
International Journal of Mathematical, Engineering and Management Sciences

Vol. 8, No. 2, 213-229, 2023

https://doi.org/10.33889/IJMEMS.2023.8.2.013

213 | https://www.ijmems.in

Resource Allocation Modeling Framework to Refactor Software Design

Smells

Priyanka Gupta

Department of Operational Research,

University of Delhi, Delhi-110007, India.

E-mail: pgupta1@or.du.ac.in

Adarsh Anand
Department of Operational Research,

University of Delhi, Delhi-110007, India.

Corresponding author: adarsh.anand86@gmail.com

Mohamed Arezki Mellal
LMSS, Faculty of Technology,

M'Hamed Bougara University, Boumerdes, 35000, Algeria.

E-mail: mellal.mohamed@univ-boumerdes.dz

(Received on August 02, 2022; Accepted on October 24, 2022)

Abstract

The domain to study design flaws in the software environment has created enough opportunity for the researchers. These design

flaws i.e., code smells, were seen hindering the quality aspects of the software in many ways. Once detected, the segment of the

software which was found to be infected with such a flaw has to be passed through some refactoring steps in order to remove it.

To know about their working phenomenon in a better way, authors have innovatively talked about the smell detection mechanism

using the NHPP modeling framework. Further the authors have also chosen to investigate about the amount of resources/efforts

which should be allotted to various code smell categories. The authors have developed an optimization problem for the said

purpose which is being validated on the real-life smell data set belonging to an open-source software system. The obtained results

are in acceptable range and are justifying the applicability of the model.

Keywords- Code smells, NHPP modeling framework, Refactoring process, Resource allocation optimization problem.

1. Introduction
Coined by Kent Beck, the term “SOFTWARE CODE SMELL” has gained (Fowler, 2018) worldwide

fame for its involvement in the perceived deficiencies related to design flaws existing in the software

system. These smells were found affecting the software’s development process, artifacts or even the

involved individuals who are using the software. There can be a case when the existence of these design

flaws deliberately deteriorates the software’s quality. This relation between the smells and the quality

attributes of the software makes it more important for the researchers to study these concepts and explore

more about their existing cause and effect relationship.

Before going into the details about this concept, it’s necessary to understand the route by which they are

introduced in the software system. It could be because of bad implementation and design choices for the

system, absence of skilled code-developers, frequent software evolution, bad human resource planning

and many more as described by Martini et al. (2014). Apart from these factors, priority given to

enhancement in the feature set of the software instead of maintaining the quality standards has been found

to be one of the major reasons behind the occurrence of these smells (Lavallee and Robillard, 2015).

mailto:pgupta1@or.du.ac.in
mailto:adarsh.anand86@gmail.com
mailto:mellal.mohamed@univ-boumerdes.dz

Gupta et al.: Resource Allocation Modeling Framework to Refactor Software Design …

214 | Vol. 8, No. 2, 2023

Their existence in the system was seen hindering the process to maintain and evolve the software around

its functional capabilities. They are the representatives of the deeper design issue lying undetected in the

software (da Silva Sousa, 2016). It may be said that they are an indication for the existence of suboptimal

or a poor solution (Khan and El-Attar, 2016) or even the violation of the recommended code writing

practices (Suryanarayana et al., 2014). All these above mentioned attributes corresponds to the

characteristics which helps in defining code smells. These described characteristics of code smells play a

helpful hand in detecting smells in the software even when they are not tagged as smells. This

comprehensive and evolving understanding about the classification and characteristics of smell

strengthens the basic understanding about the presented concept.

These smells generally can have adverse effects on the working behaviour of the software. The

relationship between software quality and the existing smells is also not hidden from anyone. The

existence of smell has a multi-fold impact on the various sub-attributes of software quality namely

maintainability (Bavota et al., 2012), reliability, testability (Saban´e et al., 2013), effort or cost applied,

performance, productivity (Hecht et al., 2016) and even on reliability (Jaafar et al., 2013), which is the

most influential attribute of software quality (Gupta et al., 2021; Verma et al., 2018). Moreover, these

smells were seen to be studied under the several existing dimensions. One of them is on the basis of their

effects on the software development (Mantyla et al., 2003) and other include the violation of code-

development fundamentals (Ganesh et al., 2013). Apart from these, code smells can also be classified on

the basis of granularity (Karwin, 2010) andartificat based approach (Moha et al., 2009). Further, Zhang et

al. (2011) have emphasized on the fact that the repercussion of smells is not studied well.

Since the inception of this idea of code smells, they have been repeatedly studied my many researchers

around the globe. All the research professionals along with the software organizations have tried their best

to identify the catalog of these smells. For the said purpose, they have enthusiastically discovered an

extensive taxonomy of smell detecting techniques. Some of them are software metrics based tools

(Marinescu, 2005), heuristics based proposals (Moha et al., 2009), history based models (Palomba et al.,

2014) or even the most widely used machine learning based algorithms (Maiga et al., 2012). Apart from

them, literature is flooded with the proposals who have talked about various smell detecting tools.

Fernandes et al. (2016) have reviewed about 84 such algorithms which play an important role in smell

detection process. Researchers have also presented an approach which focused on the challenges faced by

researchers while developing a smell detection technique (Rasool and Arshad, 2015).

Further, all these smell detection algorithms are nothing but the application of a tool under the concerned

area. According to the literature survey, this area lacks models to justify with the detection phenomenon

mathematically. Keeping eye on this, the authors have tried to address this research gap. They have drawn

an analogy from fault detection phenomenon of software reliability (Singh et al., 2017) and have assumed

that the mean value function corresponding to the count by which smells are being refactored in the

software follows a Non- Homogeneous Poisson Process (NHPP). More justification and the utility of this

concept are provided in the later parts of the article.

Moreover, it should be noted that, the distinct detection algorithms described above have helped the

management and the researchers to locate several existing smells from the software system. These various

smell dimensions differ from each other by the way they got introduced in the software system; their

defining characteristics; in the manner they will impact the software system and many more (Wake,

2003). While going on with the literature survey, it was identified that there exist several domains and

their corresponding focus area, to have some insights about the smells and study their basic

characteristics. Further, smell’s detection phenomenon has successfully related themselves with the

Gupta et al.: Resource Allocation Modeling Framework to Refactor Software Design …

215 | Vol. 8, No. 2, 2023

identified quality issue in the software code. From them, the authors have identified 14 such types/

categories which were sufficient enough to talk about smells in all aspects (Sharma and Spinellis, 2018).

Some of them are smells related to architecture, design, usability, implementation, performance of the

software system and many more. Since the motive of the proposal is to have more insights about the

functional behaviour of these smells. While going into the details of 14 smell categories and relating them

to the different existing smells in the software system, the authors have identified that some of the

categories were related to each other and were impacting each other i.e., the categories reuse and usability

are highly correlated with each other. So, to have a more focused study, the authors have clubbed them

into 7 categories on the basis of the existing correlation between them, their popularity and the number of

times they have been studied together. The synthesized and consolidated form of 7 smell categories is

presented in the following Table 1.

Table 1. Categories related to smell.

Category Description

I Configuration (Sharma et al., 2016), Services (Kral and Zemlicka, 2007)

II Test (Greiler et al., 2013), Web (Nguyen et al., 2012), Models (El-Attar and Miller, 2009), Energy (Vetr et al., 2013)

III Reuse (Long, 2001), Usability (Almeida et al., 2015)

IV Performance (Smith and Williams, 2000)

V Implementation (Arnaoudovaet al., 2013)

VI Database (Karwin, 2010)

VII Architecture (Garcia et al., 2009), Design (Suryanarayanaet al., 2014), Aspect-Oriented (Alves et al., 2014)

Table 1 summarizes the accumulation of 14 categories identified by (Sharma and Spinellis, 2018) into the

7 consolidated ones. Considering the space constraints of the article, the description about the chosen

categories can be understood using respective references. Further, Table 1 explicitly provides the

reference article from which the description about any desired smell types can be studied.

Therefore, the detection phenomenon of any of the existing smell in the literature can be studied in the

terms of these 7 accumulated categories. As talked earlier, there exist several detection algorithms which

help the researcher with the smell detection process. On the basis of knowledge and information acquired

by the researcher or the management, they are free to imply any of the existing tools. Once the detection

process of smell is done, refactoration of smells comes into the picture.

Refactoration is the process via which any modulation in the software programme is done to eliminate the

design related flaws from its working environment. It is said that, as soon a smell is detected, its

refactoration steps are identified by the testers who then works efficiently for the smell removal. Further,

to minimize the impact of smells on the facet of software’s development process, its refactoration process

is introduced in the software system. Many researchers have worked proficiently in this domain to

refactor smells. Researchers have conducted a survey which highlights the process to refactor the existing

smells (Mens and Tourwe, 2004). Al Dallalet (2015) have presented anamalgamation of several

refactoring techniques that can be applied by the management to eradicate smells from the software

environment. A hand book written by Fowler (2018) contains all the information one seek to know about

the refactorization process of code-smells. Further, no matter how many smells are detected in the system,

they need refactoring, which is the only way to remove/ avoid the possibility of any kind of miss-

happening in the software system.

But the organizations must understand that “NOTHING COMES FREE” in the software environment

apart from the unwanted bugs or smells. If they want to perform refactoring of the identified smells, they

must talk about the amount of resources that are involved in this process. The applied resources can be in

Gupta et al.: Resource Allocation Modeling Framework to Refactor Software Design …

216 | Vol. 8, No. 2, 2023

the form of cost, human efforts or even CPU hours to name a few. It is said that the management has a

specified amount of resources fixed for the refactoring process. They must have then bifurcated this

allotted budget into some fractions, corresponding to their impact, occurrence, classification or anything.

After this random allocation of refactoring resources, they would be able to reach to their specified goal.

But, the existence of this randomness is not beneficial for any individual involved in the process. They

may end up spending more resources at the place where they are not required or even land in the situation

to undervalue the resources where they are needed the most. Moreover, this random allocation of

resources is not going to help the developers, quality assurance personnel or even the managers to

enhance the productivity of the software. This urgent need to standardize the way to allocate these

maintenance efforts is addressed by the authors in this article.

For the said purpose, the authors have developed an optimization problem which deals with the allocation

of refactoring resources to the 7 identified smell categories. Keeping in mind that, certain kind of smells

might need more amount of resources/ efforts to refactor them, an optimization problem is presented in

the article. The considered formulation maximizes the total count of smell refactored from the software in

such a way that the resources allotted to them should satisfy the budget constraints. More details about the

same are provide in Section 3 of this article.

Further this art of formulating an optimization problem has been widely studied in the literature in diverse

fields. From the discrete resource allocation problem in the stochastic environment (Shi, 2000), to using

genetic algorithm for testing – resource allocation (Dai et al., 2003) or from the modular software system

(Huang and Lo, 2006) to the agile framework for software development (Anand et al., 2021), or from

distributed 5G virtualized network (Halbian, 2019) to manage IOT applications (Verma et al., 2020), from

urban transport management (Tao and Dui, 2022) to software patch management (Anand and Gokhale,

2020b), the applicability of this resource allocation problems can be found in every single stream existing

in the research area.

To sum up this introduction section, the crux and the motive of the whole article is presented in the

following manner.

Goal: Firstly, the motive of this research article is to develop the detection protocol for smells in the

mathematical form following the NHPP process. Then the authors have talked about the amount of

optimal refactoring resources which should be allotted to various code-smell categories such that the

management can acquire the maximum utility from them.

Premise: To showcase the validity of the modeling framework, the real- life smell data set belonging to

one of the releases of Azureus software system have been acquired and is worked upon. The results

obtained are quite satisfactory and easily implacable by the management.

Organisation: The mathematical model for code smell refactoration process is presented in section 2

with the study design and formulated optimization programming problem in section 3. Section 4 provides

a detailed description of the data visualization and result discussion in section 5. Section 6 talks about

research contribution. Implications for practice is showcased in section 7 followed by conclusion and

references.

2. Model Development
At the first stage, it is viable to understand the pattern via which the existing smells in the system are to

be refactored by the testing team. To cater this phenomenon, the authors have drawn an analogy from the

Gupta et al.: Resource Allocation Modeling Framework to Refactor Software Design …

217 | Vol. 8, No. 2, 2023

fault removal process as explained in the field of software reliability (Anand et al., 2020a; Kapur et al.,

2011). It can be said that the count of smells refactored at any time point can be studied with the help of

counting process which symbolizes for the occurrence of an event at any time point.

Let ()N t symbolizes for the count of occurrences of an event during the interval 0,t . Let the mean-value

function of ()N t is represented by ()cs t ,which represents the number of code-smells refactored till the

time t .The function ()N t is regarded as the Non- Homogeneous Poisson Process (NHPP), as it follows

the following described properties:

a. At the beginning of the process, no smells are being refactored from the system i.e., at ()0, 0t N t= = .

b. () , 0N t t  have independent increments.

c. () ()  ()2P N t t N t o t+ −   =  , i.e., the chance of refactoring two or more smells simultaneously

is close to 0.

d. () ()  () ()1P N t t N t r t o t+ −  = = +  , which symbolizes the probability of detecting a single

smell.

It should be noted that here, ()o t represents a very small quantity which approximates to 0 for smaller t

and ()r t is the rate by which detection of smells is performed in the software system.

Since, ()cs t symbolizes for the mean value function of ()N t ,then, it can be seen that:

()()
()() ()

Pr ,
!

k cs t
cs t e

N t k
k

−

= = 0,1,2....k = (1)

which means that ()N t follows the Poisson Distribution with mean-value function ()cs t .

Furthermore, the presented article is based on the situation that the time scale is very large when

compared to the existing code smells in the system waiting to get detected. Along with this, one of the

assumptions being utilized in the article is the basic assumptions of NHPP modeling framework that the

rate by which existing smells are refactored in the software is directly proportional to the remaining

number of smells waiting to be refactored (Anand et al., 2018; Bhatt et al., 2017).

Tracing the same, the collective number of smells detected from the software at time point t can be

represented as:

()
() ()

dcs t
r t c cs t

dt
= −  

 (2)

where c represents the total number of code smells existing in the software which are to be detected.

On solving the above presented equation along with the initial conditions () 0 0cs t at t= = , the eventually

formed equation can be represented as:

() ()*cs t c H t= (3)

where, ()H t denotes the cumulative distribution function /rate via which the smells are to be detected.

Gupta et al.: Resource Allocation Modeling Framework to Refactor Software Design …

218 | Vol. 8, No. 2, 2023

Furthermore, the authors have tried to develop a preliminary model to represent the count of smells. For

this, they have assumed the nature of cumulative distribution function to be exponential in nature (Anand

et al., 2019). Tracing the said assumption, the eventual equation representing the count of smells being

detected from the software system is taking the following form.

() ()** 1 r tcs t c e−= − (4)

where, r represents the rate by which the smells are detected.

It should be noted that the term ()" "cs t in equation (4) will corresponds to the total number of code smells

refactored from the system at time point t .The above presented generalized equation can be converted to

deal with the distinct types of code smells refactored when limited resources ()iz are applied. The

formed equation for this case will be:

() ()*
* 1 i ir z

i i ics z c e
−

= − (5)

where, ()i ics z be the ith smell type refactored from the software when iz resources are applied.

Utility of Equation (5): The formulation presented is going to provide the management with an estimated

count of ith type of smells which are to be refactored from the software system with the application of iz

resources. This equation holds true when the actual amount of refactored smells waiting to get refactored

is ic and the rate by which this refactoring is going to take place is ir . Further it should be noted that, this

equation considers the categorization of each type of smell due to which different amount of resources/

efforts are applied for their refactoration process.

It must be notified that no organization has the capability to invest unlimited amount of resources for the

removal of smells from the system. They always want to get the maximum output with their limited in-

hand resources. To cater this problem, the mathematical modeling to optimally allocate refactoring

resources to different smells is presented in the next section.

3. Study Definition and Design
Continuing the above specified concepts, the fundamentals of allocation of resources are discussed here.

The goal is to optimize the available resources/ efforts applied for the refactoration of smells from the

software system, which will enhance its overall efficiency and quality over its productive life cycle.

In order to reach towards the above specified target and to create better understanding and readability for

the readers, the authors have divided this section into several sub-parts. These sub-parts/ sub-sections

discuss the various steps involved in the resources-allocation process in details.

3.1 Variable Selection
The first step towards the optimal allocation of refactoring resources to the code smell categories is to

identify the variables whose impact must be considered. A researcher or the management is free to have

as many as variables in the undertaken study, but to present the preliminary model in this direction; the

authors have chosen a handful of the variables from them. More details about the chosen variables and

their nature are provides as below:

Gupta et al.: Resource Allocation Modeling Framework to Refactor Software Design …

219 | Vol. 8, No. 2, 2023

• Predictor Variable: They refer to the count of smells corresponding to every single category

considered in the study along with the rate by which they are assumed to be refactored i.e., ic and ir

respectively.

• Response Variable: The amount of resources/efforts which should be optimally applied for their

refactoration i.e. iz .

• Constraint Selection: While dealing with the problem to allocate resources; the total budget of the

organization must be taken into account tries of smells should be less than the budget of the

organization. It is considered that the total amount of resources which are to be bifurcated among

different category.

• Objective: The motive is to refactor maximum number of smells of each category existing in the

software system after the allotment of iz refactoring resources i.e., Maximize ()i ics z .

3.2 Optimization Model
From the above presented information, the basic nature of the undertaken study is made clear. Further, the

mathematical equations for the above developed framework can be represented in the following manner:

()
1

1

1

. .

0

i i

n
r z

i

i

n

i b

i

i

Max c e

s t z c

z

−

=

=


− 




 







 (OPP-I)

The outcome of the above presented Optimization Programming Problem (OPP) is going to indicate the

amount of resources ()iz which should be allocated to the ith category of code smells. Instead of going

with the random allocation, if the software organizations will go with these optimal allocations, they will

be refactoring maximum possible smells from the system.

After these allocations, the management will have an idea about the number of smells that can be

refactored from the software under the given budget and the ones which are still leftover in the system.

From this number of leftover smells, the management can then decide that whether he wants to make the

software more productive by allocating more resources for their refactorization or not. This will help them

to make decisions about the optimal number of refactoring phases that can be done in the concerned

software.

