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Abstract 

The complementary dual of entropy is termed “knowledge measure” in recent studies concerning fuzzy and intuitionistic fuzzy 

sets. A picture fuzzy set is an extended and generalized form of fuzzy and intuitionistic fuzzy sets. The broader perspective of the 

picture fuzzy set inculcated the possibility of the formulation of a picture fuzzy knowledge measure and its potential implications. 

In this paper, we set up an axiomatic framework for obtaining a complementary dual of the picture fuzzy entropy. Subsequently, 

we derive two new knowledge measures that strictly follow the axiomatic requirements. Some empirical investigations establish 

the advantages of our proposed knowledge measure over the existing measures. We also present a novel multiple attribute 

decision-making (MADM) algorithm, wherein the proposed knowledge measure computes attribute weights and exhibits 

encouraging performance. The comparative analysis shows the potential implications and advantages of the proposed measures. 

 

Keywords- Fuzzy set, Picture fuzzy set, Knowledge measure, MADM. 

 

 

 

1. Introduction 
Precision is a virtue in science, and every scientific advancement strives to achieve more precision and 

efficiency. But in certain computations based on expert and knowledge-based systems, vagueness or 

ambiguity are inevitable. Zadeh (1965) formally represented this ambiguity through the conception of the 

fuzzy set (FS). In an FS, an element of the universal set is characterized by independent membership and 

a dependent non-membership degree. Atanassov (1986) proposed an intuitionistic fuzzy set (IFS) as an 

extension of FS that considers membership and non-membership independently with some hesitancy 

degree. Cường (2015) introduced the term picture fuzzy set (PFS), which includes more dimensions of 

vagueness. The picture fuzzy set is a direct generalization of IFS and FS that comprises membership, non-

membership, and neutrality. Also, refusal degrees may be calculated as one minus the sum of 

membership, non-membership, and neutrality degrees. PFS is an important mechanism for soft 

computations in problems concerning pattern analysis, decision-making, clustering, and medical 

diagnosis. 

 

The term “entropy measure” is used to calculate the amount of ambiguity, while the term “knowledge 

measure” quantifies the precision in an FS. De-Luca and Termini (1993) pioneered an axiomatic 
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framework to define a fuzzy entropy measure. Yager (1979) determined an FS's entropy by measuring the 

distance between the fuzzy set and its complement. After that, much investigation on entropy has been 

done regarding classical and non-standard fuzzy sets (Xuecheng, 1992; Burillo and Bustince, 1996; Hung 

and Yang, 2006; Li et al., 2012; Farhadinia, 2013; Pal et al., 2013). Recent attempts to study the 

knowledge measures associated with FS (Singh et al., 2019), IFS (Szmidt and Kacprzyk, 2001; Szmidt 

and Kacprzyk, 2007; Szmidt et al., 2014), and PFS (Arya and Kumar, 2020; Joshi, 2020a). In the context 

of IFS, Szmidt and Kacprzyk (2001) proposed an axiomatic definition for intuitionistic fuzzy entropy. 

Singh et al. (2019) introduced a knowledge measure of a fuzzy set and obtained its non-parametric 

generalization. Singh et al. (2020) and Singh and Ganie (2022) further obtained one- and two-parametric 

generalizations of fuzzy knowledge measure. Guo (2016) introduced a novel knowledge measure and 

gave an axiomatic definition of an IFS knowledge measure. Singh and Ganie (2021) and Lalotra and 

Singh (2020) studied the knowledge measures concerning hesitant fuzzy sets. Khan et al. (2020) studied 

the knowledge measure of q-rung ortho pair fuzzy sets by utilizing the inverse tangent function with a 

graphical representation. An application to multiple attribute group decision-making is also discussed by 

utilizing their proposed knowledge measures. Ganie (2022) presented some knowledge measures based 

on the distance measure of Fermetean fuzzy sets and suggested their application to decision-making 

problems. Recently, Joshi (2023) studied a new entropy-based knowledge measure for fuzzy sets and 

applied it to a decision-making problem. Singh (2023) studied the knowledge measure of dual hesitant 

fuzzy sets and investigated their application in the site selection of solar power plants. 
 

Knowledge generally refers to precise or valuable information in a specific situation. In a fuzzy or non-

standard fuzzy system, a measure of knowledge is, in fact, a complementary dual of entropy, implying 

that the lower the entropy, the more the amount of knowledge. A dual of fuzzy entropy is applicable to 

solve real-life problems in which fuzzy entropy is used. Because fuzzy techniques are adaptive, obtaining 

an independent complementary dual of fuzzy entropy is difficult. A soft complementary dual of fuzzy 

entropy can be obtained and used in situations where fuzzy entropy fails to compute an appropriate result. 

To the best of our knowledge, no study in picture fuzzy framework investigated the complementary dual 

of entropy and its applications. Because of these facts, some natural queries arise.  
 

Can we define a knowledge measure for a picture fuzzy set? How to set up a general methodology to 

define a picture fuzzy knowledge measure? What will be the potential significance and advantage of such 

a measure?  

These queries and the research gap motivated us to consider the present study. The novel contribution in 

this article is as follows: 

• We define a knowledge measure of a picture fuzzy set axiomatically as the complementary dual of an 

entropy measure.  

• We proposed two new picture-fuzzy set knowledge measures as well as their axiomatic validation.  

• We present a MADM algorithm that utilizes picture fuzzy knowledge measures to compute attribute 

weights.  

• We present a comparative analysis to demonstrate the benefits of the proposed knowledge measures. 

 

The remaining content of the paper is structured as follows: We provide the basic terminologies in 

Section 2. In Section 3, we present an axiomatic framework for measuring knowledge. Section 4 offers 

some empirical investigations of the proposed knowledge measure with a comparative analysis. Section 5 

presents the PF-knowledge-based attribute weight computation in the MADM problem, compares the 

proposed knowledge measure with some existing measures based on attribute weight computation, and 

investigates a MADM problem. Finally, Section 6 concludes the whole study and highlights the scope for 

future work. 
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2. Preliminaries 
This section presents necessary concepts that are essential for the progress of the present study.  

Definition 1 (Zadeh, 1965): Let 𝑈 = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛} be a finite universal set. Then a fuzzy set N in U 

is represented as follows: 

𝑁 = {(𝑢𝑖, 𝛼𝑁(𝑢𝑖))| 𝑢𝑖 ∈  𝑈, 𝑖 = 1, 2, 3, … , 𝑛}. 
 

where,  𝛼𝑁 ∶ 𝑈 →  [0, 1]  is called a membership function on U and captures the degree of the 

membership of the generic element of U in the fuzzy set N. In addition,  𝛾𝑁(𝑢𝑖) = 1 − 𝛼𝑁(𝑢𝑖), is known 

as a non-membership degree of   𝑢𝑖  to N   ∀ 𝑢𝑖 ∈  𝑈. The values   𝛼𝑁(𝑢𝑖) and 𝛾𝑁(𝑢𝑖), denote the extent of 

presence and non-presence of 𝑢𝑖 ,  to N, respectively. 

 

Definition 2 (Atanassov, 1986): Let 𝑈 = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛} be a finite universal set. Then an 

intuitionistic fuzzy set O is represented as follows: 

𝑂 = {(𝑢𝑖 , 𝛼𝑂(𝑢𝑖), 𝛽𝑂(𝑢𝑖))| 𝑢𝑖 ∈  𝑈, 𝑖 = 1, 2, 3, … , 𝑛}. 
 

such that 0 ≤ 𝛼𝑂(𝑢𝑖) + 𝛽𝑂(𝑢𝑖) ≤ 1. Where  𝛼𝑂: 𝑈 →  [0, 1] and β𝑂: 𝑈 →  [0, 1] are the membership and 

non-membership functions, respectively. In addition, 𝜋𝑂(𝑢𝑖) = 1 − 𝛼𝑂(𝑢𝑖) − β𝑂(𝑢𝑖), is known as the 

hesitancy degree of   𝑢𝑖  to O   ∀ 𝑢𝑖 ∈  𝑈. The values 𝛼𝑂(𝑢𝑖) and 𝛽𝑂(𝑢𝑖), denote the extent of presence 

and non-presence of  𝑢𝑖 ,  in O, respectively. 

 

Definition 3 (Cường, 2015): The picture fuzzy set represents an element of a finite universal set 𝑈 =
{𝑢1, 𝑢2, … , 𝑢𝑛} with a specific membership degree (𝛼), neutrality degree (𝛽),  and non-membership 

degree (γ) as long as the sum of all membership, non-membership, and neutrality degrees is less than or 

equal to one. Mathematically, we write it as: 

𝑃 = {(𝑢𝑖, 𝛼𝑃(𝑢𝑖), 𝛽𝑃(𝑢𝑖), γ𝑃(𝑢𝑖))|𝑢𝑖 ∈ 𝑈, 𝑖 = 1,2,… , 𝑛}. 
 

such that, 0 ≤ 𝛼𝑃(𝑢𝑖) + 𝛽𝑃(𝑢𝑖) + 𝛾𝑃(𝑢𝑖) ≤ 1. Where  𝛼𝑃: 𝑈 → [0, 1],  𝛽𝑃: 𝑈 →  [0, 1] and  γ𝑃: 𝑈 →
 [0, 1]  represents membership, neutrality, and non-membership function, respectively. In 

addition, 𝛿𝑃(𝑢𝑖) = 1 − (𝛼𝑃(𝑢𝑖) + 𝛽𝑃(𝑢𝑖) + 𝛾𝑃(𝑢𝑖)), is known as a refusal of   𝑢𝑖  to P   ∀ 𝑢𝑖 ∈  𝑈. 

 

The function 𝛿𝑃(𝑢𝑖) = 1 − (𝛼𝑃(𝑢𝑖) + 𝛽𝑃(𝑢𝑖) + 𝛾𝑃(𝑢𝑖)) is termed as a refusal of an element 𝑢𝑖. 
 

Remark 1: When 𝛽𝑃(𝑢𝑖) = 0, then PFS becomes IFS, and when 𝛽𝑃(𝑢𝑖) = 0 and 𝛾𝑃(𝑢𝑖) = 0, then PFS 

becomes FS. 

 

Operation on PF-sets (Cường, 2015): For any 𝑃, 𝑄 ∈  𝑃𝐹𝑆(𝑈), the following are the definitions for 

operations like union, intersection, complement, and encompassing relation: 

(i) Union of P and Q: 

𝑃 ∪ 𝑄 = {(𝑢𝑖, 𝛼𝑃∪𝑄(𝑢𝑖), 𝛽𝑃∪𝑄(𝑢𝑖), 𝛾𝑃∪𝑄(𝑢𝑖)) |𝑢𝑖 ∈ 𝑈, 𝑖 = 1,2, … , 𝑛 }.  

where,    𝛼𝑃∪𝑄(𝑢) = max{𝛼𝑃(𝑢𝑖), 𝛼𝑄(𝑢𝑖)},   𝛽𝑃∪𝑄(𝑢𝑖) = min{𝛽𝑃(𝑢𝑖), 𝛽𝑄(𝑢𝑖)}. 
 

and 𝛾𝑃∪𝑄(𝑢𝑖) = min{𝛾𝑃(𝑢𝑖), 𝛾𝑄(𝑢𝑖)}. 

 

(ii) Intersection of P and Q: 

𝑃 ∩ 𝑄 = {(𝑢𝑖, 𝛼𝑃∩𝑄(𝑢𝑖), 𝛽𝑃∩𝑄(𝑢𝑖), 𝛾𝑃∩𝑄(𝑢𝑖)) |𝑢𝑖 ∈ 𝑈, 𝑖 = 1,2, … , 𝑛 }. 
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where, 𝑡𝑃∩𝑄(𝑢𝑖) = min{𝛼𝑃(𝑢𝑖), 𝛼𝑄(𝑢𝑖)}, 𝛽𝑃∩𝑄(𝑢𝑖) = min{𝛽𝑃(𝑢𝑖), 𝛽𝑄(𝑢𝑖)}. 

and 𝛾𝑃∩𝑄(𝑢𝑖) = max{𝛾𝑃(𝑢𝑖), 𝛾𝑄(𝑢𝑖)}. 

 

(iii) Complement of P: 

𝑃𝑐 = {(𝑢𝑖, 𝛾𝑃(𝑢𝑖), 𝛽𝑃(𝑢𝑖), 𝛼𝑃(𝑢𝑖))|𝑢𝑖 ∈ 𝑈, 𝑖 = 1,2,… , 𝑛 }. 
 

(iv) Subset: 

P is said to be a subset of Q (𝑃 ⊆ 𝑄) if and only if ∀ 𝑢𝑖 ∈ 𝑈 it holds that: 

𝛼𝑃(𝑢𝑖) ≤ 𝛼𝑄(𝑢𝑖),   𝛽𝑃(𝑢𝑖) ≤ 𝛽𝑄(𝑢𝑖)   and     𝛾𝑃(𝑢𝑖) ≥ 𝛾𝑄(𝑢𝑖). 

 

Definition 4 (Hessian matrix): Let 𝐹(𝜇1, 𝜇2, 𝜇3, 𝜇4) be a function of four variables, then the Hessian 

matrix of a function F is given by, 

𝐻𝐸𝑁̃(𝐹) =

[
 
 
 
 
 
 
 
 
 
𝜕2𝐹

𝜕𝜇1
2

𝜕2𝐹

𝜕𝜇2𝜕𝜇1

𝜕2𝐹

𝜕𝜇3𝜕𝜇1

𝜕2𝐹

𝜕𝜇4𝜕𝜇1
𝜕2𝐹

𝜕𝜇1𝜕𝜇2

𝜕2𝐹

𝜕𝜇2
2

𝜕2𝐹

𝜕𝜇3𝜕𝜇2

𝜕2𝐹

𝜕𝜇4𝜕𝜇2
𝜕2𝐹

𝜕𝜇1𝜕𝜇3
𝜕2𝐹

𝜕𝜇1𝜕𝜇4

𝜕2𝐹

𝜕𝜇2𝜕𝜇3
𝜕2𝐹

𝜕𝜇2𝜕𝜇4

𝜕2𝐹

𝜕𝜇3
2

𝜕2𝐹

𝜕𝜇3𝜕𝜇4

𝜕2𝐹

𝜕𝜇4𝜕𝜇3
𝜕2𝐹

𝜕𝜇4
2 ]
 
 
 
 
 
 
 
 
 

. 

 

The function F is convex and concave at a point in its domain according as 𝐻𝐸𝑁̃(𝐹) is positive semi-

definite and negative semi-definite, respectively. 

 

Definition 5 (Idempotent matrix): A square matrix M of order n is said to be idempotent if 𝑀2 = 𝑀. 

Note 1: Matrix 𝐼 − 𝑀 =
1

𝑛
[
𝑛 − 1 ⋯ −1
⋮ ⋱ ⋮
−1 ⋯ 𝑛 − 1

]

𝑛×𝑛

is also an idempotent matrix of order n, where I is an 

identity matrix of order n. 

 

Note 2: Eigenvalues of an idempotent matrix always equal 0 and 1. 

 

The entropy of a fuzzy set measures the amount of information present in it. Referring to Shannon’s 

probabilistic entropy,  (De Luca and Termini, 1972) pioneered a fuzzy entropy to estimate the amount of 

vagueness in a fuzzy set.  

 

Definition 6 (De Luca and Termini, 1993): A real-valued function 𝐸̃: 𝐹𝑆(𝑈):→ [0,∞] is called an 

entropy for FS if for all 𝑃 ∈ 𝐹𝑆(𝑈) it satisfies the following set of axioms: 

F-𝐄̃𝟏: 𝐸̃(𝑃) = 0 if and only if P is a crisp set; 

F-𝐄̃𝟐: 𝐸̃(𝑃) is maximum if and only if 𝛼𝑃(𝑢𝑖) =
1

2
; 

F-𝐄̃𝟑: 𝐸̃(𝑃) ≤  𝐸̃(𝑄) if 𝑃 is crisper than 𝑄, that is,  𝛼𝑃(𝑢𝑖) ≤  𝛼𝑄(𝑢𝑖) if  𝛼𝑄(𝑢𝑖) ≤
1

2
 and  𝛼𝑃(𝑢𝑖) ≥  𝛼𝑄(𝑢𝑖) if 

 𝛼𝑄(𝑢𝑖) ≥
1

2
; 

F-𝐄̃𝟒: 𝐸̃(𝑃) = 𝐸̃(𝑃𝑐), where 𝑃𝑐  represents the complement of 𝑃. 
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Definition 7 (Szmidt and Kacprzyk, 2001): A real-valued function  𝐸̌: 𝐼𝐹𝑆(𝑈):→ [0,∞] is called an 

entropy for IFS if for all 𝑃 ∈ 𝐼𝐹𝑆(𝑈) it satisfies the following set of axioms: 

IF-𝑬̌𝟏: 𝐸̌(𝑃) = 0 if and only if P is a crisp set; 

IF-𝑬̌𝟐: 𝐸̌(𝑃) assumes a unique maximum if 𝛼𝑃(𝑢𝑖) = 𝛾𝑃(𝑢𝑖) for all 𝑖 ; 
IF-𝑬̌𝟑:𝐸̌(𝑃) ≤  𝐸̌(𝑄) if 𝑃 is less fuzzy than 𝑄, that is, 𝛼𝑃(𝑢𝑖) ≤ 𝛼𝑄(𝑢𝑖), 𝛾𝑃(𝑢𝑖) ≥ 𝛾𝑄(𝑢𝑖),  for 𝛼𝑄(𝑢𝑖) ≤

𝛾𝑄(𝑢𝑖) or  𝛼𝑃(𝑢𝑖) ≥ 𝛼𝑄(𝑢𝑖), 𝛾𝑃(𝑢𝑖) ≥ 𝛾𝑄(𝑢𝑖),  for 𝛼𝑄(𝑢𝑖) ≤ 𝛾𝑄(𝑢𝑖); 

IF-𝑬̌𝟒: 𝐸̌(𝑃) = 𝐸̌(𝑃𝑐), where 𝑃𝑐  represents the complement of P. 

 

Since, in an intuitionistic fuzzy representation, we have three components (𝛼, 𝛾, 𝜋) with the condition 𝛼 +
𝛾 + 𝜋 = 1, assuming (𝛼, 𝛾, 𝜋) as a probability distribution, Hung and Yang (2006) extended the concept 

of fuzzy entropy by (Luca and Termini, 1972) to intuitionistic fuzzy entropy given in the following way. 

 

Definition 8 (Hung and Yang, 2006):  A real-valued function 𝐸̃: 𝐼𝐹𝑆(𝑈):→ [0,∞] is called an entropy for 

IFS if for all 𝑃 ∈ 𝐼𝐹𝑆(𝑈) it satisfies the following set of axioms: 

IF-𝐄̃𝟏: 𝐸̃(𝑃) = 0 if and only if P is a crisp set; 

IF-𝐄̃𝟐: 𝐸̃(𝑃) assumes a unique maximum if 𝛼𝑃(𝑢𝑖) = 𝛾𝑃(𝑢𝑖) = 𝜋𝑃(𝑢𝑖) =
1

3
 ; 

IF-𝐄̃𝟑:𝐸̃(𝑃) ≤  𝐸̃(𝑄) if 𝑃 is crisper than 𝑄, that is, 𝛼𝑃(𝑢𝑖) ≥ 𝛼𝑄(𝑢𝑖), 𝛾𝑃(𝑢𝑖) ≥ 𝛾𝑄(𝑢𝑖),   for 

 min (𝛼𝑄(𝑢𝑖), 𝛾𝑄(𝑢𝑖)) ≥
1

3
  and  𝛼𝑃(𝑢𝑖) ≤ 𝛼𝑄(𝑢𝑖), 𝛾𝑃(𝑢𝑖) ≤ 𝛾𝑄(𝑢𝑖), for  max (𝛼𝑄(𝑢𝑖), 𝛾𝑄(𝑢𝑖)) ≤

1

3 
 ;  

IF-𝐄̃𝟒: 𝐸̃(𝑃) = 𝐸̃(𝑃𝑐), where 𝑃𝑐  represents the complement of P. 

 

Since, PFSs are the generalization of IFSs, which have four components (𝛼𝑃 , 𝛽𝑃 , 𝛾𝑃 , 𝛿𝑃) in their full form 

with the condition 𝛿𝑃 + 𝛼𝑃 + 𝛽𝑃 + 𝛾𝑃 = 1. Consequently, taking into account the four parametric 

descriptions of PFSs, Joshi (2020a) expanded the definition of Hung and Yang (2006) to the following 

definition of picture fuzzy entropy.  

 

Definition 9 (Joshi, 2020a): A real-valued function 𝐸̃: 𝑃𝐹𝑆(𝑈):→ [0,∞] is called an entropy for PFS if 

for all 𝑃 ∈ 𝑃𝐹𝑆(𝑈) it satisfies the following set of axioms: 

PF-𝐄̃𝟏 (Sharpness): 𝐸̃(𝑃) = 0 if and only if P is a crisp set; 

PF-𝐄̃𝟐 (Maximality): 𝐸̃(𝑃) assumes a unique maximum if 𝛼𝑃(𝑢𝑖) = 𝛽𝑃(𝑢𝑖) = 𝛾𝑃(𝑢𝑖) = 𝛿𝑃(𝑢𝑖) =
1

4
 ; 

PF-𝐄̃𝟑 (Resolution): 𝐸̃(𝑃) ≤  𝐸̃(𝑄) if 𝑃 is crisper than 𝑄  , i.e., 𝛼𝑃(𝑢𝑖) ≥ 𝛼𝑄(𝑢𝑖), 𝛽𝑃(𝑢𝑖) ≥ 𝛽𝑄(𝑢𝑖) ,

𝛾𝑃(𝑢𝑖) ≥ 𝛾𝑄(𝑢𝑖), for  min (𝛼𝑄(𝑢𝑖), 𝛽𝑄(𝑢𝑖), 𝛾𝑄(𝑢𝑖)) ≥
1

4
  and  𝛼𝑃(𝑢𝑖) ≤ 𝛼𝑄(𝑢𝑖), 𝛽𝑃(𝑢𝑖) ≤ 𝛽𝑄(𝑢𝑖) ,

𝛾𝑃(𝑢𝑖) ≤ 𝛾𝑄(𝑢𝑖), for  max(𝛼𝑄(𝑢𝑖), 𝛽𝑄(𝑢𝑖), 𝛾𝑄(𝑢𝑖)) ≤
1

4 
 ;  

PF-𝐄̃𝟒 (Symmetry):𝐸̃(𝑃) = 𝐸̃(𝑃𝑐) where 𝑃𝑐  represents the complement of P. 

