
International Journal of Mathematical, Engineering and Management Sciences 

Vol. 7, No. 3, 325-340, 2022 

https://doi.org/10.33889/IJMEMS.2022.7.3.022 
 

 

325 | https://www.ijmems.in 

Software Reliability Prediction through Encoder-Decoder Recurrent 

Neural Networks  

 
Chen Li 

Department of Bioscience and Bioinformatics, 

Faculty of Computer Science and Systems Engineering, 

Kyushu Institute of Technology, Iizuka, 820--8502, Japan. 

Corresponding author: li260@bio.kyutech.ac.jp 

 

Junjun Zheng 
Department of Information Science and Engineering, 

Ritsumeikan University, Kusatsu, 525--8577, Japan. 

E-mail: jzheng@asl.cs.ritsumei.ac.jp 

 

Hiroyuki Okamura  
Graduate School of Advanced Science Engineering, 

Hiroshima University, Higashihiroshima, 739--8527 Japan. 

E-mail: okamu@hiroshima-u.ac.jp 

 

Tadashi Dohi 
Graduate School of Advanced Science Engineering, 

Hiroshima University, Higashihiroshima, 739--8527 Japan. 

E-mail: dohi@hiroshima-u.ac.jp 

 
(Received on February 7, 2022; Accepted on March 18, 2022) 

 

 

 

Abstract 
With the growing demand for high reliability and safety software, software reliability prediction has attracted more and 

more attention to identifying potential faults in software. Software reliability growth models (SRGMs) are the most 

commonly used prediction models in practical software reliability engineering. However, their unrealistic assumptions 

and environment-dependent applicability restrict their development. Recurrent neural networks (RNNs), such as the 

long short-term memory (LSTM), provide an end-to-end learning method, have shown a remarkable ability in time-

series forecasting and can be used to solve the above problem for software reliability prediction. In this paper, we 

present an attention-based encoder-decoder RNN called EDRNN to predict the number of failures in the software. 

More specifically, the encoder-decoder RNN estimates the cumulative faults with the fault detection time as input. The 

attention mechanism improves the prediction accuracy in the encoder-decoder architecture. Experimental results 

demonstrate that our proposed model outperforms other traditional SRGMs and neural network-based models in terms 

of accuracy. 

 

Keywords- Software reliability, Recurrent neural networks (RNNs), Long short-term memory (LSTM), Encoder-

decoder, Attention mechanism. 

 

 

1. Introduction  
With the rapid development of software technology, more and more clients use software projects 

to improve office efficiency. However, software failures increase rapidly as the complexity and 

the use of software increase. Since software failures may lead to economic and financial loss, 

software engineers should design more functional, safe, and reliable software systems for clients. 

Due to the increasing demand for high reliability and safety software, software reliability 

prediction becomes more vital and meaningful (Chopra et al., 2020).  



Li et al.: Software Reliability Prediction through Encoder-Decoder … 
 

 

326 | Vol. 7, No. 3, 2022 

In general, software reliability can be defined as the probability of the software running within a 

specified period. The time between successive failures or cumulative failure times is an essential 

indicator of software reliability (Musa et al., 1990, Wood, 1996, Nissas and Gasmi, 2021). In the 

past several decades, most of the existing analytical software measured and predicted software 

reliability using the software reliability growth models (SRGMs) (Okamura and Dohi, 2013, 

Okamura et al., 2013, Deepika et al. 2017, Singh et al., 2017, Datta et al., 2020). Generally, these 

models rely on a priori assumptions about the nature of software failures and the stochastic 

behavior of the software failure process (Cai et al., 1991, Park et al., 1999, Cai et al., 2001, Utkin 

et al., 2002, Tian and Noore, 2004). Then, SRGMs estimate parameters with the maximum 

likelihood estimation (Kim et al., 2015, Inoue et al., 2017) or least squares (Huang et al., 2005, 

Kadali et al., 2022) with the models. However, different assumptions and models make estimated 

parameters being not the same. Also, some unrealistic assumptions and environment-dependent 

applicability restrict the development of SRGMs. In other words, different models may have 

different predictive performances at testing phases across various projects. It is impossible to 

make assumptions to include all testing cases. Therefore, the above methods are costly and time-

limited for software reliability prediction in realistic scenarios, and there exists no single model 

that can best suit all testing conditions. 

 

Non-parametric models (Karunanithi et al., 1992, Adnan and Yaacob, 1994, Sitte, 1999, Adnan et 

al., 2000, Ho et al., 2003, Wang et al., 2014), such as neural networks, have been used in the last 

two decades to overcome the above problems. Most neural networks are one-to-one (One2One) 

feedforward neural networks that build the SRGMs with single input and output. Neural networks 

(Fu et al., 2017) provide an end-to-end learning method, where the model learns all the steps 

between the initial input phase and the final output result. In general, it is not necessary to make 

any assumptions for the neural networks-based models, and they are not influenced by any 

external parameters (parameter-free). It has been an alternative approach in evaluating and 

predicting software reliability. 

 

Long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) is a variant of recurrent 

neural networks (RNNs) that has an excellent ability to learn long-term dependencies of time-

series data. LSTM is widely used in the field of language modeling and generating text 

(Roemmele and Gordon, 2018), stock price prediction (Li et al., 2019), and speech recognition 

(Saon et al., 2021). However, few works considered using RNNs to predict the cumulative 

number of detected faults for software. Encoder-decoder RNNs (Sutskever et al., 2014) are 

variants of RNNs and are widely applied in machine translations (Datta et al., 2020). In general, 

encoder-decoder RNNs mainly contain two RNNs, called the encoder and decoder, respectively. 

