NKT cells has been preliminarily shown in gastric cancer or in several other human tumours, respectively (grey and dashed lines).
Ijms 20 02106 g001
Figure 2. (A) Primary gastric cancer tissue immunostained with an anti-tryptase antibody demonstrates the presence of several mast cells in red (single arrow). Big arrow indicates a blood vessel with a red blood cell in its lumen (40 ×). (B) Metastatic lymph node from primary gastric cancer immunostained with an anti-tryptase antibody. Single arrows indicate red stained mast cells; the big arrow indicates a lymphocyte and the double arrow indicates a blood vessel (40 ×). Reprinted from Ammendola et al. (Int. J. Mol. Sci. 17: E1905, 2016). Bars: A and B = 100 μm.
Figure 2. (A) Primary gastric cancer tissue immunostained with an anti-tryptase antibody demonstrates the presence of several mast cells in red (single arrow). Big arrow indicates a blood vessel with a red blood cell in its lumen (40 ×). (B) Metastatic lymph node from primary gastric cancer immunostained with an anti-tryptase antibody. Single arrows indicate red stained mast cells; the big arrow indicates a lymphocyte and the double arrow indicates a blood vessel (40 ×). Reprinted from Ammendola et al. (Int. J. Mol. Sci. 17: E1905, 2016). Bars: A and B = 100 μm.
Ijms 20 02106 g002

Share and Cite

MDPI and ACS Style

Sammarco, G.; Varricchi, G.; Ferraro, V.; Ammendola, M.; De Fazio, M.; Altomare, D.F.; Luposella, M.; Maltese, L.; Currò, G.; Marone, G.; et al. Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. Int. J. Mol. Sci. 2019, 20, 2106. https://doi.org/10.3390/ijms20092106

AMA Style

Sammarco G, Varricchi G, Ferraro V, Ammendola M, De Fazio M, Altomare DF, Luposella M, Maltese L, Currò G, Marone G, et al. Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. International Journal of Molecular Sciences. 2019; 20(9):2106. https://doi.org/10.3390/ijms20092106

Chicago/Turabian Style

Sammarco, Giuseppe, Gilda Varricchi, Valentina Ferraro, Michele Ammendola, Michele De Fazio, Donato Francesco Altomare, Maria Luposella, Lorenza Maltese, Giuseppe Currò, Gianni Marone, and et al. 2019. "Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer" International Journal of Molecular Sciences 20, no. 9: 2106. https://doi.org/10.3390/ijms20092106

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop