HOW COMPUTERS HAVE CHANGED THE WAGE STRUCTURE: EVIDENCE FROM MICRODATA, 1984-89

Alan B. Krueger

Working Paper No. 3858

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
October 1991

August 1991. I am grateful to Kainan Tang and Shari wolkon for providing excellent research assistance, and to Joshua Angrist, David Card, and Larry Katz for helpful comments. Financial support from the National Science Foundation (SES-9012149) is gratefully acknowledged. This paper is part of NBER's research program in Labor Studies. Any opinions expressed are those of the author and not those of the National Bureau of Economic Research.

[^0]
ABSTRACT

This paper examines whether employees who use a computer at work earn a higher wage rate than otherwise similar workers who do not use a computer at work. The analysis primarily relies on data from the Current Population Survey and the High School and Beyond Survey. A variety of statistical models are estimated to try to correct for unobserved variables that might be correlated with both job-related computer use and earnings. The estimates suggest that workers who use computers on their job earn roughly a 10 to 15 percent higher wage rate. In addition, the estimates suggest that the expansion in computer use in the 1980 s can account for between one-third and one-half of the observed increase in the rate of return to education. Finally, occupations that experienced greater growth in computer use between 1984 and 1989 also experienced above average wage growth.

[^1]Several researchers have documented that significant changes in the structure of wages took place in the United States th the 1980s. ${ }^{1}$ For example, the rate of return to education increased markedly since 1979 , with the earnings advantage of college graduates relative to high school graduates increasing from 38 percent in 1979 to 55 percent in 1989 . In addition, wage differentials based on race have expanded while the malefemale wage gap has narrowed, and the reward for experience appears to have increased. These changes in the wage structure do not appear to be a result of transitory cycilcal factors.

In contrast to the near consensus of optnion regarding the scope and direction of changes in the wage structure in the 1980 s , the root causes of these changes are more controversial. The two leading hypotheses that have emerged to explain the rapid changes in the wage structure in the 1980 s are: (1) increased international competition in several industries has hurt the economic position of low-skilled and less-educated workers in the U.S. (e.g., Murphy and Welch, 1991): (2) rapid, skill-biased technological change in the 1980 s caused profound changes in the relative productivity of various types of workers (e.g., Bound and Johnson, 1989, Mincer, 1991, and Allen, 1991). Unfortunately, the evidence that has been used to test chese hypotheses has been mainly indirect, relying primarily on aggregate industry-level or time-series data.

This paper explores the impact of the "computer revolution" on the wage structure using three microdata sets. The 1980 s witnessed unprecedented growth in the amount and type of computer resources used at

[^2]work, and the cost of computing power fell dramatically over the decade. For example, in 1984 fewer than 10 percent of establishments reported that they had personal computers, while this figure was over 35 percent in 1989 (see Figure 1). Berndt and Griliches (1990) estimate that the qualityadjusted real price of new microcomputers fell by 28 percent per year between 1982 and 1988. Several authors who have come to view technological change as a promising explanation of changes in the wage structure have highlighted the computer revolution as the prototypical example of such technological change. ${ }^{2}$

It is important to stress that the effect of technological change on the relative earnings of rious categories of workers is theoretically ambiguous. The new computer ${ }^{\text {a }}$ echnology may be a complemencex a substitute with skilled workers. ${ }^{3}$ In the former case, the computer revolution is likely to lead to an expansion in earnings differentials based on skill, and in the latter case it is likely to lead to compression in skill-based differentials. This paper focuses on the narrow issue of whether employees who use computers at work earn more as a result of applying their computer skills and whether the premium for using a computer can account for much of the changes in the wage structure. The analysis primarily uses data from Current Population Surveys (CPS) conducted in October of 1984 and 1989. These surveys contain supplemental questions on computer use. Since
${ }^{2}$ For exampie, Bound and Johnson (1990) write that one explanation "attributes wage structure changes to changes in technology, brought on in large part by the computer revolution." They conclude that this explanation "receives a great deal of support from the data."
${ }^{3}$ Bartel and Lichtenberg (1987) present cost function estimates for 61 manufacturing industries that suggest that skilled labor is a complement with new technology. For related evidence see Welch (1970) and Grillches (1968).