The encoder can encode sequential input into a latent vector, while the decoder decodes the latent 

vector into sequential output. (Wang and Zhang, 2018) is the first to predict software reliability 

using the encoder-decoder RNNs. They take the detected time of faults as input and take a 

cumulative number of detected faults as output. Also, they used the first three timestamps as 

training data to predict the cumulative faults of the fourth timestamp. However, since the amount 

of data in the fault datasets is small, overfitting may occur during the model training phase. 

Therefore, an RNN with few parameters is preferred for the prediction.  

 

On the other hand, the RNN with few parameters may also lead to the insufficient predictive 

ability of the model, called underfitting. For example, the prediction model based on encoder-

decoder LSTM proposed in (Wang and Zhang, 2018) has an underfitting problem. Therefore, it is 

not easy to adjust the parameters of an encoder-decoder RNN to find an optimal model for 



Li et al.: Software Reliability Prediction through Encoder-Decoder … 
 

 

327 | Vol. 7, No. 3, 2022 

software reliability prediction when using a small dataset. In addition, since the complex source 

code of software may lead to software failures, a model with better predictive ability is essential 

to improve work efficiency and reduce economic losses. We propose an encoder-decoder RNN 

with an attention mechanism to address the above issues. Specifically, the encoder-decoder RNN 

estimates the cumulative faults with the fault detection time as input. The attention mechanism 

improves the prediction accuracy in the encoder-decoder architecture. The test dataset is split 

from a benchmark fault dataset to verify our proposed model. For brevity, the main contributions 

of this paper are as follows: 

 

 Architecture design: An encoder-decoder RNN is presented to predict the cumulative fault 

numbers in software and assess the software reliability with the fault detection time as input. 

Unlike the traditional SRGMs, the encoder-decoder RNN is a parameter-free model without 

extra assumptions. 

 Attention mechanism: The attention mechanism can extract more significant features from 

the hidden layers of encoder-decoder RNNs. The attention mechanism-based model may 

improve the predictive ability when the dataset is small. Therefore, the attention mechanism 

is taken into account. 

 

 Performance improvement: Traditional SRGMs and neural networks as the baseline 

models are compared with the attention-based encoder-decoder RNN to validate the 

effectiveness in experiments. 

 

The remainder of the paper is organized as follows. In section 2, we review some related  

research works. Section 3 introduces the proposed attention-based encoder-decoder RNNs for 

software reliability prediction. Then, numerical experiments with a benchmark fault dataset are 

conducted to assess software reliability in section 4. Finally, we conclude the paper with remarks 

in section 5. 

 

2. Related Works  
We briefly introduce some related works on using software reliability growth models and neural 

networks in software reliability modeling and prediction. 

 

2.1 Software Reliability Growth Models 

The SRGMs aim to specify a stochastic process that describes the software behavior for software 

failures, which can estimate reliability, measure current states, and predict the number of faults 

(Amin et al., 2013). Most of the SRGMs assume that the software system is modified and 

corrected as the test processes to reduce failure rates and improve reliability. Non-homogeneous 

Poisson process (NHPP)-based SRGMs have attracted more and more attention since they can 

represent the failure process under various conditions (He, 2013, Li and Pham, 2017, Li and 

Pham, 2019, Song et al., 2019). Failure time distributions have been applied to SRGMs since they 

can characterize most NHPP-based SRGMs. Failure time distributions such as Goel and Okumoto 

model (Goel, 1979), generalized delayed S-shaped model (Yamada et al., 1983, Zhao and Xie, 

1996), modified Duane model (Littlewood, 1984), inflection S-shaped model (Ohba, 1984), and 

Goel (Weibull) model (Goel, 1985) was used in the NHPP-based SRGMs. To better understand 

the failure time distributions and their corresponding NHPP-based SRGMs, we demonstrate 11 

commonly used mean value functions in Table 1. 

 

 



Li et al.: Software Reliability Prediction through Encoder-Decoder … 
 

 

328 | Vol. 7, No. 3, 2022 

Table 1. The commonly used NHPP-based SRGMs. 
 

Description Mean Value Functrion 

Exponential distribution (Goel and Okumoto, (1979) Λ(𝑡) = 𝑎𝐹(𝑡), 𝐹(𝑡) = 1 − 𝑒−𝑏𝑡 

Gamma distribution (Yamada et al., 1983, Yamada and Osaki, 

1985) Λ(𝑡) = 𝑎𝐹(𝑡), 𝐹(𝑡) = ∫
𝑐𝑏𝑠𝑏−1𝑒−𝑐𝑠

Γ(𝑏)

𝑡

0

𝑑𝑠 

Pareto type-II distribution (Littlewood, 1984, Abdel-Ghaly et al., 

1986) 
Λ(𝑡) = 𝑎𝐹(𝑡), 𝐹(𝑡) = 1 − (

𝑐

𝑡 + 𝑐
)𝑏 

Truncated normal distribution (Okamura et al., 2013) 
Λ(𝑡) = 𝑎

𝐹(𝑡) − 𝐹(0)

1 − 𝐹(0)
, 𝐹(𝑡) =

1

√2𝜋𝑏
∫ 𝑒

−
(𝑠−𝑐)2

2𝑏2

𝑡

0

𝑑𝑠 

Log-normal distribution (Okamura et al., 2013, Achcar et al., 

1998) Λ(𝑡) = 𝑎𝐹(log 𝑡), 𝐹(𝑡) =
1

√2𝜋𝑏
∫ 𝑒

−
(𝑠−𝑐)2

2𝑏2

𝑡

−∞

𝑑𝑠 

Truncated logistic distribution (Ohba, 1984) 
Λ(𝑡) = 𝑎

𝐹(𝑡) − 𝐹(0)

1 − 𝐹(0)
, 𝐹(𝑡) =

1

1 + 𝑒−
𝑡−𝑐

𝑏

 

Log-logistic distribution (Gokhale and Trivedi, 1998) 
Λ(𝑡) = 𝑎𝐹(log 𝑡), 𝐹(𝑡) =

1

1 + 𝑒−
𝑡−𝑐

𝑏

 

Truncated extreme-value distribution (max) (Ohishi et al., 2009, 

Yamada, 1992) Λ(𝑡) = 𝑎
𝐹(𝑡) − 𝐹(0)

1 − 𝐹(0)
, 𝐹(𝑡) = exp(− exp(−

𝑡 − 𝑐

𝑏
)) 

Log-extreme-value distribution (max) (Ohishi et al., 2009) 
Λ(𝑡) = 𝑎𝐹(log 𝑡), 𝐹(𝑡) = exp(− exp(−

𝑡 − 𝑐

𝑏
)) 

Truncated extreme-value distribution (min) (Ohishi et al., 2009) 
Λ(𝑡) = 𝑎

𝐹(0) − 𝐹(−𝑡)

𝐹(0)
, 𝐹(𝑡) = exp(− exp(−

𝑡 − 𝑐

𝑏
)) 

Log-extreme-value distribution (min) (Ohishi et al., 2009, Goel, 

1985) 
Λ(𝑡) = 𝑎(1 − 𝐹(− log 𝑡)), 𝐹(𝑡) = exp(− exp(−

𝑡 − 𝑐

𝑏
)) 

 

 

𝐹(𝑡) and Λ(𝑡)  represent the cumulative distribution function and the mean value function of 

fault-detection time. In general, specific assumptions are necessary for these SRGMs. However, 

some of them are questionable and unrealistic. For example, most SRGMs assume that the 

successive failure times are independent of each other. In practice, the test case of functional 

testing is dependent. Therefore, the unrealistic and questionable assumptions are not suitable for a 

general situation. 

 

2.2 Neural Network-based Models 
In recent years, some literature has used neural networks for software reliability prediction since 

the neural network approaches have a powerful ability to approximate any linear and non-linear 

continuous function. (Karunanithi et al., 1991) applied neural networks to predict the cumulative 

number of failures. They used feed-forward neural networks-based software reliability models in 

their works. (Hu et al., 2006) applied deep neural networks to improve the early reliability 

prediction for current projects/releases by reusing the failure data from past projects/releases. The 

results showed that their work has better results than the traditional methods. However, the 

artificial neural network did not take time series into account. (Karunanithi et al. 1992) used a 

simple feed-forward network, simple recurrent networks trained using a standard back-

propagation algorithm, and a semi-recurrent network to predict software reliability. They also 

calculated the average error (AE) for endpoint and next-step prediction. Although they took the 

effect of time series into account, the recurrent neural networks had the problem of gradient 

vanishing. Figure 1 shows the structure of the RNN. The gray and blank circles represent input 

and a hidden state, respectively. The input data 𝒙1 at the time step 𝑡1 is fed into the RNN. Then, 

the features of 𝒙1 are extracted and stored in 𝒉1. For the next time step, the input data 𝒙2 and the 

hidden state 𝒉2 are the input to calculate the hidden state 𝒉2. (Su and Huang, 2007) proposed a 

dynamic weighted combinational model (DWCM). They trained the model with different 

activation functions, such as the sigmoid and Tanh function. They validated their model on two 



Li et al.: Software Reliability Prediction through Encoder-Decoder … 
 

 

329 | Vol. 7, No. 3, 2022 

datasets and compared their proposed model with statistical models. Experimental results showed 

that the proposed dynamic weighted combinational model significantly gave better predictions. 

Similarly, the proposed model is based on the artificial neural network, which has been proven to 

lack the ability to process time-series data. 

 

 

 
 

Figure 1. An example of the RNN model. 

 

 

The above literature has demonstrated that it is possible to apply neural networks (i.e., artificial 

and recurrent neural networks) for software reliability prediction. Especially for RNNs, the 

prediction can be treated as a sequence-to-sequence translation problem. RNNs can effectively 

alleviate the long-term dependence problem, but it is powerless to the unequal length of input and 

output sequences problem. Recently, encoder-decoder RNNs have shown the power in solving 

the problem of unequal length. (Wang and Zhang, 2018) is the first work to use a deep encoder-

decoder model to predict the number of software faults. Unlike the traditional RNNs, they applied 

two variants of RNNs called LSTMs, as the encoder and decoder. Then, they predicted the 

cumulative fault number for both the next step and endpoint prediction. The prediction results on 

14 datasets showed that the proposed model worked well. However, all the datasets are too small, 

which may cause an overfitting problem during the training phase. On the other hand, the 

attention mechanism can effectively improve the model's accuracy. In this paper, the fault 

detection time is considered as an input time series and regard the cumulative number of detected 

faults as an output sequence by taking the accuracy into account. 

 

3. Model Description 
We mainly introduce the LSTM neural networks, encoder-decoder RNNs, and our proposed 

attention-based encoder-decoder RNN (EDRNN) in detail. 

 

3.1 Long Short-term Memory 

Figure 2 demonstrates the structure of an LSTM neural network. In general, an LSTM maintains 

three gates, called the input gate (i in Figure 2), forget gate (f in Figure 2), and output gate (o in 

Figure 2).  

 



Li et al.: Software Reliability Prediction through Encoder-Decoder … 
 

 

330 | Vol. 7, No. 3, 2022 

 
 

Figure 2. An example of the LSTM cell. 

 

 

Formally, given the detected time of faults as input sequence 𝑿 = {𝒙1, 𝒙2, … , 𝒙𝑇  }. An LSTM 

extracts long and short-term dependencies of the time series by the following composite 

functions: 

 

𝒊𝑡 = 𝛿(𝑾𝑥𝑖𝒙𝑡 + 𝑾ℎ𝑖𝒉𝑡−1 + 𝑾𝑐𝑖𝒄𝑡−1 + 𝒃𝑖)                  (1)                                                                                            

𝒇𝑡 = 𝛿(𝑾𝑥𝑓𝒙𝑡 + 𝑾ℎ𝑓𝒉𝑡−1 + 𝑾𝑐𝑓𝒄𝑡−1 + 𝒃𝑓)                                                                          (2) 

𝒄𝑡 = 𝒇𝑡𝒄𝑡−1 + 𝒊𝑡tanh(𝑾𝑥𝑐𝒙𝑡 + 𝑾ℎ𝑐𝒉𝑡−1 + 𝒃𝑐)                                                                         (3) 

𝒐𝑡 = 𝛿(𝑾𝑥𝑜𝒙𝑡 + 𝑾ℎ𝑜𝒉𝑡−1 + 𝑾𝑐𝑜𝒄𝑡−1 + 𝒃𝑜)                                                                             (4) 

𝒉𝑡 = 𝒐𝑡tanh(𝒄𝑡)                                                                                                                            (5) 

 

where 𝒊𝑡, 𝒇𝑡, 𝒐𝑡, and 𝒄𝑡 are the input gate, forget gate, output gate and cell content, respectively. 

𝛿 and tanh are activation functions, and 𝑾 and 𝒃 are weight matrices and bias, respectively. 𝒉𝑡 

represents the hidden state of current step 𝑡, which saves the extracted features of the time series 

𝑿. Hence the name, the input gate and forget gate work as inputs to the cell state 𝒄𝑡. Intuitively, 

the input gate decides what information is relevant to add from the current state. The forget gate 

decides what is relevant to keep from previous steps. The hidden state of the previous time step 

𝒉𝑡−1 and current input 𝒙𝑡 is passed into an activation function to decide which values are used to 

update (Eq. (1)). Also, the information from the current input 𝒙𝑡 and previous hidden state  𝒉𝑡−1 

is passed through an activation function to decide which values need to be forgotten (Eq. (2)). 

Note that the input gate and forget gate are between 0 and 1, indicating the proportion of 

information that needs to be updated and forgotten. Then, 𝒙𝑡 and  𝒉𝑡−1 are passed into the tanh 

activation function to regulate the network. Next, the input gate updates the cell content 𝒄𝑡 (Eq. 

(3)). The output gate decides what information the next hidden state carries (Eq. (4)). The output 

gate and the current cell state are the input to decide the hidden state at the current time step (Eq. 

(6)). Finally, the hidden state 𝒉𝑡 is connected by a fully connected artificial neural network with 

only one neuron, which can output the predicted results at time step 𝑡 by applying the softmax 

function. The formula is demonstrated as follows: 

 

prediction𝑡 = softmax(FNN(𝒉𝑡))                                                                                                (6) 

 



Li et al.: Software Reliability Prediction through Encoder-Decoder … 
 

 

331 | Vol. 7, No. 3, 2022 

where FNN represents the fully connected neural network with only one neuron. For a better 

understanding, Figure 3 demonstrates the LSTM cell. 

 

3.2 Encoder-Decoder RNN 

 

 
 

Figure 3. Structure of an encoder-decoder RNN. 

 

 

An encoder-decoder RNN is composed of two RNNs and a latent vector. In this paper, each of 

the RNN is an LSTM neural network. Figure 3 shows the structure of an encoder-decoder RNN. 

The hidden state  𝒉𝑡  (1 ≤ 𝑡 ≤ 𝑇) of the encoder at each time step is saved in a latent vector V, as 

shown in the blue part of Figure 2. The formula is as follows: 

 

𝑽 = 𝑓(𝒉1, 𝒉2, … , 𝒉𝑇)                                                                                                                     (7) 

 

where 𝑓 represents nonlinear function. Similar to the encoder, the decoder decodes the latent 

vector to output sequences. Specifically, the decoder predicts the next output 𝑦𝑡+1 according to V 

and {𝑦1, 𝑦2, … , 𝑦𝑡} as follows: 

 

𝑃(𝑦𝑡+1|{𝑦1, 𝑦2, … , 𝑦𝑡}, 𝑽) = Decoder(𝑦𝑡 , 𝒔𝑡+1, 𝑽)                                                                      (8) 

 

where 𝑃 and 𝒔𝑡 denote a probability and the hidden state of the decoder at 𝑡 + 1 time step. In Eq. 

(8), all the weights of {𝒉1, 𝒉2, … , 𝒉𝑇} to the latent vector V are considered the same.  

 

3.3 Attention-based Encoder-decoder RNN 

Figure 4 illustrates the structure of the our proposed EDRNN model. The model includes four 

aspects: an encoder, a latent vector, a decoder, and an attention mechanism.  

 



Li et al.: Software Reliability Prediction through Encoder-Decoder … 
 

 

332 | Vol. 7, No. 3, 2022 

 
 

Figure 4. Structure of the encoder-decoder RNNs with attention mechanism. 

 

In general, encoder-decoder models have limitations of encoding the input sequence to one fixed-

length vector and decoding each output time step. This issue may make it more challenging for 

neural networks to cope with long sequences.  

 

Instead of encoding a sequence to a fixed-length vector, the attention mechanism-based neural 

networks can assign different weights 𝒉𝑡 to the latent vector 𝑽. Therefore, the attention is taken 

into account, as shown in the red part of Figure 4. Formally, the formulas of the attention 

mechanism is demonstrated as below: 

 

𝑒𝑡𝑖 = 𝒔𝑡𝑾𝑠ℎ𝒉𝑖                                                                                                                                 (9) 

𝛼𝑡𝑖 = softmax(𝑒𝑡𝑖) =
exp (𝑒𝑡𝑖)

∑ exp (𝑒𝑡𝑗)
𝑇𝑑
𝒋=𝟏

                                                                                               (10) 

𝒄𝑡 = ∑ 𝛼𝑡𝑖
𝑇𝑑
𝑖=1 𝒉𝑖                                                                                                                             (11) 

𝒔𝑡 = LSTM(𝒔𝑡−1, 𝑦𝑡−1, 𝒄𝑡)                                                                                                           (12) 

 

Where 𝑇𝑑 denotes the decoder sequence length. The attention mechanism can help the encoder-

decoder RNN model assign different weights to the latent vector and predict the cumulative 

number of faults. 

 

4. Experiments 

In this section, several extensive experiments are conducted to validate the effectiveness of our 

proposed model.  

 

4.1 Dataset 
A benchmark fault dataset is selected to predict the cumulative fault number. The dataset is 

collected from a real-time control application with approximately 870,000 code lines in (Tohma 

et al., 1991). Table 2 demonstrates the dataset, where 𝑿(𝒊) and 𝑪(𝒊) represent the observed detected 



Li et al.: Software Reliability Prediction through Encoder-Decoder … 
 

 

333 | Vol. 7, No. 3, 2022 

faults and cumulative number of observed detected faults, respectively. The dataset is divided 

into a training set and testing set to examine this dataset: the first 100 sets of data are used for 

training and the last six sets of data are used for testing. Figure 5 shows the train and test data of 

the fault dataset.  

 

Table 2. The benchmark fault dataset. 
 

Day 𝑿(𝒊) 𝑪(𝒊) Day 𝑿(𝒊) 𝑪(𝒊) Day 𝑿(𝒊) 𝑪(𝒊) Day 𝑿(𝒊) 𝑪(𝒊) 

1 4 4 29 6 218 57 3 458 85 1 523 

2 0 4 30 6 224 58 6 464 86 1 524 

3 7 11 31 4 228 59 6 470 87 0 524 

4 10 21 32 12 240 60 3 473 88 2 526 

5 13 34 33 6 246 61 0 473 89 0 526 

6 8 42 34 7 253 62 0 473 90 0 526 

7 13 55 35 8 261 63 3 476 91 1 527 

8 4 59 36 11 272 64 0 476 92 1 528 

9 7 66 37 6 278 65 4 480 93 0 528 

10 8 74 38 9 287 66 0 480 94 0 528 

11 1 75 39 7 294 67 1 481 95 0 528 

12 6 81 40 12 306 68 2 483 96 0 528 

13 13 94 41 12 318 69 0 483 97 1 529 

14 7 101 42 15 333 70 1 484 98 0 529 

15 9 110 43 14 347 71 2 486 99 1 530 

16 8 118 44 7 354 72 5 491 100 0 530 

17 5 123 45 9 363 73 3 494 101 0 530 

18 10 133 46 11 374 74 2 496 102 0 530 

19 7 140 447 5 379 75 1 497 103 0 530 

20 11 151 8 7 386 76 11 508 104 2 532 

21 5 156 49 7 393 77 1 509 105 0 532 

22 8 164 50 14 407 78 0 509 106 1 533 

23 13 177 51 13 420 79 2 511 107 0 533 

24 9 186 52 14 434 80 2 513 108 2 535 

25 7 193 53 11 445 81 4 517 109 0 535 

26 7 200 54 2 447 82 1 518 - - - 

27 5 205 55 4 451 83 0 518 - - - 

28 7 212 56 4 455 84 4 522 - - - 

 

 

 

 
 

Figure 5. Training data and test data of the fault dataset. 



Li et al.: Software Reliability Prediction through Encoder-Decoder … 
 

 

334 | Vol. 7, No. 3, 2022 

4.2 Experimental Configuration 

All the initial weights 𝑾 and the bias 𝒃 are set randomly. We use Keras 2.4.3 deep learning 

library and program with Python 3.5.6 for the implementation. 

The experimental environment is demonstrated as follows: 

 

 CPU: 3.6 GHz 10 core Intel Core i9  

 Memory: 64GB 2667 MHz DDR4 

 OS: macOS Big Sur 

 

4.3 Baseline Models 

11 SRGMs and four neural networks are compared to the proposed EDRNN model. The details 

are shown in Table 3. 

 
Table 3. Description of the baseline models. 

 

Model Description 

Exponential Exponential distribution 

Gamma   Gamma distribution 

Pareto Pareto type-II distribution 

Truncated Normal Truncated normal distribution 

Log Normal Log-normal distribution 

Truncated Logistic Truncated logistic distribution 

Log logistic Log-logistic distribution 

Truncated Extreme Value Maximum Truncated extreme-value distribution (max) 

Log Extreme Value Maximum Log-extreme-value distribution (max) 

Truncated Extreme Value Minimum Truncated extreme-value distribution (min) 

Log Extreme Value Minimum Log-extreme-value distribution (min) 

LSTM (Seq2One) Sequence-to-one via LSTM 

LSTM (Seq2Seq) Sequence-to-sequence via LSTM 

EDNNs (Seq2One) Sequence-to-one via LSTM encoder-decoder 

EDNNs (Seq2Seq) Sequence-to-sequence via LSTM encoder-decoder 

EDRNN Attention-based Sequence-to-sequence via LSTM encoder-decoder 

 

 

Mean squared error (MSE) is calculated to evaluate the prediction results of the baseline models 

and our proposed EDRNN model. The LSTM and the EDNNs can be divided into two cases: 

sequence-to-sequence (Seq2Seq) and sequence-to-one (Seq2One), respectively. The case of 

Seq2Seq takes a sequence as the input of the encoder and outputs a sequence of the decoder. The 

Seq2One takes a sequence of fault detected time as the input and outputs the cumulative number 

of software failure occurrences.  

 

4.4 Comparison with SRGMs 

Figure 6 demonstrates the predicted results of 11 commonly used SRGMs and our EDRNN 

model. X and Y-axis represent the ID and the cumulative number of faults of the six sets. From 

the figure, we observe that the predicted results of the truncated normal distribution and truncated 

extreme-value distribution (min) are the same (i.e., 529). In other words, the two models cannot 

predict the number of faults well. On the other hand, the results of the exponential distribution, 

Pareto type-II distribution, and log-normal distribution are the same. Although the values 

increased with increasing timestamps, the difference from the test data is getting larger. The 

difference between the test data and the results of the log-extreme-value distribution (max) is the 

largest among the 11 models.   

 



Li et al.: Software Reliability Prediction through Encoder-Decoder … 
 

 

335 | Vol. 7, No. 3, 2022 

 
 

Figure 6. Predicted results of the proposed model (EDRNN) compared with 11 SRGMs. 

 

 

Table 4 evaluated the MSE values of the 11 SRGMs. We find that the predictions of the log-

logistic distribution have the smallest MSE in the 11 models and the MSE is 1.70. Our proposed 

EDRNN does not need any assumption and the MSE (0.50) is much smaller than the log-logistic 

distribution. In other words, EDRNN works better than the traditional SRGMs. Table 4. MSE 

results of the proposed model and the 11 SRGMs.  

 

 

Table 4. MSE results of the proposed model and 11 SRGMs.  
 

Model MSE 

Exponential 5.20 

Gamma   3.50 

Pareto 5.20 

Truncated Normal 20.3 

Log Normal 5.20 

Truncated Logistic 12.8 

Log Logistic 1.70 

Truncated Extreme Value Maximum 7.30 

Log Extreme Value Maximum 25.0 

Truncated Extreme Value Minimum 20.3 

Log Extreme Value Minimum 10.5 

EDRNN 0.50 

 

 

4.5 Comparison with Neural Networks 

To further validate our proposed model, we also compare our model with neural network-based 

models. Figure 7 demonstrates the predicted results of two LSTMs, two encoder-decoder RNNs, 

and our EDRNN model. We find that the prediction results of the LSTM(Seq2Seq), 

LSTM(Seq2One), and EDNNs (Seq2One) are quite different from the test data. The prediction 

results of the EDNNs (Seq2Seq) and EDRNN are very close to the test data. We calculated the 

MSE values to qualify the prediction results, which can be seen in Table 5. 



Li et al.: Software Reliability Prediction through Encoder-Decoder … 
 

 

336 | Vol. 7, No. 3, 2022 

 
 

Figure 7. Predicted results of the proposed model (EDRNN) compared with neural network-based models. 

 

 
Table 5. MSE results of the proposed model and neural network-based models.  

 

Model MSE 

LSTM (Seq2One) 27.5 

LSTM (Seq2Seq) 75.3 

EDNNs (Seq2One) 20.5 

EDNNs (Seq2Seq) 0.67 

EDRNN 0.50 

 

From the table, we can see that the MSE values of the EDNNs(Seq2Seq) (0.67) and our proposed 

EDRNN (0.50) are much smaller than other baseline models. Unlike the EDNNs(Seq2Seq) 

model, our proposed EDRNN took the attention mechanism into account. Because our attention 

mechanism can extract more features of the fault dataset than the conventional neural networks 

models, the MSE values of the predicted results are the smallest in all baseline models. Therefore, 

our proposed EDRNN can work well on the small dataset and the attention mechanism can 

improve the accuracy of the prediction results. 

 

5. Conclusion 

Software reliability has been regarded as a commonly used factor to quantify software faults. In 

practice, SRGMs are the widely used models to estimate or predict the cumulative fault number 

in software. However, some unrealistic assumptions are indispensable when using such SRGMs 

for prediction. These shortcomings limit the scalability and practicality of SRGMs in practical 

problems. In this paper, we proposed attention-based encoder-decoder RNNs for predicting the 

cumulative fault number in software and assessing the software reliability. The encoder-decoder 

RNN models can overcome the shortcomings of traditional SRGMs and make predictions 

effectively on different types of datasets after training. An encoder-decoder RNN can encode the 

input information and store the abstract information of the encoder in a fixed-dimensional vector. 

For the vector, each vector element has the same weight of 1 by default. But in practical problems, 

different features should have different weights. Therefore, an attention mechanism between the 



Li et al.: Software Reliability Prediction through Encoder-Decoder … 
 

 

337 | Vol. 7, No. 3, 2022 

encoder and the decoder layer is applied to improve the prediction accuracy. In experiments, 11 

traditional SRGMs and neural network-based models such as LSTM and encoder-decoder model 

were the baseline models to compare with our proposed EDRNN. Experiment results validated 

the effectiveness of our proposed EDRNN and verified that the EDRNN improved the accuracy 

of prediction in software reliability. 

 

One of the shortcomings of this paper is the lack of validation of our model with different fault 

datasets. We have not verified the effectiveness and impact of the proposed EDRNN in different 

datasets. Since different types of faults datasets may have a different effect on the prediction, we 

would like to apply more types and numbers of fault datasets to validate our proposed model in 

the future. After solving these problems, we believe that our proposed EDRNN model will help 

software engineers to predict software faults in advance in the software development and testing 

stage to reduce unnecessary losses.   

 

 
Conflict of Interest 

The authors confirm that there is no conflict of interest to declare for this publication. 

 

Acknowledgements 

The authors would like to express their sincere thanks to the editor and anonymous reviewers for their time and 

valuable suggestions. 

 

 

References 

Abdel-Ghaly, A. A., Chan, P. Y., & Littlewood, B. (1986). Evaluation of competing software reliability 

predictions. IEEE Transactions on Software Engineering, (9), pp. 950-967. 

Achcar, J. A., Dey, D. K., & Niverthi, M. (1998). A Bayesian approach using nonhomogeneous poisson 

processes for software reliability models. In Frontiers in Reliability (pp. 1-18). 

https://doi.org/10.1142/9789812816580_0001 

Adnan, W. A., & Yaacob, M. H. (1994, December). An integrated neural-fuzzy system of software 

reliability prediction. In Proceedings of 1994 1st International Conference on Software Testing, 

Reliability and Quality Assurance (STRQA'94) (pp. 154-158). IEEE. New Delhi, India. 

Adnan, W. A., Yaakob, M., Anas, R., & Tamjis, M. R. (2000, September). Artificial neural network for 

software reliability assessment. In 2000 TENCON Proceedings. Intelligent Systems and Technologies 

for the New Millennium (Cat. No. 00CH37119) (Vol. 3, pp. 446-451). IEEE. Kuala Lumpur, Malaysia. 

Amin, A., Grunske, L., & Colman, A. (2013). An approach to software reliability prediction based on time 

series modeling. Journal of Systems and Software, 86(7), pp. 1923-1932. 

Cai, K. Y., Cai, L., Wang, W. D., Yu, Z. Y., & Zhang, D. (2001). On the neural network approach in 

software reliability modeling. Journal of Systems and Software, 58(1), pp. 47-62. 

Cai, K. Y., Wen, C. Y., & Zhang, M. L. (1991). A critical review on software reliability 

modeling. Reliability Engineering & System Safety, 32(3), pp. 357-371. 

Chopra, S., Nautiyal, L., Malik, P., Ram, M., & Sharma, M. K. (2020). A non-parametric approach for 

survival analysis of component-based software. International Journal of Mathematical, Engineering 

and Management Sciences, 5(2), pp. 309-318. 

https://doi.org/10.1142/9789812816580_0001


Li et al.: Software Reliability Prediction through Encoder-Decoder … 
 

 

338 | Vol. 7, No. 3, 2022 

Datta, D., David, P. E., Mittal, D., & Jain, A. (2020). Neural machine translation using recurrent neural 

network. International Journal of Engineering and Advanced Technology, 9(4), pp. 1395-1400. 

Deepika, O. S., Anand, A., & Singh, J. N. (2017). Testing domain dependent software reliability growth 

models. International Journal of Mathematical, Engineering and Management Sciences, 2(3), pp. 

140-149. 

Goel, A. L., & Okumoto, K. (1979). Time-dependent error-detection rate model for software reliability and 

other performance measures. IEEE Transactions on Reliability, 28(3), pp. 206-211. 

Goel, A. L. (1985). Software reliability models: Assumptions, limitations, and applicability. IEEE 

Transactions on Software Engineering, (12), pp. 1411-1423. 

Gokhale, S. S., & Trivedi, K. S. (1998, November). Log-logistic software reliability growth model. 

In Proceedings Third IEEE International High-Assurance Systems Engineering Symposium (Cat. No. 

98EX231) (pp. 34-41). IEEE. Washington, DC, USA. 

He, Y. (2013, May). NHPP software reliability growth model incorporating fault detection and debugging. 

In 2013 IEEE 4th International Conference on Software Engineering and Service Science (pp. 225-
228). IEEE. Beijing, China. 

Ho, S. L., Xie, M., & Goh, T. N. (2003). A study of the connectionist models for software reliability 

prediction. Computers & Mathematics with Applications, 46(7), pp. 1037-1045. 

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), pp. 1735-
1780. 

Hu, Q. P., Dai, Y. S., Xie, M., & Ng, S. H. (2006, September). Early software reliability prediction with 

extended ANN model. In 30th Annual International Computer Software and Applications Conference 

(COMPSAC'06) (Vol. 2, pp. 234-239). IEEE. Chicaco, USA. 

Huang, C. Y., & Lyu, M. R. (2005). Optimal release time for software systems considering cost, testing-

effort, and test efficiency. IEEE Transactions on Reliability, 54(4), pp. 583-591. 

Inoue, S., Hotta, K., & Yamada, S. (2017). On estimation of number of detectable software faults under 

budget constraint. International Journal of Mathematical, Engineering and Management 

Sciences, 2(3), pp. 135-139. 

Kadali, D. K., Naik, M. C., & Mohan, R. J. (2022). Estimation of data parameters using cluster 

optimization (No. 7293). EasyChair. 

Karunanithi, N., Malaiya, Y. K., & Whitley, L. D. (1991, May). Prediction of software reliability using 

neural networks. In ISSRE (pp. 124-130). 

Karunanithi, N., Whitley, D., & Malaiya, Y. K. (1992). Prediction of software reliability using 

connectionist models. IEEE Transactions on Software Engineering, 18(7), pp. 563-574. 

Karunanithi, N., Whitley, D., & Malaiya, Y. K. (1992). Using neural networks in reliability 

prediction. IEEE Software, 9(4), pp. 53-59. 

Kim, T., Lee, K., & Baik, J. (2015). An effective approach to estimating the parameters of software 

reliability growth models using a real-valued genetic algorithm. Journal of Systems and Software, 102, 

pp. 134-144. 

 



Li et al.: Software Reliability Prediction through Encoder-Decoder … 
 

 

339 | Vol. 7, No. 3, 2022 

Li, C., Zhang, X., Qaosar, M., Ahmed, S., Alam, K.M.R., & Morimoto, Y. (2019). Multi-factor-based stock 

price prediction using hybrid neural networks with attention mechanism," 2019 IEEE International 

Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive 

Intelligence and Computing, International Conference on Cloud and Big Data Computing, 

International Conference on Cyber Science and Technology Congress 

(DASC/PiCom/CBDCom/CyberSciTech), pp. 961-966. 

Li, Q., & Pham, H. (2017). NHPP software reliability model considering the uncertainty of operating 

environments with imperfect debugging and testing coverage. Applied Mathematical Modelling, 51, pp. 

68-85. 

Li, Q., & Pham, H. (2019). A generalized software reliability growth model with consideration of the 

uncertainty of operating environments. IEEE Access, 7, pp. 84253-84267. 

Littlewood, B. (1984). Rationale for a modified Duane model. IEEE Transactions on Reliability, 33(2), pp. 