Further, more explanation about the governed optimization problem and the obtained results are explained

with the help of model validation on the real-life data set, which is provided as below.

4. Data Validation
To present the working behaviour and validation of the developed optimization problem, real-life data

sets have been extracted from the source (Khomh et al., 2009). More details about the data set are

provided as below.

Gupta et al.: Resource Allocation Modeling Framework to Refactor Software Design …

220 | Vol. 8, No. 2, 2023

Data Set: The software considered in this study is Azureus (also known as “Vuze”) which specifically

allows sharing files over the internet. This is an open-source BitTorrent client written in Java language.

This software has been used by over 12+ million users in the world.

When the change history of the software was analyzed it was found to be infected with different varieties

of code smells. The authors have fetched the code smell data corresponding to one of the release versions

of Azureus software from the (Khomh et al., 2009). It comprises of about 19082 smells belonging to 33

different types.

This data went through a manual bifurcation of smell categories on the basis of their types/ categories as

provided by Sharma and Spinelllis (2018), whose description is mentioned in the introduction section.

The existing 33 smells of the Azureus software was then allotted to one of the 7 identified categories on

the basis of their description, characteristic and type. This has enabled the authors to study the similar

types of smell in a clubbed manner, thereby increasing their interpretability and reducing the

dimensionality of the considered problem.

To carry on with the analysis, the working behaviour of the developed modeling framework is now

analyzed on the data set corresponding to 7 smell categories. More details about the obtained results are

provided in the next section.

4.1 Study Results
First Phase of Refactoring: The authors have now reported the implications of the undertaken study on

the real-life data set. The Table 2 explicitly represents the number of code smells corresponding to 7

identified categories and their refactoration rate ()ic for one of the release versions of Azureus open-

source software. Considering the total budget value for the available resources as 35000 units, the

modeling framework presented in OPP-1 along with equation (5) is then executed with the help of Lingo

Software (Lindo System, 1995). whose usage guidelines are provided by Bhatt et al. (2019). The obtained

values for the optimal resource allocation to the identified categories are presented in Table 2.

It can be analyzed from Table 2 that, during the first phase of refactoring with 35000 units of in-hand

resources, the maximum amount of 9495.535 units, was allocated to Vth category (Implementation) of

smells. Further, it can be seen that during this refactoring phase, the highest percentage of smells

remaining in system i.e., 89.26 % was corresponding to the Ist category (Configuration and Services) of

smells for which the minimum amount of refactoring resources i.e., of 934.715 units was assigned. The

lowest percentage of remaining smells i.e., 2.80 % was found corresponding to IIIrd category (Reuse and

Usability) of code-smell.

It can be interpreted from Table 2 that the smells corresponding to IIIrd category (Reuse and Usability)

were considered to be most crucial ones therefore they are refactored with the highest rate. Further, they

were allocated the second highest refactoring resources i.e., of 8930.84 units, amongst the available 7

categories.

Moreover, all along the first refactoring phase, a total of 84.16% of design related flaws can be refactored

whereas, around 15.83 % smells still existed in the software system.

Gupta et al.: Resource Allocation Modeling Framework to Refactor Software Design …

221 | Vol. 8, No. 2, 2023

Table 2. First phase of refactoring.

Category

Existing

Number of

Code
Smells

ir iz

No of Code
Smells

Refactored

No of Code

Smells

Refactored
(Rounded off)

% of Code
Smells

Refactored

% of Code
Smells

Remaining

I 792 0.00012 934.7153 84.03436 85 10.73232 89.26768

II 570 0.00024 1984.95 216.0172 217 38.07018 61.92982

III 7561 0.0004 8930.84 7348.61 7349 97.19614 2.803862

IV 2504 0.00034 6778.538 2254.13 2255 90.05591 9.944089

V 2426 0.00016 9495.535 1895.026 1896 78.15334 21.84666

VI 1018 0.0001 1808.781 168.4412 169 16.60118 83.39882

VII 4211 0.0007 5066.641 4089.634 4090 97.12657 2.873427

Total 19082 -- 35000 16055.89 16061 84.16833 15.83167

Now, it’s up to the management and the software organization that whether they are satisfied with the

15.83 % of remaining smells or they still want to refactor them, to make their software more productive,

error-free and highly efficient.

Second Phase of Refactoring: Here the authors have considered a scenario that the management is still

interested to work on the refactoration of existing smells i.e., 15.83 % of the existing 19082 smells which

is 3021 smells. They have been allocated the budget of 25000 units of refactoring resources/ efforts for

the said purpose. When the optimization problem (OPP1) was executed along with equation (5) for the

remaining 3021 smells, the amount of resources allocated to different categories of smell were obtained.

The results are showcased in Table 3.

As done for Table 2, the information can also be analyzed and synthesized from Table 3. It was observed

that with 25000 units of refactoration resources, the management can successfully refactor 1526 smells

out of existing 3021 smells i.e., 50.35 % of the existing number. The highest amount of refactoring

resources i.e., 7028.894 units, were allotted to category VI (Database) and the lowest resources of 1000

units to category VII (Architecture, design and aspect-orientation).

Further, it should also be highlighted that after the first phase of refactorization using the proposed

modeling framework, the data (remaining number of smells waiting to be refactored) has taken the

uniform shape. This has resulted in the scenario that during the second phase, the available resources were

bifurcated among smell categories in such a manner that an equal proportion of smells of each category

were removed from the software. This fact can be validated from Table 3 that, a uniform proportion i.e.,

approx. 50.44 %smells are refactored from each category of identified smells.

Table 3. Second phase of refactoring.

Category

Existing
Number of

Code

Smells

ir iz

No of Code

Smells
Refactored

No of Code
Smells

Refactored

(Rounded off)

% of Code
Smells

Refactored in

this step

% of Code

Smells
Remaining

I 707 0.00012 5851.52 356.6796 357 50.44973 49.55027

II 353 0.00024 2919.862 177.8398 178 50.37954 49.62046

III 212 0.0004 1754.277 106.9039 107 50.42635 49.57365

IV 249 0.00034 2058.996 125.3575 126 50.34438 49.65562

V 530 0.00016 4385.693 267.2597 268 50.42636 49.57364

VI 849 0.0001 7028.894 428.6155 429 50.48475 49.51525

VII 121 0.0007 1000.758 60.94505 61 50.36781 49.63219

Total 3021 -- 25000 1523.601 1526 50.35033 49.64967

Gupta et al.: Resource Allocation Modeling Framework to Refactor Software Design …

222 | Vol. 8, No. 2, 2023

From the above presented Table 2 and 3, it can be concluded that, after the first and second round/phase

of refactoring, around 1495 smells (Actual- removed in first phase of refactoring – removed in second

phase of refactoring = 19082- 16061- 1526= 1495 [approximated after including the decimal places]) still

exist in the system. Although, this figure of 1495 smells represents only 7.83% of the total existing

smells, but still, it’s the decision of the management that whether they want to continue refactoring or

wants to apply those additional resources in enhancing the quality of the software by providing an

upgrade full of new and up-to-date functionalities.

Further, it was analyzed that per unit cost/ resources employed for refactoration has significantly

increased from the first phase to the second phase. During the first phase, 35000 units were spent in the

refactoration of 16061 smells whereas along the second phase, only 1523 smells were refactored using

25000 units of resources. This simply means that per unit cost of refactoration is increasing exponentially.

So, employment of resources for the third phase of refactoring may act as dead investment for the

software organizations.

Third Phase of Refactoring: In order to prove this fact, the authors have executed the optimization

problem (OPP-1) and equation (5) on the data set corresponding to remaining number of smells waiting in

the software to get refactored after the second phase. The budget allocated for refactoring of 1495 smells

is considered to be 20000 units. The obtained results are presented in the following Table 4.

It can be analyzed from Table 4 that after the third phase of refactoring, only 646 smells were refactored

with an amount of 20000 units. A big percentage of 56.7893% of 1495 smells i.e., 849 smells, are still

lying in the software system. Considering the enhancement in per unit refactoring cost, which can be

easily seen in this phase, it is advised that the refactoring of this release version of Azureus software

should be done for at max 2 phases. Allocation of resources for the removal of smells in the third phase

should be completely avoided. But still, if the software organization has ample of resources with them or

they consider the refactoration of smell as a very important step in building the prestige of the software,

the third phase of refactoring or even its after phases will always be an open option for them. They are

free to go with as many as phases as they want with their in-hand resources which is obviously going to

enhance the overall software quality.

Table 4. Third phase of refactoring.

Category

Existing

Number of
Code

Smells

ir iz

No of Code

Smells

Refactored

No of Code

Smells
Refactored

(Rounded off)

% of Code

Smells
Refactored in

this step

% of Code

Smells

Remaining

I 350 0.00012 4684.796 150.5113 151 43.14286 56.85714

II 175 0.00024 2342.398 75.25565 76 43.42857 56.57143

III 105 0.0004 1405.439 45.15339 46 43.80952 56.19048

IV 123 0.00034 1640.825 52.59221 53 43.08943 56.91057

V 262 0.00016 3501.681 112.3835 113 43.12977 56.87023

VI 420 0.0001 5621.755 180.6135 181 43.09524 56.90476

VII 60 0.0007 803.1078 25.80193 26 43.33333 56.66667

Total 1495 -- 20000 642.3115 646 43.2107 56.7893

5. Result Discussion
While going on with the analysis of the real-life data set, few questions were raised in the mind of

authors, explanation of which will enhance the overall understanding about the presented concepts and

will also add into the quality of the article.

Gupta et al.: Resource Allocation Modeling Framework to Refactor Software Design …

223 | Vol. 8, No. 2, 2023

Detailed explanation of the raised questions and their corresponding clarification are provided as below.

Research Question 1: What is the benefit of studying the allocation of resources to existing code smells

in the form of categories?

To answer this query, the developed optimization problem was executed on the data set of smells

belonging to 33 different types i.e., instead of clubbing smells together in the 7 identified categories, the

raw structure in which they are present in Khomh et al. (2009) was utilized and studied thoroughly. When

this structure was studied, it was observed that even the resources/ efforts of 100000 units were not

sufficient to refactor the 80% of the existing smells from the software system. As compared to the case

when the clubbing of smells was done in 7 categories, only 35000 units of efforts were able to refactor

about 84% of the existing smells (Refer Table 2).

So, grouping them together in the form of categories have not only added a new dimension in this study

but have also provided an optimal way to the management via which they can increase the utility of their

available resources instead of spending them extravagantly. This grouping has also guided the

management to work on the refactoration process in a better way where the smells having similar attitude

or behaviour are involved.

Research Question 2: What is the need of going through with the refactoration process in phases, when

instead of this, the management can spend the accumulated resources in one go?

The question has been raised on the utility of the presented article. If the management if free to allocate

60000 units of applied resources (35000 and 25000 for the first and second phase respectively) in one go,

then is it necessary to bifurcate the resources amongst different phases. The answer to this query lies in

the fact that apart from handling existing code smells in the software system, the management has several

other tasks in his to do list, which may include the process of fault removal, vulnerability removal,

releasing frequent patches, advertising their software or even in the development of the newer software-

version and many more. With the presented approach, the management can firstly allocate a fraction of

resources to refactor smells; can have a look at the working behaviour of software, then in the later hours

can make decisions about the next plan of action which includes that whether they want to invest in

refactoring smells or making the software more advanced as per the dynamic needs of the market.

The management can also have a look at the utility of the applied resources (per unit cost of refactoring)

and then can decide about the next course of action. As explained with the data analysis part of Azureus

software in the undertaken study that, the utility of applied resources has significantly decreased over a

period of time. Therefore, the organizations may want to skip this process of further patch release for this

refactorization. If the management have allotted the whole refactoring budget at this time, this

interpretation would not have been acquired and they would be responsible for all the half-heartedly made

decisions.

Research Question 3: What if the allocated budget for refactoring is varied? Whether it will impact the

working nature of the formulated problem or not? Whether deviations in results will be observed with the

changes in allotted budget?