 

Definition 10 (Bustince et al., 2006): A real-valued strictly increasing function 𝜑: [0,1] → [0,1] 
with   𝜑(0) = 0, and  𝜑(1) = 1  is known as automorphism of the unit interval. 

 

In conventional fuzzy theory, the crispness of the set means the membership degree of elements of the 

universal set is either 0 or 1. While dealing with the picture fuzzy set, the presence of an element of the 

universal set can be thought of positively or negatively. Mathematically, in the picture fuzzy framework, 

the representations of these two situations are (1,0,0) and (0,0,1), respectively. Clearly, (1,0,0) and (0,0,1) 

complement each other in a picture-fuzzy environment. Furthermore, in conventional fuzzy theory, a set 

P is the fuzziest if each element of the universal set has a membership value equal to 0.5. In the picture 

fuzzy representation, this situation is equivalent to the fact that all the components of the picture fuzzy 
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representation are equal to 0.25, and the sum of all these components equals one. 

 

In the next section, we present an axiomatic framework for the knowledge measure of a picture fuzzy set. 

 

3. Proposed Framework for Knowledge Measure of a PFS 
We discuss the theoretical background of non-probabilistic entropy before introducing the axiomatic 

definition of picture fuzzy knowledge measure. 

 

3.1 Background 
A measure of entropy in a standard or non-standard fuzzy set N estimates the amount of vagueness 

present in N. The natural requirements for valid fuzzy/non-standard fuzzy entropy are: 

NE1(Sharpness): Entropy is zero for a crisp set. 

NE2 (Maximality): Entropy is the maximum in the equilibrium state or most fuzzy state. 

NE3 (Resolution): Entropy is smaller for the crisper set. 

NE4 (Symmetry): Entropy of a fuzzy set equals its complement. 

 

In the following, we present mathematical interpretations of the fuzziest state and relative crispness in 

various versions of fuzzy set. 

 
A. Interpretations of Most Fuzzy State for Classical Fuzzy Set 

We know that a standard or classical fuzzy set P is most fuzzy if membership degree = non-membership 

degree = 
1

2
 , i.e., 

𝛼𝑃(𝑢𝑖) =  𝛾𝑃(𝑢𝑖) = 1 − 𝛼𝑃(𝑢𝑖) =
1

2
. 

 

In other words, P becomes crisper as soon as 𝛼𝑃(𝑢𝑖) approaches 0 or 1. In fact, P becomes crisper as 

𝛼𝑃(𝑢𝑖) approaches 0 whenever 𝛼𝑃(𝑢𝑖) ≤
1

2
,  and 𝛼𝑃(𝑢𝑖) approaches whenever 𝛼𝑃(𝑢𝑖) ≥

1

2
. 

 

We can also interpret this as follows: 

P becomes crisper as 𝛼𝑃(𝑢𝑖) approaches 0, and  𝛾𝑃(𝑢𝑖) approaches 1 whenever 𝛼𝑃(𝑢𝑖) ≤
1

2
≤ 𝛾𝑃(𝑢𝑖). 

or, P becomes crisper as 𝛼𝑃(𝑢𝑖) approaches 1, and  𝛾𝑃(𝑢𝑖) approaches 0 whenever 𝛼𝑃(𝑢𝑖) ≥
1

2
≥ 𝛾𝑃(𝑢𝑖). 

 

B. Comparison of the Crispness of two Fuzzy Sets (Interpretation I) 

If P and Q be two fuzzy sets in a universe U, then P is said to be crisper than Q in two situations.  

Case I: When 𝛼𝑃(𝑢𝑖) ≤
1

2
. 

    P is said to be crisper than Q if  𝛼𝑃(𝑢𝑖) ≤ 𝛼𝑄(𝑢𝑖). 

 

Case II: When 𝛼𝑃(𝑢𝑖) ≥
1

2
. 

    P is said to be crisper than Q if  𝛼𝑃(𝑢𝑖) ≥ 𝛼𝑄(𝑢𝑖). 

 

C. Comparison of the Crispness of Two Fuzzy Sets (Interpretation II) 

If P and Q be two fuzzy sets in a universe U, then P is said to be crisper than Q in two situations.  

Case I: When 𝛼𝑃(𝑢𝑖) ≤
1

2
. 

P is said to be crisper than Q if 𝛼𝑃(𝑢𝑖) ≤ 𝛼𝑄(𝑢𝑖)  for max{𝛼𝑃(𝑢𝑖), 𝛼𝑄(𝑢𝑖)} ≤
1

2
. 
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Case II: When 𝛼𝑃(𝑢𝑖) ≥
1

2
. 

P is said to be crisper than Q if 𝛼𝑃(𝑢𝑖) ≥ 𝛼𝑄(𝑢𝑖) for min{𝛼𝑃(𝑢𝑖), 𝛼𝑄(𝑢𝑖)} ≥
1

2
. 

 

Remark 2: The above two interpretations reveal that more the membership value of a set is away from 

the equilibrium point 
1

2
 as shown in Figure 1(A), the crisper the fuzzy set. 

 

D. Interpretation of Most Fuzzy State for an Intuitionistic Fuzzy Set 

We know that an intuitionistic fuzzy set P is most fuzzy if membership degree = non-membership 

degree, 𝑖. 𝑒.,  
𝛼𝑃(𝑢𝑖) =  𝛾𝑄(𝑢𝑖). 

 

In other words, P becomes crisper as soon as (𝛼𝑃(𝑢𝑖), 𝛾𝑃(𝑢𝑖) ) moves away from the line 𝛼𝑃(𝑢𝑖) =
 𝛾𝑃(𝑢𝑖) within the right-angled triangle shown in Figure 1(B).  

 

E. Comparison of the Crispness of Two Intuitionistic Fuzzy Sets (Interpretation I) 

If P and Q be two intuitionistic fuzzy sets in a universe U, then P is said to be crisper than Q.  

if 𝛼𝑃(𝑢𝑖) ≤ 𝛼𝑄(𝑢𝑖)  and  𝛾𝑃(𝑢𝑖) ≥ 𝛾𝑄(𝑢𝑖)  for   𝛼𝑃(𝑢𝑖) ≤ 𝛾𝑄(𝑢𝑖). 

or 𝛼𝑃(𝑢𝑖) ≥ 𝛼𝑄(𝑢𝑖) and  𝛾𝑃(𝑢𝑖) ≤ 𝛾𝑄(𝑢𝑖)  for   𝛼𝑃(𝑢𝑖) ≥ 𝛾𝑄(𝑢𝑖). 

 

Remark 3: Interpretations I reveal that the more the membership-non-membership value pair of a set is 

away from the equilibrium line as shown in Figure 1(B), the crisper the fuzzy set. 

 

F. Comparison of the Crispness of Two Intuitionistic Fuzzy Sets (Interpretation II) 

If P and Q be two fuzzy sets in a universe U, then P is said to be crisper than Q. 

if 𝛼𝑃(𝑢𝑖) ≤ 𝛼𝑄(𝑢𝑖)  and  𝛾𝑃(𝑢𝑖) ≤ 𝛾𝑄(𝑢𝑖) for max{𝛼𝑄(𝑢𝑖), 𝛾𝑄(𝑢𝑖)} ≤
1

3
. 

or 𝛼𝑃(𝑢𝑖) ≥ 𝛼𝑄(𝑢𝑖) and  𝛾𝑃(𝑢𝑖) ≥ 𝛾𝑄(𝑢𝑖) for min{𝛼𝑄(𝑢𝑖), 𝛾𝑄(𝑢𝑖)} ≥
1

3
. 

 

Remark 4: The interpretations-II reveals that more the intuitionistic fuzzy set P is away from the 

equilibrium point (
1

3
,
1

3
,
1

3
), the crisper the fuzzy set. The point (

1

3
,
1

3
,
1

3
) falls within the cube shown in 

Figure 1(C). This interpretation is better than interpretation-I in the sense that the resolution property of 

standard fuzzy sets can directly be deduced from this interpretation.  

 

It is interesting to note that the resolution property in interpretation-I has an infinite number of points of 

maximum fuzziness and ignores the role of hesitancy. However, interpretation II encompasses the role of 

hesitancy and considers a unique point of maximum hesitancy. 

 

Because of these observations, the resolution property for picture fuzzy sets can be considered as follows.  

 

G. Resolution Property in Picture Fuzzy Sets (RPFSs) 

A picture fuzzy set P is said to be most fuzzy if 𝛼𝑃(𝑢𝑖) = 𝛽𝑃(𝑢𝑖) = 𝛾𝑃(𝑢𝑖) = 𝛿𝑃(𝑢𝑖) =
1

4
 . 

If P and Q be two fuzzy sets in a universe U, then P is said to be crisper than Q. 

 

If 𝛼𝑃(𝑢𝑖) ≤ 𝛼𝑄(𝑢𝑖) , 𝛽𝑃(𝑢𝑖) ≤ 𝛽𝑄(𝑢𝑖) and 𝛾𝑃(𝑢𝑖) ≤ 𝛾𝑄(𝑢𝑖) for max{𝛼𝑄(𝑢𝑖), 𝛽𝑄(𝑢𝑖), 𝛾𝑄(𝑢𝑖)} ≤
1

4
. 

or 



Sharma et al.: Picture Fuzzy Knowledge Measure with Application to MADM 
 

 

657 | Vol. 8, No. 4, 2023 

𝛼𝑃(𝑢𝑖) ≥ 𝛼𝑄(𝑢𝑖) , 𝛽𝑃(𝑢𝑖) ≥ 𝛽𝑄(𝑢𝑖) and  𝛾𝑃(𝑢𝑖) ≥ 𝛾𝑄(𝑢𝑖) for min{𝛼𝑄(𝑢𝑖), 𝛽𝑄(𝑢𝑖), 𝛾𝑄(𝑢𝑖)} ≥
1

4
. 

 

 
 

Figure 1. Interpretation of the fuzziest state. 

 

Property 1: If RPFSs hold then 

|𝛼𝑃(𝑢𝑖) −
1

4
| + |𝛽𝑃(𝑢𝑖) −

1

4
| + |𝛾𝑃(𝑢𝑖) −

1

4
| + |𝛿𝑃(𝑢𝑖) −

1

4
|

≥ |𝛼𝑄(𝑢𝑖) −
1

4
| + |𝛽𝑄(𝑢𝑖) −

1

4
| + |𝛾𝑄(𝑢𝑖) −

1

4
| + |𝛿𝑄(𝑢𝑖) −

1

4
| 

(1) 

and  

(𝛼𝑃(𝑢𝑖) −
1

4
)
2

+ (𝛽𝑃(𝑢𝑖) −
1

4
)
2

+ (𝛾𝑃(𝑢𝑖) −
1

4
)
2

+ (𝛿𝑃(𝑢𝑖) −
1

4
)
2

≥ (𝛼𝑄(𝑢𝑖) −
1

4
)
2

+ (𝛽𝑄(𝑢𝑖) −
1

4
)
2

+ (𝛾𝑄(𝑢𝑖) −
1

4
)
2

+ (𝛿𝑄(𝑢𝑖) −
1

4
)
2

 

(2) 

 

Proof: If 𝛼𝑃(𝑢𝑖) ≤ 𝛼𝑄(𝑢𝑖), 𝛽𝑃(𝑢𝑖) ≤ 𝛽𝑄(𝑢𝑖) and 𝛾𝑃(𝑢𝑖) ≤  𝛾𝑄(𝑢𝑖)  

with max{𝛼𝑄(𝑢𝑖), 𝛽𝑄(𝑢𝑖), 𝛾𝑄(𝑢𝑖)} ≤
1

4
 then, 𝛼𝑃(𝑢𝑖) ≤ 𝛼𝑄(𝑢𝑖) ≤

1

4
;  𝛽𝑃(𝑢𝑖) ≤ 𝛽𝑄(𝑢𝑖) ≤

1

4
;  𝛾𝑃(𝑢𝑖) ≤

 𝛾𝑄(𝑢𝑖) ≤
1

4
 and 𝛿𝑃(𝑢𝑖) ≥ 𝛿𝑄(𝑢𝑖) ≥

1

4
 which implies that Eq. (1) and Eq. (2) hold. 

 

Similarly, if 

𝛼𝑃(𝑢𝑖) ≥ 𝛼𝑄(𝑢𝑖), 𝛽𝑃(𝑢𝑖) ≥ 𝛽𝑄(𝑢𝑖) and 𝛾𝑃(𝑢𝑖) ≥  𝛾𝑄(𝑢𝑖) with min{𝛼𝑄(𝑢𝑖), 𝛽𝑄(𝑢𝑖), 𝛾𝑃(𝑢𝑖)} ≥
1

4
 then, 

Eq. (1) and Eq. (2) hold. 

 

The distance between two IFSs was proposed by Szmidt and Kacprzyk (2000) as the distance between 

their parameters (𝛼, 𝛽, 𝜋). Two common distance measurements used to determine the separation between 

two IFSs are the Euclidean distance and the Hamming distance. As PFS are the generalizations of IFS 

with four parameters (𝛼, 𝛽, 𝛾, 𝛿) therefore extending the idea of IFSs to PFSs it may be concluded from 

Property-I that the PFS 𝑄 is closer to the fuzziest value (
1

4
,
1

4
,
1

4
,
1

4
) than PFS P. 

 

Now, we introduce an axiomatic definition of knowledge measure as a complementary dual of entropy of 

a picture fuzzy set. 
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3.2 Knowledge Measure of a PFS 
Because of the duality of entropy and knowledge measure, we introduce the following axiomatic 

definition of a picture fuzzy knowledge measure. 

 

Definition 11: Let 𝐾̃1: 𝑃𝐹𝑆(𝑈) → [0,1] be a real function and is known as a knowledge measure for PFS 

if for all 𝑃 ∈ 𝑃𝐹𝑆(𝑈) it satisfies the following axioms:  

PF-𝑲̃𝟏
𝟏 (Sharpness): 𝐾̃1(𝑃) = 1 ⇔ 𝑃  is a crisp set; 

PF-𝑲̃𝟏
𝟐 (Minimality): 𝐾̃1(𝑃)assumes a unique minimum if 𝛼𝑃(𝑢𝑖) = 𝛽𝑃(𝑢𝑖) = 𝛾𝑃(𝑢𝑖) = 𝛿𝑃(𝑢𝑖) =

1

4
; 

PF-𝑲̃𝟏
𝟑 (Resolution): 𝐾̃1(𝑃) ≥ 𝐾̃1(𝑄) if 𝑃 is crisper than 𝑄, that is, 𝛼𝑃(𝑢𝑖) ≥ 𝛼𝑄(𝑢𝑖), 𝛽𝑃(𝑢𝑖) ≥

𝛽𝑄(𝑢𝑖), 𝛾𝑃(𝑢𝑖) ≥ 𝛾𝑄(𝑢𝑖) for min (𝛼𝑄(𝑢𝑖), 𝛽𝑄(𝑢𝑖), 𝛾𝑄(𝑢𝑖)) ≥
1

4
 and  𝛼𝑃(𝑢𝑖) ≤ 𝛼𝑄(𝑢𝑖), 𝛽𝑃(𝑢𝑖) ≤

𝛽𝑄(𝑢𝑖) , 𝛾𝑃(𝑢𝑖) ≤ 𝛾𝑄(𝑢𝑖) for max(𝛼𝑄(𝑢𝑖), 𝛽𝑄(𝑢𝑖), 𝛾𝑄(𝑢𝑖)) ≤
1

4
; 

 PF-𝑲̃𝟏
𝟒 (Symmetry): 𝐾̃1(𝑃) = 𝐾̃1(𝑃

𝑐) where 𝑃𝑐represents the complement of P. 

 

Following Theorem 1 introduces a novel knowledge measure. 

 

Theorem 1: Let P be a picture fuzzy set, then 𝐾̃1(𝑃) defined in Eq. (3) is a valid knowledge measure of a 

picture fuzzy set. 

𝐾̃1(𝑃) =
1

𝑛
∑[(𝛼𝑃(𝑢𝑖))

3
+ (𝛽𝑃(𝑢𝑖))

3
+ (𝛾𝑃(𝑢𝑖))

3
+ (𝛿𝑃(𝑢𝑖))

3
− 𝛼𝑃(𝑢𝑖)𝛽𝑃(𝑢𝑖)𝛾𝑃(𝑢𝑖)

𝑛

𝑖=1

− 𝛽𝑃(𝑢𝑖)𝛾𝑃(𝑢𝑖)𝛿𝑃(𝑢𝑖) − 𝛼𝑃(𝑢𝑖)𝛿𝑃(𝑢𝑖)𝛽𝑃(𝑢𝑖) − 𝛼𝑃(𝑢𝑖)𝛾𝑃(𝑢𝑖)𝛿𝑃(𝑢𝑖)]. 

(3) 

 

Proof: We verify the axioms PF-𝐾̃1
1 to PF-𝐾̃1

4 given in Definition 11. 

PF-𝑲̃𝟏
𝟏 (Sharpness): First, suppose 𝐾̃1(𝑃) = 1, we have, 

(𝛼𝑃(𝑢𝑖))
3
+ (𝛽𝑃(𝑢𝑖))

3
+ (𝛾𝑃(𝑢𝑖))

3
+ (𝛿𝑃(𝑢𝑖))

3
− 𝛼𝑃(𝑢𝑖)𝛽𝑃(𝑢𝑖)𝛾𝑃(𝑢𝑖) − 𝛽𝑃(𝑢𝑖)𝛾𝑃(𝑢𝑖)𝛿𝑃(𝑢𝑖)

− 𝛼𝑃(𝑢𝑖)𝛿𝑃(𝑢𝑖)𝛽𝑃(𝑢𝑖) − 𝛼𝑃(𝑢𝑖)𝛾𝑃(𝑢𝑖)𝛿𝑃(𝑢𝑖) = 1 
(4) 

Eq. (4) will hold only if  

Case1: Either, 𝛼𝑃(𝑢𝑖) = 1, 𝛽𝑃(𝑢𝑖) = 0, 𝛾𝑃(𝑢𝑖) = 0, 𝛿𝑃(𝑢𝑖) = 0; 
Case2: or 𝛼𝑃(𝑢𝑖) = 0, 𝛽𝑃(𝑢𝑖) = 1, 𝛾𝑃(𝑢𝑖) = 0, 𝛿𝑃(𝑢𝑖) = 0; 
Case3: or 𝛼𝑃(𝑢𝑖) = 0, 𝛽𝑃(𝑢𝑖) = 0, 𝛾𝑃(𝑢𝑖) = 1,   𝛿𝑃(𝑢𝑖) = 0; 
Case4: or 𝛼𝑃(𝑢𝑖) = 0, 𝛽𝑃(𝑢𝑖) = 0, 𝛾𝑃(𝑢𝑖) = 0, 𝛿𝑃(𝑢𝑖) = 1. 
In all of these cases 𝐾̃1(𝑃) = 1 indicates that P is a crisp set. 

 

Contrary, we suppose P is a crisp set; then, we have, 

Case1: Either, 𝛼𝑃(𝑢𝑖) = 1, 𝛽𝑃(𝑢𝑖) = 0, 𝛾𝑃(𝑢𝑖) = 0, 𝛿𝑃(𝑢𝑖) = 0; 
Case2: or 𝛼𝑃(𝑢𝑖) = 0, 𝛽𝑃(𝑢𝑖) = 1, 𝛾𝑃(𝑢𝑖) = 0, 𝛿𝑃(𝑢𝑖) = 0; 
Case3: or 𝛼𝑃(𝑢𝑖) = 0, 𝛽𝑃(𝑢𝑖) = 0, 𝛾𝑃(𝑢𝑖) = 1,   𝛿𝑃(𝑢𝑖) = 0; 
Case4: or 𝛼𝑃(𝑢𝑖) = 0, 𝛽𝑃(𝑢𝑖) = 0, 𝛾𝑃(𝑢𝑖) = 0, 𝛿𝑃(𝑢𝑖) = 1. 
In all the cases, we have 𝐾̃1(𝑃) = 1.  

Thus, 𝐾̃1(𝑃) = 1 if and only if P is a crisp set. 

 

PF-𝑲̃𝟏
𝟐(Minimality): 𝐾̃1(𝑃) assumes a unique minimum if  𝛼𝑃(𝑢𝑖) = 𝛽𝑃(𝑢𝑖) = 𝛾𝑃(𝑢𝑖) = 𝛿𝑃(𝑢𝑖) =

1

4
. 

Since, (𝛼𝑃(𝑢𝑖))
3
+ (𝛽𝑃(𝑢𝑖))

3
+ (𝛾𝑃(𝑢𝑖))

3
+ (𝛿𝑃(𝑢𝑖))

3
− 𝛼𝑃(𝑢𝑖)𝛽𝑃(𝑢𝑖)𝛾𝑃(𝑢𝑖) − 𝛽𝑃(𝑢𝑖)𝛾𝑃(𝑢𝑖)𝛿𝑃(𝑢𝑖) −

𝛼𝑃(𝑢𝑖)𝛿𝑃(𝑢𝑖)𝛽𝑃(𝑢𝑖) − 𝛼𝑃(𝑢𝑖)𝛾𝑃(𝑢𝑖)𝛿𝑃(𝑢𝑖) = 1.  



Sharma et al.: Picture Fuzzy Knowledge Measure with Application to MADM 
 

 

659 | Vol. 8, No. 4, 2023 

To obtain the minimum value of the proposed function, we apply Lagrange’s method of the undetermined 

multiplier. Thus, the Lagrangian of the proposed measure defined in Eq. (3) is written as, 

ψ(𝛼𝑃 , 𝛽𝑃 , 𝛾𝑃 ,  𝛿𝑃) = ϕ(𝛼𝑃 , 𝛽𝑃 , 𝛾𝑃 , 𝛿𝑃) + λ ξ(𝛼𝑃 , 𝛽𝑃 , 𝛾𝑃 , 𝛿𝑃).                                                                     (5) 

 

where, ξ(𝛼𝑃 , 𝛽𝑃 , 𝛾𝑃 ,  𝛿𝑃) = 𝛼𝑃(𝑢𝑖) + 𝛽𝑃(𝑢𝑖) + 𝛾𝑃(𝑢𝑖) + 𝛿𝑃(𝑢𝑖) − 1 and λ is an undetermined 

multiplier. To calculate the smallest value of ψ, we differentiate Equation (5) partially concerning 𝛼𝑃 , 𝛽𝑃 ,
𝛾𝑃 ,  𝛿𝑃   and by putting the partial derivative obtained is equal to zero, we find 𝛼𝑃(𝑢𝑖) =  𝛽𝑃(𝑢𝑖) =

𝛾𝑃(𝑢𝑖) =  𝛿𝑃 (𝑢𝑖) =
1

4
 as a stationary point.  

 

Now, we establish the stationary point as a point of convexity of the hypersurface ψ(𝛼𝑃 , 𝛽𝑃 , 𝛾𝑃 ,  𝛿𝑃) to 

prove the minimality of  ψ(𝛼𝑃 , 𝛽𝑃 , 𝛾𝑃 ,  𝛿𝑃). 
 

We use Definition 4 to find the convexity of the hypersurface ψ(𝛼𝑃 , 𝛽𝑃 , 𝛾𝑃 ,  𝛿𝑃). 
 

The value of 𝐻𝐸𝑁̃(ψ(𝛼𝑃 , 𝛽𝑃 , 𝛾𝑃 ,  𝛿𝑃)) computed at the stationary point 𝛼𝑃(𝑢𝑖) = 𝛽𝑃(𝑢𝑖) = 𝛾𝑃(𝑢𝑖) =

𝛿𝑃(𝑢𝑖) =
1

4
 is given by 

𝐻𝐸𝑁̃(ψ) = 2 × M, 

where  𝑀 =
1

4
[

3 −1
−1 3

−1
−1

−1
−1

−1 −1 3 −1
−1 −1 −1 3

]  is an idempotent matrix with one Eigenvalue ‘0’ and three.  

 

Eigenvalues ‘1’, which implies that M is a positive semi-definite matrix. Thus, ψ(𝛼𝑃 , 𝛽𝑃 , 𝛾𝑃 , 𝛿𝑃) is a 

convex function with a stationary point 𝛼𝑃 = 𝛽𝑃 = 𝛾𝑃 = 𝛿𝑃 =
1

4
.   

Hence, proves the condition of minimality for 𝐾̃1(𝑃). 
 

PF-𝑲̃𝟏
𝟑(Resolution): Let P is crisper than Q,  

i.e., 𝛼𝑃(𝑢𝑖) ≤ 𝛼𝑄(𝑢𝑖),  𝛽𝑃(𝑢𝑖) ≤ 𝛽𝑄(𝑢𝑖) and 𝛾𝑃(𝑢𝑖) ≤ 𝛾𝑄(𝑢𝑖) for  max{𝛼𝑄(𝑢𝑖), 𝛽𝑄(𝑢𝑖), 𝛾𝑄(𝑢𝑖)} ≤
1

4
. In 

this case, 𝛿𝑃(𝑢𝑖) ≥ 𝛿𝑄(𝑢𝑖) ≥
1

4
. 

 

or 𝛼𝑃(𝑢𝑖) ≥ 𝛼𝑄(𝑢𝑖),  𝛽𝑃(𝑢𝑖) ≥ 𝛽𝑄(𝑢𝑖) and 𝛾𝑃(𝑢𝑖) ≥ 𝛾𝑄(𝑢𝑖) for  min{𝛼𝑄(𝑢𝑖), 𝛽𝑄(𝑢𝑖), 𝛾𝑄(𝑢𝑖)} ≥
1

4
. In 

this case, 𝛿𝑃(𝑢𝑖) ≤ 𝛿𝑄(𝑢𝑖) ≤
1

4
. 

 

For the first case, we observe that 𝐾̃1(𝑃) is decreasing function in the first three variables  

𝛼𝑝(𝑢𝑖), 𝛽𝑝(𝑢𝑖), 𝛾𝑝(𝑢𝑖) and increasing function in the fourth variable 𝛿𝑃(𝑢𝑖). Consequently, 𝐾̃1(𝑃) ≥

𝐾̃1(𝑄). 
 

For the second case, we observe that 𝐾̃1(𝑃) is increasing function in the first three variables  

𝛼𝑝(𝑢𝑖), 𝛽𝑝(𝑢𝑖), 𝛾𝑝(𝑢𝑖) and decreasing function in the fourth variable 𝛿𝑃(𝑢𝑖). Consequently, 𝐾̃1(𝑃) ≥

𝐾̃1(𝑄). 
 

Thus, 𝐾̃1(𝑃) ≥ 𝐾̃1(𝑄),  whenever P is crisper than Q. 

This satisfies PF-𝐾̃1
3. 
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PF-𝑲̃𝟏
𝟒(Symmetry): This follows directly from the axiom PF-𝐾̃1

4 of Definition 13, that is, 𝐾̃1(𝑃) =
𝐾̃1(𝑃

𝑐). 
Hence proves the theorem. 

 

We now prove some properties of the proposed knowledge measure. 

 

Theorem 2: For any two 𝑃1, 𝑃2 ∈ 𝑃𝐹𝑆(𝑈) such that either 𝑃1 ⊆ 𝑃2  or 𝑃2 ⊆ 𝑃1, then, 

𝐾̃1(𝑃1 ∪ 𝑃2) + 𝐾̃1(𝑃1 ∩ 𝑃2) = 𝐾̃1(𝑃1) + 𝐾̃1(𝑃2). 
 

Proof: Let 𝑃1 , 𝑃2 ∈ 𝑃𝐹𝑆(𝑈) such that, 

𝑃1 = {𝑢𝑖 ∈ 𝑈, 𝑖 = 1,2,… , 𝑛 ∶  𝑃1 ⊆ 𝑃2}, 
𝑃2 = {𝑢𝑖 ∈ 𝑈𝑖 = 1,2,… , 𝑛 ∶  𝑃2 ⊆ 𝑃1},  
Then for all 𝑢𝑖 ∈  𝑃1,  𝛼𝑃1(𝑢𝑖) ≤ 𝛼𝑃2(𝑢𝑖), 𝛽𝑃1(𝑢𝑖) ≤ 𝛽𝑃2(𝑢𝑖),   𝛾𝑃1(𝑢𝑖) ≥ 𝛾𝑃2(𝑢𝑖) and 

for all 𝑢𝑖 ∈  𝑃2 , 𝛼𝑃2(𝑢𝑖) ≤ 𝛼𝑃1(𝑢𝑖) , 𝛽𝑃2(𝑢𝑖) ≤ 𝛽𝑃1(𝑢𝑖),   𝛾𝑃2(𝑢𝑖) ≥ 𝛾𝑃1(𝑢𝑖). 
Using Eq. (3), we have, 

𝐾1(𝑃1 ∪ 𝑃2) =
1

𝑛
∑ [(𝛼𝑃1∪ 𝑃2(𝑢𝑖))

3

+ (𝛽𝑃1∪ 𝑃2(𝑢𝑖))
3

+ (𝛾𝑃1∪ 𝑃2(𝑢𝑖))
3

+ (𝛿𝑃1∪ 𝑃2(𝑢𝑖))
3

−𝑛
𝑖=1

𝛼𝑃1∪ 𝑃2(𝑢𝑖)𝛽𝑃1∪ 𝑃2(𝑢𝑖)𝛾𝑃1∪ 𝑃2(𝑢𝑖) − 𝛽𝑃1∪ 𝑃2(𝑢𝑖)𝛾𝑃1∪ 𝑃2(𝑢𝑖)𝛿𝑃1∪ 𝑃2(𝑢𝑖) − 𝛽𝑃1∪ 𝑃2(𝑢𝑖)𝛼𝑃1∪ 𝑃2(𝑢𝑖)𝛿𝑃1∪ 𝑃2(𝑢𝑖) −

𝛼𝑃1∪ 𝑃2(𝑢𝑖)𝛾𝑃1∪ 𝑃2(𝑢𝑖)𝛿𝑃1∪ 𝑃2(𝑢𝑖)].  

 

𝐾̃1(𝑃1 ∪ 𝑃2) =
1

𝑛
∑ [(𝛼𝑃2(𝑢𝑖))

3
+ (𝛽𝑃2(𝑢𝑖))

3
+ (𝛾𝑃2(𝑢𝑖))

3
+ (𝛿𝑃2(𝑢𝑖))

3
− 𝛼𝑃2(𝑢𝑖)𝛽𝑃2(𝑢𝑖)𝛾𝑃2(𝑢𝑖) −

𝑛
𝑖=1

𝛽𝑃2(𝑢𝑖)𝛾𝑃2(𝑢𝑖)𝛿𝑃2(𝑢𝑖) − 𝛼𝑃2(𝑢𝑖)𝛿𝑃2(𝑢𝑖)𝛽𝑃2(𝑢𝑖) − 𝛼𝑃2(𝑢𝑖)𝛾𝑃2(𝑢𝑖)𝛿𝑃2(𝑢𝑖)]                                                  (6) 

 

Similarly, 

𝐾1(𝑃1 ∩ 𝑃2) =
1

𝑛
∑ [(𝛼𝑃1(𝑢𝑖))

3

+ (𝛽𝑃1(𝑢𝑖))
3

+ (𝛾𝑃1(𝑢𝑖))
3

+ (𝛿𝑃1(𝑢𝑖))
3

− 𝛼𝑃1(𝑢𝑖)𝛽𝑃1(𝑢𝑖)𝛾𝑃1(𝑢𝑖) −
𝑛
𝑖=1

𝛽𝑃1(𝑢𝑖)𝛾𝑃1(𝑢𝑖)𝛿𝑃1(𝑢𝑖) − 𝛼𝑃1(𝑢𝑖)𝛿𝑃1(𝑢𝑖)𝛽𝑃1(𝑢𝑖) − 𝛼𝑃1(𝑢𝑖)𝛾𝑃1(𝑢𝑖)𝛿𝑃1(𝑢𝑖)]                                                       (7) 

 

From Eq. (6) and (7), we get, 

𝐾̃1(𝑃1 ∪ 𝑃2) + 𝐾̃1(𝑃1 ∩ 𝑃2) = 𝐾̃1(𝑃1) + 𝐾̃1(𝑃2). 
Hence proves the theorem. 

 

Remark 5: The result in Theorem 2 established that the proposed knowledge measure 𝐾̃1 satisfies the 

valuation property. Thus, we can generate similarity measures between two PFSs from the proposed 

knowledge measure 𝐾̃1. 
 

In the next Theorem, we propose a knowledge measure of a picture fuzzy set wherein refusal is not 

considered.  

 

Theorem 3: Let P be a picture fuzzy set, then 𝐾̃2(𝑃) defined in Eq. (8) is a knowledge measure of a 

picture fuzzy set. 

𝐾̃2(𝑃) =
1

𝑛
∑ [(𝛼𝑃(𝑢𝑖))

2
+ (𝛽𝑃(𝑢𝑖))

2
+ (𝛾𝑃(𝑢𝑖))

2
− 𝛼𝑃(𝑢𝑖)𝛽𝑃(𝑢𝑖) − 𝛽𝑃(𝑢𝑖)𝛾𝑃(𝑢𝑖) −

𝑛
𝑖=1

𝛾𝑃(𝑢𝑖)𝛼𝑃(𝑢𝑖)]                                                                                                                                           (8) 

Proof: The validity of the proposed knowledge measure 𝑲̃𝟐(𝑷) can be tested as that of 𝑲̃𝟏(𝑷). 
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The following theorems obtain other PF-knowledge measures using the existing ones. 

 

Theorem 4: If 𝐾̃1(𝑃)  is a knowledge measure of a picture fuzzy set, then 𝐾̌(𝑃) =
2𝐾̃1(𝑃)

1+𝐾̃1(𝑃)
  is also a 

knowledge measure of a picture fuzzy set. 

 

Proof: It is easy to prove (PF-𝐾̃1
1), (PF-𝐾̃1

2), and (PF-𝐾̃1
4). 

To verify (PF-𝐾̃1
3), we consider the generating function for 𝐾̌(𝑃) is 𝑓́(𝑝) =

2𝑝

1+p
 for all 𝑝 ∈  [0,1],  

having  
𝑑𝑓́

𝑑𝑝
=

2

(1+𝑝)2
> 0 for all 𝑝 ∈  [0,1]. It means that 𝑓́(𝑝) is an increasing function. Since, 𝐾̃1(𝑃) is a 

knowledge measure of PFS, then by using PF-𝐾̃1
3, we have 𝐾̃1(𝑃) ≥ 𝐾̃1(𝑄). 

 

Consequently, 𝐾̌(𝑃) ≥ 𝐾̌(𝑄). 
Which proves the axiom (PF-𝐾̃1

3). 
 

Hence, 𝐾̌(𝑃)  is a valid knowledge measure of picture fuzzy set P. 

 

Theorem 5: If 𝐾̃2(𝑃) is a knowledge measure of a picture fuzzy set, then 𝐾̆(𝑃) =
2𝐾̃2(𝑃)

1+𝐾̃2(𝑃)
 is again a 

knowledge measure of a picture fuzzy set. 

Proof: Similar as carried out in Theorem 4. 

 

In the next section, we contrast the performance of the proposed knowledge measures with some existing 

measures. 

 

4. Comparative Analysis 

In this section, we evaluate the performance of our proposed PF-knowledge measures 𝐾̃1 and 𝐾̃2 defined 

in Eq. (3) and Eq. (8) respectively. To demonstrate the efficacy and performance of our proposed PF-

knowledge measures, we compare them with existing fuzzy entropy/knowledge measures. We present 

prominent existing PF entropy measures in Table 1. 

 

 

Table 1. Existing entropy/knowledge measures. 
 

Entropy/knowledge measures Reference 

𝐾𝑆𝐾2 =
1

𝑛
∑(max{|𝛼𝑃(𝑢𝑖)|

𝑝, |𝛽𝑃(𝑢𝑖)|
𝑝, (1 −   𝜋𝑃(𝑢𝑖))

𝑝
})

𝑛

𝑖=1

 
Das et al. (2018) 

𝐾𝑆𝐾𝐵 = 1−
1

2𝑛
∑(

min{𝛼𝑃(𝑢𝑖), 𝛽𝑃(𝑢𝑖)} +   𝜋𝑃(𝑢𝑖)

max{𝛼𝑃(𝑢𝑖), 𝛽𝑃(𝑢𝑖)} +   𝜋𝑃(𝑢𝑖)
+   𝜋𝑃(𝑢𝑖))

𝑛

𝑖=1

 
Szmidt et al. (2014) 

𝐾𝐵𝐵 = 1 −
1

𝑛
∑  𝜋𝑃(𝑢𝑖)

𝑛

𝑖=1

 
Burillo and Bustince (1996) 

𝐾𝐻𝐶
𝛼 =

{
 
 

 
 1 −∑

1− 𝛼𝑃(𝑢𝑖)
𝑣 − 𝛽𝑃(𝑢𝑖)

𝑣 −   𝜋𝑃(𝑢𝑖)

(𝛼 − 1)𝑛

𝑛

𝑖=1

1 +
1

𝑛
∑(𝛼𝑃(𝑢𝑖) log(𝛼𝑃(𝑢𝑖)) + 𝛽𝑃(𝑢𝑖) log(𝛽𝑃(𝑢𝑖)) +   𝜋𝑃(𝑢𝑖) log(  𝜋𝑃(𝑢𝑖)))

𝑛

𝑖=1

 

Hung and Yang (2006) 
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Table 1 continued… 
 

𝐾𝑅
𝜎 = 1 −

1

𝑛
∑

log(𝛼𝑃(𝑢𝑖)
𝜎 + 𝛼𝑃(𝑢𝑖)

𝜎 + 𝛼𝑃(𝑢𝑖)
𝜎)

1 − 𝜎

𝑛

𝑖=1

 
Hung and Yang (2006) 

𝐸̃𝑛(𝑃) = 1 −
1

2𝑛
∑(|𝛼𝑃(𝑢𝑖) − 𝛽𝑃(𝑢𝑖)| + |𝛼𝑃(𝑢𝑖) − 𝛾𝑃(𝑢𝑖)| + |𝛽𝑃(𝑢𝑖) − 𝛾𝑃(𝑢𝑖)|)

𝑛

𝑖=1

 
Wang et al. (2018) 

𝑒(𝑃) = −
1

𝑛
∑[𝛼𝑃(𝑢𝑖) log2(𝛼𝑃(𝑢𝑖)) + 𝛽𝑃(𝑢𝑖) log2(𝛽𝑃(𝑢𝑖)) +𝛾𝑃(𝑢𝑖) log2(𝛾𝑃(𝑢𝑖)) + 𝛿𝑃(𝑢𝑖) log2(𝛿𝑃(𝑢𝑖))]

𝑛

𝑖=1

 
Arya and Kumar (2020) 

𝜓̃(𝑃) =
1

𝑛(1 − 𝑣)
∑{(𝛼𝑃(𝑢𝑖)

𝑣 + 𝛽𝑃(𝑢𝑖)
𝑣 + 𝛾𝑃(𝑢𝑖)

𝑣 + 𝛿𝑃(𝑢𝑖)
𝑣) − 1}

𝑛

𝑖=1

, 𝑣 > 0(≠ 1) 
Joshi (2020b) 

𝜓(𝑃) =
𝑅

𝑛(𝑅 − 1)
∑{1 − (𝛼𝑃(𝑢𝑖)

𝑅 + 𝛽𝑃(𝑢𝑖)
𝑅 + 𝛾𝑃(𝑢𝑖)

𝑅 + 𝛿𝑃(𝑢𝑖)
𝑅)}

𝑛

𝑖=1

, 𝑅 > 0(≠ 1) 
Joshi (2020a) 

 

Now, we perform a numerical experiment to show the advantage of the proposed knowledge measure by 

comparing it with the existing knowledge measures given in Table 1. For this, we consider the following 

numerical Example 2. 

 

Example 2: Take into account the following picture fuzzy sets in a universe 𝑈 = {𝑢} given in Table 2. 

 
Table 2. Different picture fuzzy sets. 

 

Pictur

e 

fuzzy 
sets 

𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 𝐹6 𝐹7 𝐹8 

{(𝑢, 1,0,0)} {(𝑢, 0.9, 0,0. 1)} {(𝑢, 0.8,0,0.1)} {(𝑢, 0.8,0,0.2)} {(𝑢, 0.7,0,0.3)} {(𝑢, 0.6,0,0.4)} {(𝑢, 0.5,0,0.4)} {(𝑢, 0.5,0,0.5) } 

 

It is clear that 0 = 𝛽𝐹1(𝑢𝑖) = 𝛽𝐹2(𝑢𝑖) = 𝛽𝐹3(𝑢𝑖) < 𝛽𝐹4(𝑢𝑖) < 𝛽𝐹5(𝑢𝑖) < 𝛽𝐹6(𝑢𝑖) = 𝛽𝐹7(𝑢𝑖) <
𝛽𝐹8(𝑢𝑖) = 𝛾𝐹1(𝑢𝑖) < 𝛾𝐹2(𝑢𝑖) = 𝛾𝐹3(𝑢𝑖) < 𝛾𝐹4(𝑢𝑖) < 𝛾𝐹5(𝑢𝑖) < 𝛾𝐹6(𝑢𝑖) = 𝛾𝐹7(𝑢𝑖) < 𝛾𝐹8(𝑢𝑖) =
𝛼𝐹8(𝑢𝑖) = 𝛼𝐹7(𝑢𝑖) < 𝛼𝐹6(𝑢𝑖) < 𝛼𝐹5(𝑢𝑖) < 𝛼𝐹4(𝑢𝑖) = 𝛼𝐹3(𝑢𝑖) < 𝛼𝐹2(𝑢𝑖) < 𝛼𝐹1(𝑢𝑖) = 1. 
 

Therefore, the right order of knowledge and entropy should be 

𝐾̃(𝐹1) > 𝐾̃(𝐹2) > 𝐾̃(𝐹3) > 𝐾̃(𝐹4) > 𝐾̃(𝐹5) > 𝐾̃(𝐹6) > 𝐾̃(𝐹7) > 𝐾̃(𝐹8)                                                      (9) 

 

and 

𝐸̃(𝐹1) < 𝐸̃(𝐹2) < 𝐸̃(𝐹3) < 𝐸̃(𝐹4) < 𝐸̃(𝐹5) < 𝐸̃(𝐹6) < 𝐸̃(𝐹7) < 𝐸̃(𝐹8)                                                      (10) 

 

Various entropy and knowledge measures are utilized to compare the performance of the proposed 

knowledge measures. The accuracy of each information measure is calculated according to Eq. (11) 

(Zhang et al., 2019). 

Accuracy(%) =
Count(Right order of 

K̃(𝐹𝑖)

Ẽ(𝐹𝑖)
)

No.(𝐹𝑖)
x100                                                                                        (11) 

 

The accuracy variable refers to the percentage of values that were properly ranked across all 

knowledge/entropy measures. The highest accuracy depicts the better measure. The results for the picture 

fuzzy sets in Table 2 are generated due to various measures shown in Table 3. 

 

From Table 3, results illustrate that all the knowledge/entropy measures without the order property in Eq. 

(9) and Eq. (10) do not meet the property (PF-K̃3). Also, the accuracy of the proposed knowledge 
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measure 𝐾̃1 is the same as that of 𝐾𝐻𝐶
1 , 𝐾𝑟0.5  and 𝜓̃(𝑃). However, the order of the results generated due to 

the proposed knowledge measure 𝐾̃2 is completely correct and indicates the highest level of accuracy than 

other measures. Thus, from Table 3, the proposed knowledge measure 𝐾̃2 is better than all other 

measures. 

 
Table 3. Comparative results. 

 

Measures 1 2 3 4 5 6 7 8 
Right or 
Wrong 

Number 

of 

wrongs 

Accuracy 
(%) 

𝐾𝑆𝐾2 1 1 0.81 1 1 1 0.81 1 Wrong 8 0 

𝐾𝑆𝐾𝐵 1 0.944 0.839 0.875 0.786 0.667 0.533 0.5 Wrong 1 87.5 

𝐾𝐵𝐵 1 1 1 0.9 1 1 0.9 1 Wrong 8 0 

𝐾𝐻𝐶
1  1 0.859 0.722 0.783 0.735 0.708 0.590 0.699 Wrong 2 75 

𝐾𝑟0.5 1 0.796 0.632 0.745 0.717 0.703 0.562 0.699 Wrong 2 75 

𝑒(𝑃) 0 0.8485 1.1662 1.1314 1.2961 1.3865 1.5232 1.4142 Wrong 3 62.5 

𝜓̃(𝑃) 0 0.1800 0.3400 0.3200 0.4200 0.4800 0.5800 0.5000 Wrong 2 75 

𝜓(𝑃) NaN NaN NaN NaN NaN NaN NaN NaN Wrong 8 0 

Proposed 𝐾1 1 0.7300 0.5060 0.5200 0.3700 0.2800 0.1700 0.2500 Wrong 2 75 

Proposed 𝐾2 1 0.7300 0.5700 0.5200 0.3700 0.2800 0.2100 0.2500 Right 0 100 

In Table 3, NaN represents that the concerned measure provides a result as not a number. 

 

A MADM problem is one of the most widely studied problems receiving a lot of attention. In the next 

section, we present some novel methods and apply our proposed knowledge measures to investigate their 

potential applications. 

 

5. Applications 
In this section, we investigate the applications of the proposed knowledge measure and present a novel 

method for MADM. 

 

5.1 PF Knowledge-based Attribute Weight Computation in MADM Problem with 

Conflicting Attributes 
In a MADM problem, we provide a set of alternatives as well as a set of attributes. Sometimes the 

attributes are conflicting, i.e., an attitude toward one attribute may lead to a loss in the significance of the 

other attribute. In such a scenario, selecting an effective attribute weight computation model is 

unavoidable to deliver the appropriate decision-making result. After analyzing the factors, we must 

choose the most desirable alternative. Weights are assigned by decision experts or approximated using a 

model to evaluate the importance of attributes. The use of entropy measures is frequent to estimate 

attribute weights. However, attribute weights based on entropy are not always suitable; hence, some 

alternative model is required. We consider some examples of attribute weight computation in a PF 

environment to investigate the underlying fact. 

 

Example 3: Consider the set of three alternatives 𝑃𝑖(𝑖 = 1,2,3) and three attributes 𝑄𝑗 (𝑗 = 1,2,3) in PF-

decision matrix. 

𝐴1 =
𝑃1
𝑃2
𝑃3

(

𝑄1
〈0.1, 0.3, 0.1〉

𝑄2
〈0.5, 0.2, 0.3〉

𝑄3
〈0.4, 0.4, 0.1〉

〈0.4, 0.2, 0.1〉 〈0.1, 0.4, 0.2〉 〈0.6, 0.1, 0.3〉
〈0.2, 0.1, 0.5〉 〈0.3, 0.4, 0.1〉 〈0.1, 0.5, 0.1〉

). 
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Example 4: Consider another set of three alternatives 𝑃𝑖(𝑖 = 1,2,3)and three attributes 𝑄𝑗  (𝑗 = 1,2,3) in 

a PF-decision matrix. 

𝐴2 =
𝑃1
𝑃2
𝑃3

(

𝑄1
〈0.2, 0.3, 0.1〉

𝑄2
〈0.5, 0.2, 0.3〉

𝑄3
〈0.4, 0.4, 0.1〉

〈0.4, 0.2, 0.1〉 〈0.1, 0.4, 0.2〉 〈0.4, 0.1, 0.2〉
〈0.2, 0.1, 0.5〉 〈0.3, 0.4, 0.1〉 〈0.1, 0.4, 0.1〉

). 

 

Assume a MADM circumstance having n alternatives 𝑃𝑖  (𝑖 =  1,2,… , 𝑛) and m attributes 𝑄𝑗  (𝑗 =

 1,2, … ,𝑚). The following strategy (Wang et al. 2018) is used to compute the weight of each attribute. 

𝑤𝑗 =
1−𝐸̃(𝑄𝑗)

∑ (1−𝐸̃(𝑄𝑗))
𝑚
𝑗=1

,    𝑗 = 1,2,… ,𝑚                                                                                                          (12) 

 

Here, 𝐸̃ represents the PF-entropy measure. 

 

Now, by considering Examples 3 and 4 and utilizing the PF-entropy-based attribute weight method in Eq. 

(12), the weight of all the attributes is listed in Tables 3 and 4, respectively. 

 
Table 3. Computed attribute weights using different measures for Example 3. 

 

Entropy/Knowledge measure Weights corresponding to different attributes Accuracy (%) 

𝐸̃𝑛(𝑃) 𝑸𝟏 = 𝟎.𝟑𝟎,  𝑸𝟐 = 𝟎. 𝟑𝟎,  𝑄3 = 0.40 33.3 

𝑒(𝑃) 𝑄1 = 𝑁𝑎𝑁,  𝑄2 = 𝑁𝑎𝑁,  𝑄3 = 𝑁𝑎𝑁 0 

𝜓̃(𝑃)  𝑸𝟏 = 𝟎.𝟑𝟒,  𝑸𝟐 = 𝟎. 𝟑𝟒,  𝑄3 = 0.30 33.3 

𝜓(𝑃) 𝑸𝟏 = 𝟎.𝟑𝟏  𝑸𝟐 = 𝟎. 𝟑𝟏,  𝑄3 = 0.36 33.3 

 𝐾1 𝑄1 = 0.28,  𝑄2 = 0.24,  𝑄3 = 0.47 100 

𝐾2 𝑄1 = 0.26, 𝑄2 = 0.23,𝑄3 = 0.29 100 

In Table 3, bold values indicate the same weight to two distinct attributes and NaN indicates that the concerned measure provides 

a result as not a number. 

 
Table 4. Computed attribute weights using different measures for Example 4. 

 

Entropy/Knowledge measure Weights corresponding to different attributes Accuracy (%) 

𝐸̃𝑛(𝑃) 𝑸𝟏 = 𝟎. 𝟑𝟑,  𝑸𝟐 = 𝟎. 𝟑𝟑,  𝑸𝟑 = 𝟎. 𝟑𝟑 0 

𝑒(𝑃)  𝑄1 = 𝑁𝑎𝑁,𝑄2 = 𝑁𝑎𝑁,𝑄3 = 𝑁𝑎𝑁 0 

𝜓̃(𝑃)(Joshi 2020b) 𝑸𝟏 = 𝟎.𝟑𝟑, 𝑸𝟐 = 𝟎. 𝟑𝟑, 𝑸𝟑 = 𝟎.𝟑𝟑 0 

𝜓(𝑃) 𝑄1 = 0.32,  𝑸𝟐 = 𝟎. 𝟑𝟑,  𝑸𝟑 = 𝟎. 𝟑𝟑 33.3 

 𝐾1 𝑄1 = 0.29, 𝑄2 = 0.34,𝑄3 = 0.36 100 

 𝐾2 𝑄1 = 0.33,    𝑄2 = 0.30,   𝑄3 =  0.36 100 

In Table 4, bold values indicate the same weight to two distinct attributes and NaN indicates that the concerned measure provides 

a result as not a number. 

 

From Tables 3 and 4, the attribute weights using different PF-entropy measures give identical weights to 

two distinct attributes and the entropy measure 𝑒(𝑃) is unable to compute the attribute weight. As a 

result, innovative approaches are always required to calculate attribute weights more effectively in 

MADM. 
 

Now, we present a new method for determining attribute weights based on our suggested PF-knowledge 

measure. The new technique is defined as follows. 

Knowledge-based attribute weights (Proposed) 

𝑤𝑗 =
𝐾̃(𝑄𝑗)

∑ (𝐾̃(𝑄𝑗))
𝑚
𝑗=1

, 𝑗 = 1,2,… ,𝑚                                                                                                              (13) 
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Here, 𝐾̃ represents the PF-knowledge measure. 

Accuracy(%) =
Count(No.of distinct weight to attributes)

Total no.  of attributes
x100                                                                    (14) 

 

Now, we employ our proposed method and proposed knowledge measure to calculate the attribute 

weights for Examples 3 and 4 and the corresponding results are shown in Tables 3 and 4. From Tables 3 

and 4, the proposed knowledge measure 𝐾̃1 and 𝐾̃2 assigns different weights to different attributes, 

making it useful when entropy-based weights produce erroneous findings. In comparison to the existing 

PF-entropy measure, the accuracy level of each measure is calculated using Eq. (14) and highlighted in a 

separate column of Table 3 and Table 4. It can be noticed from both Tables (3 and 4) that the accuracy 

level of the proposed knowledge measure is higher than the existing measures. Therefore, the problem of 

weight computation that cannot be resolved by the existing measure is effectively resolved by the 

proposed methodology. This demonstrates the advantage of the proposed methodology. 

 

Now, we employ the proposed methodology of weight computation in a MADM algorithm, which is 

described as follows. 

 

5.2 MADM- Algorithm 
Here, we present a novel method for MADM defined as follows. 

 

Scenario  

Given a collection of n alternatives 𝑃𝑖  (𝑖 =  1,2,… , 𝑛) and m attributes 𝑄𝑗(𝑗 =  1,2,… ,𝑚) as well as the 

weight vector of an attribute 𝑤 =  (𝑤1, 𝑤2, … , 𝑤𝑚), 0 ≤  𝑤𝑗  ≤  1, 𝑗 =  1, 2, … ,𝑚 and  ∑ 𝑤𝑗 = 1
𝑚
𝑗=1 . 

 

Aim  

Choosing the best alternative because of a given knowledge base. 

The methodology for choosing the best option is as follows: 

 

Algorithm 

Step 1: Build the PF-decision matrix 𝑍 = [𝑧𝑖𝑗]𝑛×𝑚
in which 𝑧𝑖𝑗 = (𝛼𝑖𝑗 ,  𝛽𝑖𝑗 ,  𝛾𝑖𝑗) is a picture fuzzy value 

where 𝛼𝑖𝑗 denotes membership degree of alternative 𝑃𝑖 under attribute 𝑄𝑗 ,  𝛾𝑖𝑗 denotes the non-

membership degree of alternative 𝑃𝑖 under attribute 𝑄𝑗 and  𝛽𝑖𝑗 denotes the neutrality degree of 

alternative 𝑃𝑖 under attribute 𝑄𝑗. 

 

Step 2: Determine the normalized form of the decision matrix 𝑆 = [𝑠𝑖𝑗]𝑛×𝑚where 

𝑠𝑖𝑗 = {
  𝑧𝑖𝑗 = (𝛼𝑖𝑗  ,  𝛽𝑖𝑗  ,  𝛾𝑖𝑗), for benefit factors/attributes,

(𝑧𝑖𝑗)
𝑐
= ( 𝛾𝑖𝑗 ,  𝑡𝑖𝑗 , 𝛼𝑖𝑗), for cost factor/attribute.

 

 

Step 3: Use one of the following techniques to determine the attribute weight. 

(a) Entropy-based attribute weights computed using Eq. (12) (Wang et al., 2018). 

(b) Knowledge-based attribute weights computed using Eq. (13) (Proposed). 