I. Descriptive Analysis

In spite of the wide spread belief that computers have fundamentally altered the work enviroment, little descriptive information exists concerning the characteristics of workers who use computers on the job. Table 1 sumarizes the probability of using a computer at work for several categories of workers in 1984 and 1989. The tabulations are based on October CPS data. These surveys asked respondents whether they have "direct or hands on use of computers" at work. ${ }^{4}$ Computer use is broadly defined, and includes programming, word processing, E-mail, computer-aided design, etc. For one-quarter of the sample, information on earnings was also collected.

Between 1984 and 1989 the percentage of workers who report using a computer at work increased by over 50 percent, from 24.6 to 37.4 percent of the wark force. Women, caucasians, and highly educated workers are mare Ilkely to use computers at work than men, African Americans, and lesseducated workers. Furthermore, the percentage gap in computer use between these groups grew between 1984 and 1989. For example, in 1984 college graduates were 22 points more likely to use computers at work than high school graduates; in 1989 this differential was 29 points.

Surprisingly, workers age 40-54 are more likely to use computers at work than workers age 18-25, and the growth in computer use between 1984 and 1989 was greatest for middle age workers. A linear probability regression of a computer-use dumy on experience and its square, education, and demographic variables indicates that the likelinood of using a computer

[^3]| Group | 1984 | 1989 |
| :---: | :---: | :---: |
| All workers | 24.5 | 37.4 |
| Gender | | |
| Mer: | 21.2 | 32.3 |
| Women | 29.0 | 43.4 |
| Educarion | | |
| Less than high schoal | 5.0 | 7.8 |
| High school | 19.3 | 29.3 |
| Some college | 30.6 | 45.3 |
| College | 41.6 | 58.2 |
| Post-College | 42.8 | 59.7 |
| Race | | |
| White | 25.3 | 38.5 |
| Black | 19.4 | 27.7 |
| Age | | |
| Age 18-24 | 19.7 | 29.4 |
| Age 25-39 | 29.2 | 41.5 |
| Age 40-54 | 23.6 | 39.1 |
| Age 55-65 | 16.9 | 26.3 |
| Occupation | | |
| Blue Collar | 7.1 | 11.6 |
| White Collar | 33.0 | 48.4 |
| Union Status | | |
| Union Member | 20.2 | 32.5 |
| Nonunion | 28.0 | 41.1 |
| Houss | | |
| Part-time | 23.7 | 36.3 |
| Full-time | 28.9 | 42.7 |
| Region | | |
| Northeast | 25.5 | 38.0 |
| Midwest | 23.4 | 36.0 |
| South | 23.2 | 36.5 |
| West | 27.0 | 39.9 |

Source: Ruthor's tabulations of the 1984 and 1989 October Current Population Surveys. The sample size is 61.712 for 1984, and 62,748 for 1989.
incteases with experience in the first 15 years of experience, and declines chereafter.

An establishment survey by the Gartner Group provides some additional information on the diffusion of computers among establishments. Figure 1 presents a graph of the percent of deskworkers (i.e., white collat workers) with $P C^{\prime} s$, and of the percent of establishments that have $P C^{\prime} s$, each year from 1984-1989. Although this variable differs from the CPS measure of computer use, a steady upward trend is apparent.

The following table sumarizes the relationship between the prevalence of personal computers and establishment size, agan using data from the Gartner survey. Except for very small establishments, compurer use is not strongly related ro establishment size. And the growth in personal computers per worker between 1984 and 1989 is not strongly related to establishment size for establishments with more than 20 employees.

Percentage of Thite Collar Workers with PC's

Number of Employees	1984	1989	Change
$0-4$	5.6	25.8	20.2
$5-9$	8.5	28.1	19.6
$10-19$	2.5	30.1	27.6
$20-49$	7.3	38.3	31.0
$50-99$	7.4	39.3	31.9
$100-249$	5.1	36.7	31.6
$250-499$	2.3	34.4	32.1
$500-999$	1.5	30.9	29.4
$1,000+$	5.9	40.3	34.4

Source: Statistical Abstract of the United States, 1990, p. 951.

Finally, the 1989 CPS shows that relatively few employees (less than 15 percent of employees) use computers in the agriculture, construction. textile, lumber, and personal services fndustries, whereas computer use is

widespread (exceeding 60 percent of employees) in the banking, insurance, real estate, commications, and public administration industries.

II. Computer Use and Vages

I have estimated a variety of statistical models to try to answer the question: Do employees who use computers at work receive a higher wage rate as a result of their computer skills? I begin by sumarizing some simple ordinary least squares (OLS) estimates. The analysis is based on data from the october 1984 and 1989 CPS. The sample consists of workers age 18-65. (See Appendix A for further detalls of the sample.)

My initial approach is to augment a standard cross-sectional earnings function to include a dumy variable indicating whether an individual uses a computer at work. Let C_{i} represent dummy variable that equals one if the i'th individual uses a computer at work, and zero otherwise. Observation i's wage rate, W_{1}, is assumed to deperd on C_{1}, a vector of observed characteristics X_{i}, and an error ε_{i}. Acopting a log-Inear specification:

$$
\begin{equation*}
\ln W_{i}-X_{i} \beta+C_{i} \alpha+\varepsilon_{i} \tag{1}
\end{equation*}
$$

where β and α are parameters to be estimated. Section III considers the effect of bias because of possible correlation between C_{1} and ε_{1}.

Table 2 reports results of fitting equation (1) by oLs, with varying sets of covariates (X). In columns (1) and (4), a computer use dumy variable is the only right-hand-side variable. In these models the (raw) differential in hourly pay between workers who use computers on the j ob and those who do not is 31.8 percent (exp(.2765)-1) in 1984, and 38.4 percent

Table 2: OLS regression escimates of the effect of computer use on pay Dependent variable: In (hourly wage)