An interested reader may find it slightly inappropriate to fix the resource allocation budget to be 35000

units in the first phase and 25000 units in the second phase. In order to answer the asked query about the

deviations in obtained results when this allocation is changed, sensitivity analysis corresponding to it is

Gupta et al.: Resource Allocation Modeling Framework to Refactor Software Design …

224 | Vol. 8, No. 2, 2023

presented. Variation in the allotted budget is made during the first and second phase of refactoring. The

obtained results are presented in Table 5.

Table 5. Different phases of refactoring with variable resource constraint.

First Refactoring Second Refactoring Cumulative percentage of
smells Refactored from

the system in phase I and

II

Allocated
Budget

% of Smells
Refactored

% of Smells
Remaining

Allocated
Budget

% of Smells
Refactored

% of Smells
Remaining

25000 78.81773 21.18227 15000 34.31176 65.68824 86.08574

30000 81.76292 18.23708 20000 42.89296 57.10704 89.58534

35000 84.16833 15.83167 25000 50.35033 49.64967 92.13963

40000 86.2331 13.7669 30000 56.83104 43.16896 94.05697

45000 88.04109 11.95891 35000 62.46302 37.53698 95.51099

Looking at this Table 5, the management can interpret that the presented modeling framework is

providing suitable results with the variation in the refactoring budget. It can be clearly inferred from the

Table that, as the amount of refactoring resources are increased, the similar enhancement was followed by

the percentage of smell that are refactored from the system. Seeing this table, the software management

can also make decisions about the optimal number of refactoring phases that should be involved in the

software depending on the number of existing design flaws in it.

Research Question 4: The presented methodology also suggests that it is viable to leave some of the

detected smells in the software i.e., there is no need to refactor all of the identified design-flaws. Don’t

you think it’s harmful for the software to do so?

An enthusiastic researcher or the management is fully aware of the fact that every detected fault or

vulnerability (security-flaw) is not removed from the software. Some of them always lie dormant in the

software product. Management always applies its efforts in the direction to remove as much as they can to

enhance the reliability of the software. But due to some unavoidable circumstances, they failed every

single time to do so. Despite the presence of such faults/ vulnerability / flaws, the software systems are

well accepted in the market.

Establishing an analogy in this context, some of the detected smells can also be left without refactoring in

the system. So, if the management decides that after refactoring a certain number of code-smells, the want

to stop this process for any particular release version, they are free to do that. Further, it’s up to the

management that how many resources they want to apply for the refactoration of smells and how many

they want to left behind without refactoration.

To end this section, these provided questions and their explanations are expected to create a better

understanding about the presented concept, the data analysis part and the corresponding implications for

the betterment of the software organizations. They will guide the management in such a way which will

enhance the quality of the software products.

6. Research Contribution
In the presented article, the authors have innovatively governed the process of refactoration of smell with

the help of NHPP modeling framework. They have estimated the count of smells refactored from the

software system at any time point t.

Gupta et al.: Resource Allocation Modeling Framework to Refactor Software Design …

225 | Vol. 8, No. 2, 2023

The authors have talked about the optimal quantity of resources/ efforts that should be applied to different

code smell categories. These allocations will be done in such a manner that maximum refactoration of

existing design flaws from the system is done. For the said purpose, they have backed up on the

formulated optimization problem developed under the budget constraints.

Apart from this, they have explained the utility of their proposed model with the help of real-life data set

belonging to Azureus open- source system. The criteria to decide the optimal number of phases for which

the management should pursue with this refactoration process is also discussed in this article.

7. Implications for Practice
The article models the count of smells that can be refactored from the software system under two

scenarios i.e., one at any given time point and the other corresponding to the limited resources that are

applied for refactoration. Further, looking at the results analysis and related discussion presented in the

article, the manual guide for the software organizations and the management is provided to help them in

the optimal allocation of their in-hand resources. The authors have suggested that instead of spending

extravagantly, the management should allot refactoring resources to different code smell classes/

categories using the developed optimization problem. The presented approach to allocate the resources

“AS PER THE NEED”, instead of the random allocation is going to be beneficial for the management is

so many ways, whose description needs no introduction. Since the scarcity of resources will always be an

issue for the organizations, the authors have claimed that there is no need to refactor all the existing/

detected smells from the software system. The process should be continued until the utility of the applied

resources are under acceptable boundaries.

This presented algorithm for resource allocation will help the software firms which are facing resources

crunch and who are not able to decide if allocating that funds to refactor the smells is going to beneficial

for them or not. Using the presented methodology, they can have a check and can evaluate the one-to-one

relationship between the assigned amount of resources and the fraction of smells refactored from the

software system.

Along with this, the innovative resource allocation methodology for smell refactoring mechanism will

guide the authors about the maximum number of refactoring phases that should be incorporated in the

software. This number of phases is decided on the basis of the utility of the applied resources.

8. Future Scope and Limitations of the Study
The authors have considered that the existing smells in the vicinity of the software are refactored with the

exponential rate. This assumption can be further relaxed by incorporating various types of refactoring

functions in the study. Further, the authors have presented one of the ways through which resources are to

be allocated to different code smells categories, in the future, different programming algorithms can be

looked upon to perform the said task.

9. Conclusions
The existence of design flaws in the software environment has been creating issues for the quality aspects

of the software since ages. Though there does not exist any significant relationship between these design

flaws and the fault occurrence phenomenon, but still, they have always acted as a way to demolish the

software quality in one or another way. The need to refactor smells as soon as they are detected was felt

by the management. The amount of resources required for this action was the next question which is

raised, which has not been talked about yet in the literature.

Gupta et al.: Resource Allocation Modeling Framework to Refactor Software Design …

226 | Vol. 8, No. 2, 2023

Keeping this research gap in mind, the authors have initially modeled the number of smells detected in the

system waiting to get refactored with the application of NHPP modeling framework. Then they have

developed the pioneer resource allocation optimization problem for refactoration of code smells from the

software system. The validation of the study is done on the real-life data set of Azureus Open-source

software and the obtained results are quite promising.

Conflict of Interest

The authors confirm that there is no conflict of interest for this publication.

Acknowledgements

The authors would like to thank you very much for the reviewer’s comments/suggestions that improved the contents of the

article.

References

Al Dallal, J. (2015). Identifying refactoring opportunities in object-oriented code: A systematic literature review.