157-159. 

Musa, J.D., Iannino, A., & Okumoto, K. (1990). Software reliability. Advances in Computers, 30, pp. 85-
170. 

Nissas, W., & Gasmi, S. (2021). On the maintenance modeling of a hybrid model with exponential repair 

efficiency. International Journal of Mathematical, Engineering and Management Sciences, 6(1), pp. 

254-267. 

Ohba, M. (1984). Software reliability analysis models. IBM Journal of Research and Development, 28(4), 

pp. 428-443. 

Ohba, M. (1984). Inflection S-shaped software reliability growth model. In Stochastic Models in Reliability 

Theory (pp. 144-162). Springer, Berlin, Heidelberg. 

Ohishi, K., Okamura, H., & Dohi, T. (2009). Gompertz software reliability model: Estimation algorithm 

and empirical validation. Journal of Systems and Software, 82(3), pp. 535-543. 

Okamura, H., & Dohi, T. (2013, November). SRATS: Software reliability assessment tool on spreadsheet 

(Experience report). In 2013 IEEE 24th International Symposium on Software Reliability Engineering 

(ISSRE) (pp. 100-107). IEEE. Pasadena, CA, USA. 

Okamura, H., Dohi, T., & Osaki, S. (2013). Software reliability growth models with normal failure time 

distributions. Reliability Engineering & System Safety, 116, pp. 135-141. 

Park, J. Y., Lee, S. U., & Park, J. H. (1999). Neural network modeling for software reliability prediction 

from failure time data. Journal of Electrical Engineering and Information Science, 4(4), pp. 533-538. 

Roemmele, M., & Gordon, A. S. (2018, March). Automated assistance for creative writing with an rnn 

language model. In Proceedings of the 23rd International Conference on Intelligent User Interfaces 

Companion (pp. 1-2). https://doi.org/10.1145/3180308.3180329 

Saon, G., Tüske, Z., Bolanos, D., & Kingsbury, B. (2021, June). Advancing RNN transducer technology 

for speech recognition. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech 

and Signal Processing (ICASSP) (pp. 5654-5658). IEEE. Toronto, ON, Canada. 

Singh, J., Bhati, S., Prasanan, A. R., & Vayas, A. (2017). Stochastic formulation of fault severity based 

multi release SRGM using the effect of logistic learning. International Journal of Mathematical, 

Engineering and Management Sciences, 2(3), pp. 172-184. 

https://doi.org/10.1145/3180308.3180329


Li et al.: Software Reliability Prediction through Encoder-Decoder … 
 

 

340 | Vol. 7, No. 3, 2022 

Sitte, R. (1999). Comparison of software-reliability-growth predictions: neural networks vs parametric-

recalibration. IEEE Transactions on Reliability, 48(3), pp. 285 291. 

Song, K. Y., Chang, I. H., & Pham, H. (2019). NHPP software reliability model with inflection factor of 

the fault detection rate considering the uncertainty of software operating environments and predictive 

analysis. Symmetry, 11(4), p. 521. 

Su, Y. S., & Huang, C. Y. (2007). Neural-network-based approaches for software reliability estimation 

using dynamic weighted combinational models. Journal of Systems and Software, 80(4), pp. 606-615. 

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural 

networks. Advances in Neural Information Processing Systems, p. 27. 

Tian, L., & Noore, A. (2004). Software reliability prediction using recurrent neural network with Bayesian 

regularization. International Journal of Neural Systems, 14(03), pp. 165-174. 

Tohma, Y., Yamano, H., Ohba, M., & Jacoby, R. (1991, January). Parameter estimation of the hyper-

geometric distribution model for real test/debug data. In Proceedings. 1991 International Symposium 

on Software Reliability Engineering (pp. 28-34). IEEE Computer Society. 

Utkin, L. V., Gurov, S. V., & Shubinsky, M. I. (2002). A fuzzy software reliability model with multiple-

error introduction and removal. International Journal of Reliability, Quality and Safety 

Engineering, 9(03), pp. 215-227. 

Wang, J., Wu, Z., Shu, Y., Zhang, Z., & Xue, L. (2014, July). A study on software reliability prediction 

based on triple exponential smoothing method (WIP). In Proceedings of the 2014 Summer Simulation 

Multiconference (pp. 1-9). 

Wang, J., & Zhang, C. (2018). Software reliability prediction using a deep learning model based on the 

RNN encoder–decoder. Reliability Engineering & System Safety, 170, pp. 73-82. 

Wood, A. (1996). Predicting software reliability. Computer, 29(11), pp. 69-77. 

Yamada, S., Ohba, M., & Osaki, S. (1983). S-shaped reliability growth modeling for software error 

detection. IEEE Transactions on reliability, 32(5), pp. 475-484. 

Yamada, S., & Osaki, S. (1985). Software reliability growth modeling: Models and applications. IEEE 

Transactions on software engineering, (12), pp. 1431-1437. 

Yamada, S. (1992). A stochastic software reliability growth model with Gompertz curve. Journal of 

Information Processing, 15(3), p. 495. 

Yangzhen, F., Hong, Z., Chenchen, Z., & Chao, F. (2017, July). A software reliability prediction model: 

using improved long short term memory network. In 2017 IEEE International Conference on Software 

Quality, Reliability and Security Companion (QRS-C) (pp. 614-615). IEEE. Prague, Czech Republic. 

Zhao, M., & Xie, M. (1996). On maximum likelihood estimation for a general non-homogeneous Poisson 

process. Scandinavian Journal of Statistics, 23, pp. 597-607. 

 

 

 

Original content of this work is copyright ©International Journal of Mathematical, Engineering and Management Sciences. Uses 

under the Creative Commons Attribution 4.0 International (CC BY 4.0) license at https://creativecommons.org/licenses/by/4.0/ 

 