 

Step 4: Evaluate each alternative's overall preference value 𝑃𝑖, 𝑖 = 1, 2,… , 𝑛 using the (Wei 2016) picture 

fuzzy weighted averaging (PFWA) technique defined in Eq. (15). 

𝑃𝐹𝑊𝐴(𝑡1, 𝑡2, … , 𝑡𝑚) = (1 − ∏ (1 − 𝛼𝑡𝑗)
𝑤𝑗
, ∏ (𝛽𝑡𝑗)

𝑤𝑗
,   𝑚

𝑗=1
𝑚
𝑗=1 ∏ (𝛾𝑡𝑗)

𝑤𝑗𝑚
𝑗=1 )                                  (15) 
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where 𝑡𝑗 = (𝛼𝑙𝑗  , 𝛽𝑙𝑗  , 𝛾𝑙𝑗) represent a picture fuzzy value (PFV). 

 

Step 5: Using the score function developed by (Wang et al., 2017), determine each possible score with the 

help of Eq. (16). 

𝑆𝐶(𝑃𝑖) = 𝛼𝑃𝑖 − 𝛽𝑃𝑖 , 𝑖 = 1, 2, … , 𝑛                                                                                                          (16) 

 

Step 6: Rank/Arrange the alternatives by their score values in decreasing order. 

Figure 2 depicts the flowchart for the above-mentioned MADM technique. 

 

Now, in a picture fuzzy environment, we use the abovementioned approach to solve a numerical example 

concerning a MADM problem. 

 

 
 

Figure 2. Flow chart of the MADM method. 
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5.3 Numerical Example 
Example 5: Consider the difficulty of choosing a solar panel from a set of five leading solar 

manufacturers in the world: (𝑃1) Company A, (𝑃2) Company B (𝑃3) Company C, (𝑃4) Company D and 

(𝑃5) Company E. A decision maker considers four attributes listed below while evaluating these five 

solar panels: (𝑄1) Durability, (𝑄2) Price, (𝑄3) Silicon grade and (𝑄4) Material used. A brief description 

of the problem is shown in Figure 3. 

 
 

Figure 3. Brief description of the MADM problem in Example 5. 

 

Step 1: A decision expert provides the evaluation values of the five solar panels under the four attributes 

in the form of 𝑃𝐹𝑉𝑠. Table 5 shows the results as a PF-decision matrix. 

 
Table 5. PF-decision matrix indicates the evaluation values of solar panels for Example 5. 

 

 𝑄1 𝑄2 𝑄3 𝑄4 

𝑃1 〈0.62, 0.23, 0.15〉 〈0.20, 0.56, 0.12〉 〈0.51, 0.15, 0.34〉 〈0.47, 0.10, 0.33〉 
𝑃2 〈0.50, 0.22, 0.28〉 〈0.18, 0.43, 0.25〉 〈0.64, 0.19, 0.17〉 〈0.54, 0.17, 0.29〉 
𝑃3 〈0.58, 0.30, 0.12〉 〈0.08, 0.60, 0.32〉 〈0.80, 0.05, 0.15〉 〈0.62, 0.28, 0.11〉 
𝑃4 〈0.61, 0.26, 0.13〉 〈0.10, 0.58, 0.22〉 〈0.67, 0.07, 0.26〉 〈0.55, 0.18, 0.27〉 
𝑃5 〈0.65, 0.25, 0.10〉 〈0.37, 0.50, 0.13〉 〈0.47, 0.18, 0.35〉 〈0.76, 0.24, 0.00〉 

 

Step 2: 𝑄2 is the only cost attribute. We create the normalized form of the PF-decision matrix as in Table 

6. 
Table 6. Normalized PF-decision matrix. 

 

Alternatives\Attributes 𝑄1 𝑄2 𝑄3 𝑄4 

𝑃1 〈0.62, 0.23, 0.15〉 〈0.56, 0.20, 0.12〉 〈0.51, 0.15, 0.34〉 〈0.47, 0.10, 0.33〉 
𝑃2 〈0.50, 0.22, 0.28〉 〈0.43, 0.18, 0.25〉 〈0.64, 0.19, 0.17〉 〈0.54, 0.17, 0.29〉 
𝑃3 〈0.58, 0.30, 0.12〉 〈0.60, 0.08, 0.32〉 〈0.80, 0.05, 0.15〉 〈0.62, 0.28, 0.11〉 
𝑃4 〈0.61, 0.26, 0.13〉 〈0.58, 0.10, 0.22〉 〈0.67, 0.07, 0.26〉 〈0.55, 0.18, 0.27〉 
𝑃5 〈0.65, 0.25, 0.10〉 〈0.50, 0.37, 0.13〉 〈0.47, 0.18, 0.35〉 〈0.76, 0.24, 0.00〉 
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Step 3: We compute the knowledge measure-based attribute weights in Table 7. We use the proposed PF-

knowledge measure given in Eq. (3) and Eq. (8) for computation. 

 
Table 7. Attribute weights using our proposed knowledge measures. 

 

Knowledge measure↓ Weights→ 𝑤1 𝑤2 𝑤3 𝑤4 

𝐸̃𝑛(𝑃) 0.24 0.22 0.26 0.26 

𝑒(𝑃) NaN NaN NaN NaN 

𝜓̃(𝑃) 0.25 0.28 0.21 0.24 

𝜓(𝑃) 0.25 0.21 0.27 0.25 

𝐾1 0.24 0.18 0.31 0.26 

𝐾2 0.22 0.19 0.31   0.26 

In Table 7, bold values indicate the same weight to two distinct attributes and NaN indicates that the concerned measure provides 

a result as not a number. 

 

Step 4: Table 8 shows the overall preference value for each alternative. 

 
Table 8. Alternative’s overall preference value. 

 

 

Step 5: Table 9 presents the alternative’s score value. 

 
Table 9. Score values of the alternatives. 

 

Measures 
Score values of the alternatives 

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 

𝐸̃𝑛(𝑃) 0.3684 0.3359 0.5187 0.4587 0.3472 

𝑒(𝑃) - - - - - 

𝜓̃(𝑃) 0.3683 0.3315 0.5045 0.4525 0.3337 

𝜓(𝑃) 0.3686 0.3370 0.5212 0.4602 0.3475 

𝐾1 0.3747 0.3519 0.5400 0.4725 0.3655 

𝐾2 0.3673 0.3455 0.5375 0.4880 0.3506 

 

Step 6: Table 10 presents the rank of all the alternatives in decreasing order of their score values. 

 

From Table 10, it can be seen that the entropy measure 𝑒(𝑃) is unable to give the ranking results. The 

other entropy measures and proposed knowledge measures suggest 𝑃3 as the best alternative. We also 

noticed that the ranking pattern is the same for all the measures. Thus, the proposed technique for weight 

computation is compatible with the existing entropy-based attribute weight computation in a MADM 

problem. Therefore, we can use knowledge-based attribute weights instead of entropy-based attribute 

Measures Alternatives Overall preference value Measures Alternatives Overall preference value 

𝐸̃𝑛(𝑃) 
 

𝑃1 〈0.5339,0.1655,0.2253〉 

𝜓(𝑃) 

𝑃1 〈0.5350,0.1664,0.2258〉 
𝑃2 〈0.5312,0.1953,0.2483〉 𝑃2 〈0.5329,0.1959,0.2473〉 
𝑃3 〈0.6603,0.1416,0.1609〉 𝑃3 〈0.6623,0.1411,0.1599〉 
 𝑃4 〈0.5986,0.1399,0.2202〉  𝑃4 〈0.6001,0.1399,0.2189〉 
𝑃5 〈0.6096,0.2624,0.0000〉 𝑃5 〈0.6079,0.2604,0.0000〉 

𝑒(𝑃) 
 

𝑃1 - 

𝐾1 

𝑃1 〈0.5352,0.1605,0.2323〉 
𝑃2 - 𝑃2 〈0.5444,0.1925,0.2402〉 
𝑃3 - 𝑃3 〈0.6749,0.1349,0.1532〉 
 𝑃4 - 𝑃4 〈0.6068,0.1343,0.2187〉 
𝑃5 - 𝑃5 〈0.6162,0.2507,0.0000〉 

𝜓̃(𝑃) 
 

𝑃1 〈0.5388,0.1705,0.2100〉 

𝐾2 

𝑃1 〈0.5300, 0.1627, 0.2326〉 
𝑃2 〈0.5237,0.1922,0.2482〉 𝑃2 〈0.5406, 0.1951, 0.2430〉 
𝑃3 〈0.6478,0.1433,0.1691〉 𝑃3 〈0.6722, 0.1347, 0.1580〉 
 𝑃4 〈0.5946,0.1421,0.2163〉  𝑃4 〈0.6028, 0.1348, 0.2243〉 
𝑃5 〈0.6064,0.2727,0.0000〉 𝑃5 〈0.6057, 0.2551, 0.0000〉 
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weights, whenever the entropy-based method gives unacceptable findings.  

 
Table 10. Results of ranking. 

 

Measures Ranking 

𝐸̃𝑛(𝑃) 𝑃3 > 𝑃4 > 𝑃1 > 𝑃5 > 𝑃2 

𝑒(𝑃) - 

𝜓̃(𝑃) 𝑃3 > 𝑃4 > 𝑃1 > 𝑃5 > 𝑃2 

𝜓(𝑃) 𝑃3 > 𝑃4 > 𝑃1 > 𝑃5 > 𝑃2 

𝐾1 𝑃3 > 𝑃4 > 𝑃1 > 𝑃5 > 𝑃2 

𝐾2 𝑃3 > 𝑃4 > 𝑃1 > 𝑃5 > 𝑃2 

 

6. Conclusion 
The axiomatic framework of an entropy or knowledge measure in standard and non-standard fuzzy 

environments includes the resolution property. The interpretation of resolution in the higher dimension 

(more aspects of vagueness) is very cumbersome. In this article, we have generalized the resolution (PF-

𝐾̃1
1) to picture fuzzy framework, and successfully proposed an axiomatic framework to define picture 

fuzzy knowledge measures. Furthermore, we defined two picture fuzzy knowledge measures and 

validated them using this framework. The proposed knowledge measure was found to have better 

accuracy in resolving the picture fuzziness of two sets (Section 3). Since our proposed knowledge 

measures have a better capability of resolution of picture fuzziness, hence they perform more accurately 

in the attribute weight computation process in MADM problems (Section 5.2). Moreover, in the MADM 

problem, the consistency of the ranking results with existing picture fuzzy measures confirms the 

credibility of the proposed measures. 

 

A picture fuzzy set consists of four dimensions of vagueness: membership, non-membership, neutrality, 

and refusal. We have theoretically investigated the resolution property in four dimensions and defined the 

picture fuzzy knowledge measure. This study further seems to be significant for explorations of more 

dimensions of vagueness and subsequent formulations of information-theoretic measures. 

 

The drawback of this research is that the numerical examples have been worked out using artificially 

generated data. An analysis of the proposed measures with real data can make this study more impactful. 

Additionally, because of the present work, the possibility of obtaining a class of similarity and 

dissimilarity measures between picture fuzzy sets using the proposed knowledge measure may be 

investigated. Also, some more theoretical interconnections among various picture fuzzy information 

measures may be studied in the future. 
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