Information and software Technology, 58, 231-249.

Almeida, D., Campos, J.C., Saraiva, J., & Silva, J.C. (2015, April). Towards a catalog of usability smells. In

Proceedings of the 30th Annual ACM Symposium on Applied Computing (pp. 175-181). Association for

Computing Machinery, New York.

Alves, P., Figueiredo, E., Ferrari, F. (2014). Avoiding code pitfalls in aspect-oriented programming. In: Quintão

Pereira, F.M. (ed) Programming Languages. SBLP 2014. Lecture Notes in Computer Science (Vol 8771).

Springer, Cham. https://doi.org/10.1007/978-3-319-11863-5_3.

Anand, A., & Gokhale, A.A. (2020b). Impact of available resources on software patch management. In: Anand, A.,

Ram, M. (eds) Systems Performance Modeling (Vol. 4, pp. 1-12). Berlin, Boston.

Anand, A., Das, S., Singh, O., & Kumar, V. (2019, February). Resource allocation problem for multi versions of

software system. In 2019 Amity International Conference on Artificial Intelligence (AICAI) (pp. 571-576).

IEEE. United Arab Emirates.

Anand, A., Gupta, P., Klochkov, Y., & Yadavalli, V.S.S. (2018). Modeling software fault removal and vulnerability

detection and related patch release policy. In: Anand, A., Ram, M. (eds) System Reliability Management (pp.

19-34). CRC Press. Boca Raton.

Anand, A., Gupta, P., Tamura, Y., Ram, M. (2020a). Software multi up-gradation modeling based on different

scenarios. In: Ram, M., Pham, H. (eds) Advances in Reliability Analysis and its Applications (pp. 293-305).

Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-31375-3_8.

Anand, A., Kaur, J., Singh, O., & Ram, M. (2021). Optimal resource allocation for software development under

agile framework reliability: Theory & applications, SI 2 (64), 48-58.

Arnaoudova, V., Di Penta, M., Antoniol, G., & Guéhéneuc, Y.G. (2013, March). A new family of software anti-

patterns: Linguistic anti-patterns. In 2013 17th European Conference on Software Maintenance and

Reengineering (pp. 187-196). IEEE. Genova, Italy.

Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., & Binkley, D. (2012, September). An empirical analysis of the

distribution of unit test smells and their impact on software maintenance. In 2012 28th IEEE International

Conference on Software Maintenance (ICSM) (pp. 56-65). IEEE. Trento, Italy.

Bhatt, N., Anand, A., & Aggrawal, D. (2019). Improving system reliability by optimal allocation of resources for

discovering software vulnerabilities. International Journal of Quality & Reliability Management, 37(6/7), 1113-

1124.

Gupta et al.: Resource Allocation Modeling Framework to Refactor Software Design …

227 | Vol. 8, No. 2, 2023

Bhatt, N., Anand, A., Yadavalli, V.S.S., & Kumar, V. (2017). Modeling and characterizing software vulnerabilities.

International Journal of Mathematical, Engineering and Management Sciences, 2(4), 288-299.

da Silva Sousa, L. (2016, May). Spotting design problems with smell agglomerations. In Proceedings of the 38th

International Conference on Software Engineering Companion (pp. 863-866).

https://doi.org/10.1145/2889160.2889273.

Dai, Y.S., Xie, M., Poh, K.L., & Yang, B. (2003). Optimal testing-resource allocation with genetic algorithm for

modular software systems. Journal of Systems and Software, 66(1), 47-55.

El-Attar, M., & Miller, J. (2009). Improving the quality of use case models using antipatterns. Software & Systems

Modeling, 9(2), 141-160.

Fernandes, E., Oliveira, J., Vale, G., Paiva, T., & Figueiredo, E. (2016, June). A review-based comparative study of

bad smell detection tools. In Proceedings of the 20th International Conference on Evaluation and Assessment in

Software Engineering (pp. 1-12). Association for Computing Machinery, New York.

Fowler, M. (2018). Refactoring: Improving the design of existing code. Addison-Wesley Professional.

Ganesh, S.G., Sharma, T., & Suryanarayana, G. (2013). Towards a principle-based classification of structural design

smells. Journal of Object Technology, 12(2), 1-1.

Garcia, J., Popescu, D., Edwards, G., & Medvidovic, N. (2009, March). Identifying architectural bad smells. In 2009

13th European Conference on Software Maintenance and Reengineering (pp. 255-258). IEEE. Kaiserslautern,

Germany.

Greiler, M., Van Deursen, A., & Storey, M.A. (2013, March). Automated detection of test fixture strategies and

smells. In 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation (pp. 322-

331). IEEE. Luxembourg, Luxembourg.

Gupta, P., Anand, A., & Ram, M. (2021). Reliability as key software quality metric: a multi-criterion intuitionistic

fuzzy-topsis-based analysis. International Journal of Reliability, Quality and Safety Engineering, 28(06),

2140003.

Halabian, H. (2019). Distributed resource allocation optimization in 5G virtualized networks. IEEE Journal on

Selected Areas in Communications, 37(3), 627-642.

Hecht, G., Moha, N., & Rouvoy, R. (2016, May). An empirical study of the performance impacts of android code

smells. In Proceedings of the International Conference on Mobile Software Engineering and Systems (pp. 59-

69). ACM. https://doi.org/10.1145/2897073.2897100.

Huang, C.Y., & Lo, J.H. (2006). Optimal resource allocation for cost and reliability of modular software systems in

the testing phase. Journal of Systems and Software, 79(5), 653-664.

Jaafar, F., Guéhéneuc, Y.G., Hamel, S., & Khomh, F. (2013, October). Mining the relationship between anti-patterns

dependencies and fault-proneness. In 2013 20th Working Conference on Reverse Engineering (WCRE) (pp.

351-360). IEEE. Koblenz, Germany.

Kapur, P.K., Pham, H., Gupta, A., & Jha, P.C. (2011). Software reliability assessment with OR applications.

Springer, London.

Karwin, B. (2010). SQL antipatterns: Avoiding the pitfalls of database programming. Pragmatic Bookshelf.

Khan, Y.A., & El-Attar, M. (2016). Using model transformation to refactor use case models based on antipatterns.