Independent Variable	Occober 1984			Qctober 1989		
	(1)	(2)	(3)	(4)	(5)	(6)
Incercept	$\begin{gathered} 1.937 \\ (0.005) \end{gathered}$	$\begin{gathered} 0.750 \\ (0.023) \end{gathered}$	$\begin{gathered} 0.928 \\ (0.026) \end{gathered}$	$\begin{gathered} 2.086 \\ (0.006) \end{gathered}$	$\begin{gathered} 0.905 \\ (0.024) \end{gathered}$	$\begin{aligned} & 1.096 \\ & (0.026) \end{aligned}$
Uses computer at work (l-yes)	$\begin{gathered} 0.276 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.170 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.140 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.325 \\ (0.009) \end{gathered}$	$\begin{gathered} 0.188 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.162 \\ (0.008) \end{gathered}$
Years of education	--	$\begin{aligned} & 0.059 \\ & (0.001) \end{aligned}$	$\begin{gathered} 0.048 \\ (0.002) \end{gathered}$	- -	$\begin{gathered} 0.075 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.055 \\ (0.002) \end{gathered}$
Experience	\cdots	$\begin{gathered} 0.027 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.025 \\ (0.001) \end{gathered}$...	$\begin{gathered} 0.027 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.025 \\ (0.001) \end{gathered}$
$\begin{aligned} & \text { Expertence-Squared } \\ & \div 100 \end{aligned}$		$\begin{aligned} & -0.041 \\ & (0.002) \end{aligned}$	$\begin{aligned} & .0 .040 \\ & (0.002) \end{aligned}$	--.	$\begin{aligned} & -0.041 \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.040 \\ & (0.002) \end{aligned}$
Black (l-yes)	- -	$\begin{aligned} & -0.098 \\ & (0.013) \end{aligned}$	$\begin{aligned} & -0.066 \\ & (0.012) \end{aligned}$	\cdots	$\begin{aligned} & -0.121 \\ & (0.013) \end{aligned}$	$\begin{aligned} & -0.092 \\ & (0.012) \end{aligned}$
Other race (1-yes)	-	$\begin{aligned} & -0.105 \\ & (0.020) \end{aligned}$	$\begin{aligned} & -0.079 \\ & (0.019) \end{aligned}$	\cdots	$\begin{aligned} & -0.029 \\ & (0.020) \end{aligned}$	$\begin{aligned} & -0.015 \\ & (0.020) \end{aligned}$
Part-time (1-yes)	---	$\begin{aligned} & -0.256 \\ & (0.010) \end{aligned}$	$\begin{aligned} & -0.216 \\ & (0.010) \end{aligned}$	- -	$\begin{aligned} & -0.221 \\ & (0.010) \end{aligned}$	$\begin{aligned} & -0.183 \\ & (0.010) \end{aligned}$
Lives in SMSA. (l-yes)	---	$\begin{gathered} 0.111 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.105 \\ (0.007) \end{gathered}$	---	$\begin{gathered} 0.138 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.130 \\ (0.007) \end{gathered}$
Veteran (1-yes)		$\begin{gathered} 0.038 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.041 \\ (0.011) \end{gathered}$	---	$\begin{gathered} 0.025 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.031 \\ (0.011) \end{gathered}$
Female (1-yes)	\cdots	$\begin{aligned} & -0.162 \\ & (0.012) \end{aligned}$	$\begin{aligned} & -0.135 \\ & (0.012) \end{aligned}$	--	$\begin{aligned} & -0.172 \\ & (0.012) \end{aligned}$	$\begin{aligned} & -0.151 \\ & (0.012) \end{aligned}$
Married (1-yes)	\cdots	$\begin{gathered} 0.156 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.129 \\ (0.011) \end{gathered}$	---	$\begin{gathered} 0.159 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.143 \\ (0.011) \end{gathered}$
Married*Female	\cdots	$\begin{aligned} & -0.168 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.151 \\ & (0.015) \end{aligned}$	*-	$\begin{aligned} & -0.141 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.131 \\ & (0.015) \end{aligned}$
Union member (1-yes)	-	$\begin{gathered} 0.181 \\ (0.009) \end{gathered}$	$\begin{gathered} 0.194 \\ (0.009) \end{gathered}$	-.	$\begin{gathered} 0.182 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.189 \\ (0.010) \end{gathered}$
8 Occupation Dums.	No	No	Yes	No	No	Yes
R^{2}	0.051	0.446	0.491	0.082	0.451	0.486

Notes: Standard errors are shown in parentheses. Sample size is 13.335 for 1984 and 13,379 for 1989 . Columns $2,3,5$, and 6 also include 3 region dumy variables.
(exp(.325)-1) in 1989. In colums (2) and (5) several covariates are added to the regression equation, including education, potential experience and its square, gender, and union status. Encluding these variables reduces the computer premium to 18.5 percent in 1984 and to 20.5 percent in 1989. Even after including these covarlates, however, the computer dumy variable continues to have a sizable and statistically significant effect on wages, With t-ratios of 21.3 in 1984 and 23.1 in 1989.

It is not clear whether occupation dumies are appropriate variables to include in these wage regressions because computer skilis may enable workers to qualify for jobs in higher paying occupations and industries. For example, one would probably not want to control for whether a worker is in the computer programing occupation while estimating the effect of computer use on earnings. Nevertheless, columns (3) and (6) include a set of 8 one-digit occupation dumies. These models still show a sizable pay differential for using a computer at wo:k. In 1989, for example, employees who use computers on the job earn 17.6 percent higher pay than employees who do not use computers on the job, holding education, occupation, and other characteristics constant. If 44 two-digit occupation dumies are included in the model in column (6) instead of one-digit occupation dummes, the computer use wage differential is 13.9 percent, with a t-ratio of 15.5.

a. Employer characteristics

Although I am mainly concerned about bias because of omitted employee characterdstics that are correlated with computer use at work, it is possible that characteristics of employers are correlated with the provision of computers and the generosity of compensation, such a
relationship might exist in a rent-sharing model, in which employees are able to capture some of the return to the employer's capital stock. Unforcunately, chere is only a limited amount of information about employer characteristics in the CPS. However, if 48 two-digit industry dumnies are included in a model that includes two-digit occupation dummies and the covariates in colum (6), the computer use wage differential is 11.4 percent, with a t-ratio of $13.0{ }^{5}$

Information on employer size is not avaliable in the October CPS, but two findings suggest that the computer differential is not merely reflecting the effect of (omitted) employer size. First, establishmentlevel surveys do not show a strong relationship between computer use and establishment size (e.g., Hirschorn, 1991). Second, in a recent paper Reilly (1990) uses a sample of 607 employees who worked in 60 establishments in Canada in 1979 to favestigate the relationship between establishment size and wages. Reilly estimates wage regressions including a dumy variable indicating access to a computer. Without controlling for establishment size, he finds that employees who have access to a computer earn 15.5 percent ($t-5.7$) higher pay. When he includes the \log of establishment size the computer-wage differential is 13.4 percent (t-3.9).

Finally, I have estimeted the model in column (5) separately for union and nonunion workers. The premilun for computer use 1520.4 percent (t-ratio-23) in the nonunion sector, and fust 7.8 percent ($t-4.3$) in the union sector. Since unions have been found to compress skill differentials (see Lewis, 1985 and Card, 1991), this finding should not be surprising.

[^4]However, if one believed that the premium for work-related computer use is a result of employees capturing firms' capltal rents rather than a return to a skill, it is difficult to explain why the premium is so much larger in the nonunion sector than in the union sector.

b. Computer premium over Time

The results in Table 2 indicate that, if anything, the estimated reward for using a computer at work inceased slightly between 1984 and 1989. For example, based on the models in colums (3) and (6), between 1984 and 1989 the computer (log) wage premium increased by 022 . The standard error of this estimate is . 011, so the increase is on the margin of statistical significance. There is certainiy no evidence of a decline in the payoff for computer skills in this period.

This finding is of interest for two reasons. First, given the substantial expansion in the supply of workers who have computer skills between 1984 and 1989 one might have expected a decline in the wage differential associated with computer use at work, ceteris paribus. The failure of the wage differential for computer use to decline suggests that the demand for workers with computer skilis may have shifted out as fast as, or faster than, the outward shift in the supply of computer-literate workers. This hypothesis is plausible given the remarkable decline in the price of computers and the expansion in uses of computers in the 19805.

A second reason why the slight increase in the wage differential associated with computer use is of interest concerns the effect of possible nonrandom selection of the workers who use computers. Companies are likely to provide computer training and equipment first to the workers whose productivity is expected to increase the most from using a computer. This
would pose a problem for the interpreation of the OLS estmatas if these workers would have earned higher wages in the absence of computer use. The large increase in the number of workers who used computers at work between 1984 and 1989 was likely to have reduced the average quality of workers who work with computers, which would be expected to drive down the average wage differential associated with computer use. However, the slight increase in the computer wage premium between 1984 and 1989 suggests that nonrandom selection of the workers who use computers is not the dominant factor behind the positive association between computer use and wages.

The other variables in Table 2 generally have theit typical effects on wages, and their coefficients are relatively stable between 1984 and 1989. One notable exception is the rate of return to education, which increased by 6 percentage points between 1984 and 1989 , even after holding computer use constant: And the black-white wage gap Increased while the wage gap between whites and other races declined in these years.

c. Specific computer tasks

The 1989 CPS asked workers what tasks they use their computer for. Individuals were allowed to indicate multiple tasks. I have estimated the model in column 6 of Table 2 including a set of computer-task dumy variables. (These estimates are available on request.) Interestingly, these results show that the mose highly rewarded task computers are used for is electronic mail, probably reflecting the fact that high-ranking executives often use E-mail. On the other hand, these results show no premium for individuals who use a computer for playing computer games. And book keeping, desk top publishing, and inventory control have slightly

Hower rewards than the average task.