Information Systems Frontiers, 18(1), 171-204.

Khomh, F., Di Penta, M., & Gueheneuc, Y.G. (2009, October). An exploratory study of the impact of code smells

on software change-proneness. In 2009 16th Working Conference on Reverse Engineering (pp. 75-84). IEEE.

Lille, France.

https://doi.org/10.1145/2889160.2889273
https://doi.org/10.1145/2897073.2897100

Gupta et al.: Resource Allocation Modeling Framework to Refactor Software Design …

228 | Vol. 8, No. 2, 2023

Kral, J., & Zemlicka, M. (2007, August). The most important service-oriented antipatterns. In International

Conference on Software Engineering Advances (ICSEA 2007) (pp. 29-29). IEEE. Cap Esterel, France.

Lavallée, M., & Robillard, P.N. (2015, May). Why good developers write bad code: An observational case study of

the impacts of organizational factors on software quality. In 2015 IEEE/ACM 37th IEEE International

Conference on Software Engineering (Vol. 1, pp. 677-687). IEEE. Florence, Italy.

Lindo Systems. (1995). Lindo/386 5.3.

Long, J. (2001). Software reuse antipatterns. ACM SIGSOFT Software Engineering Notes, 26(4), 68-76.

Maiga, A., Ali, N., Bhattacharya, N., Sabané, A., Guéhéneuc, Y.G., Antoniol, G., & Aïmeur, E. (2012, September).

Support vector machines for anti-pattern detection. In 2012 Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering (pp. 278-281). IEEE. Essen, Germany.

Mantyla, M., Vanhanen, J., & Lassenius, C. (2003, September). A taxonomy and an initial empirical study of bad

smells in code. In Proceedings of International Conference on Software Maintenance (pp. 381-384). IEEE.

Amsterdam, Netherlands.

Marinescu, R. (2005, September). Measurement and quality in object-oriented design. In 21st IEEE International

Conference on Software Maintenance (ICSM'05) (pp. 701-704). IEEE. Budapest, Hungary.

Martini, A., Bosch, J., & Chaudron, M. (2014, August). Architecture technical debt: Understanding causes and a

qualitative model. In 2014 40th EUROMICRO Conference on Software Engineering and Advanced

Applications (pp. 85-92). IEEE. Verona, Italy.

Mens, T., & Tourwé, T. (2004). A survey of software refactoring. IEEE Transactions on Software Engineering,

30(2), 126-139.

Moha, N., Guéhéneuc, Y.G., Duchien, L., & Le Meur, A.F. (2009). Decor: A method for the specification and

detection of code and design smells. IEEE Transactions on Software Engineering, 36(1), 20-36.

Nguyen, H.V., Nguyen, H.A., Nguyen, T.T., Nguyen, A.T., & Nguyen, T.N. (2012, September). Detection of

embedded code smells in dynamic web applications. In 2012 Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering (pp. 282-285). IEEE. Essen, Germany.

Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D., & De Lucia, A. (2014). Mining version

histories for detecting code smells. IEEE Transactions on Software Engineering, 41(5), 462-489.

Rasool, G., & Arshad, Z. (2015). A review of code smell mining techniques. Journal of Software: Evolution and

Process, 27(11), 867-895.

Sabané, A., Di Penta, M., Antoniol, G., & Guéhéneuc, Y.G. (2013, March). A study on the relation between

antipatterns and the cost of class unit testing. In 2013 17th European Conference on Software Maintenance and

Reengineering (pp. 167-176). IEEE. Genova, Italy.

Sharma, T., & Spinellis, D. (2018). A survey on software smells. Journal of Systems and Software, 138, 158-173.

Sharma, T., Fragkoulis, M., & Spinellis, D. (2016, May). Does your configuration code smell?. In 2016 IEEE/ACM

13th Working Conference on Mining Software Repositories (MSR) (pp. 189-200). IEEE. Austin, USA.

Shi, L. (2000). A new algorithm for stochastic discrete resource allocation optimization. Discrete Event Dynamic

Systems, 10(3), 271-294.

Singh, O., Anand, A., & Singh, J.N. (2017). Testing domain dependent software reliability growth models.

International Journal of Mathematical, Engineering and Management Sciences, 2(3), 140.

Smith, C.U., & Williams, L.G. (2000). Software performance antipatterns. In Proceedings of the 2nd International

Workshop on Software and Performance (pp. 127-136). Santa Fe, United States.

Suryanarayana, G., Samarthyam, G., Sharma, T. (2014). Refactoring for software design smells: Managing

technical debt. 1st Edition. Morgan Kaufmann.

Gupta et al.: Resource Allocation Modeling Framework to Refactor Software Design …

229 | Vol. 8, No. 2, 2023

Tao, Y., & Dui, H. (2022). Reliability and resource allocation and recovery of urban transportation system

considering the virus transmission. International Journal of Mathematical, Engineering and Management

Sciences, 7(4), 476-490

Verma, R., Parihar, R.S., & Das, S. (2018). Modeling software multi up-gradations with error generation and fault

severity. International Journal of Mathematical, Engineering and Management Sciences, 3(4), 429-437.

Verma, S., Gupta, A., Kumar, S., Srivastava, V., & Tripathi, B.K. (2020). Resource allocation for efficient IOT

application in fog computing. International Journal of Mathematical, Engineering and Management Sciences,

5(6), 1312-1323.

Vetr, A., Ardito, L., Procaccianti, G., Morisio, M. (2013). Definition, implementation and validation of energy code

smells: An exploratory study on an embedded system. ThinkMind, 34-39

Wake, W.C. (2003). Refactoring workbook. 1st Edition, AddisonWesley Longman Publishing Co., Inc.

Zhang, M., Hall, T., & Baddoo, N. (2011). Code bad smells: A review of current knowledge. Journal of Software

Maintenance and Evolution: Research and Practice, 23(3), 179-202.

Original content of this work is copyright © International Journal of Mathematical, Engineering and Management Sciences. Uses under the Creative

Commons Attribution 4.0 International (CC BY 4.0) license at https://creativecommons.org/licenses/by/4.0/

Publisher’s Note- Ram Arti Publishers remains neutral regarding jurisdictional claims in published maps

and institutional affiliations.