Abstract

 A critical concern in interpreting the oLS regressions reported above is that workers who wee computers on the fob may be more able workers, and therefore may have earned higher wages even in the absence of computer technology. Further, the finding that the computer-wage differential is attemated when covariates are included in the OLS regressions suggests that important variables may be omitted that are posicively correlated with both computer use and earnings. I have tried four emplrical strategies to probe whether the computer-pay differential is a real consequence of computer use of is spurious.

a. Computer use at home and work

The 1984 and 1989 October CPS surveys collected information on computer use at home as well as at work. This enables a more general specification of the wage equation. In particular, I have estimated parameters of the following log-wage equation:
$\ln W-X \beta+c_{w} \alpha_{1}+c_{h} \alpha_{2}+c_{w} \cdot c_{h} \alpha_{3}+\varepsilon$
where C_{w} is a dummy variable that equals one if a worker uses a computer at work and zero otherwise, C_{h} is a dummy variable that equals one if a worker uses a computer at home and zero otherwise, and $C_{w} \cdot C_{h}$ is an interaction between computer use at home and at work.

To some extent, workers who possess unobserved characteristics that are associated with computer use at home may be selected by employers to use computers at work on the basis of those same characteristics. In this
case, controlling for whether vorkers use a computer at home would capture at least some of the unobserved variance in the error term that is correlated with computer use at work. If the positive association between computer use at work and pay is spuriously reflecting correlation between computer use and omitted variables, we would expect $\alpha_{1}=\alpha_{2}$ and $\alpha_{1}-\alpha_{3}$. Table 3 presents OLS estimates of equation (2) using CPS data for 1984 and 1989. The results suggest that computer use at work is the main determinant of earnings, not computer use generally. For example, in 1989 individuals who used a computer for work only earned approximately 17.7 percent more per hour than those who did not use a computer at all; whereas individuals who used a computer at home only earned 7 percent more than those who did not use computer at all. ${ }^{6}$ On the other hand, individuals who used a computer at home and at work earned about 9 percent more chan individusis who used a computer at work only. Similar results hoid for 1984.
b. Estimates for narrow occupations

As a second approach. I limit the CPS sample to homogeneous groups of workers. The largest narrowly-defined occupational group in the CPS is secretaries. In: 1984 some 46 percent of secretaries used computers at work; by 1989 this figure rose to 77 percent. Not surprisingly, threequarters of the secretaries who report using computers on their job use computers for word processing. Table 4 contains estimates of wage regressions for samples of secretaries in 1984 and 1989. The wage premium for secretarles who use computers on the job is 6 percent ($\mathbf{~}-2.5$) in 1984

[^5]Table 3: The return to computer use at work, home, and work and home. (Standard errors are shown in parentheses.)

	October 1984 Education	October 1989 (2)
	0.165	0.177
Uses computer	(0.009)	(0.009)
at work	0.056	0.070
Uses computer	(0.021)	(0.019)
at home	0.006	0.017
Uses computer	(0.029)	(0.023)
ar home and work	13.379	13.335
Sample size		

Notes: The table reports coefficients for three dumy variables estimated from log hourly wage regressions. The other explanatory variables in the regressions are: education, experience and its square, 2 race dumies, 3 region dumy variables, dumy variables indicating part-cime status, residence in an SMSA, veteran scatus, gender, marital status, union membership, and an interaction between marital status and gender. Covariaces and sample size are the same as in column 2 and 5 of Table 2.
secretaries with exactly a high school education, the wage premiums is 9.2 percent (t-3.3) in 1984 and 8.6 percent (t-2.1) In 1989.

The large premium secretaries appear to receive for using a computer accords with two additional pieces of evidence on the value employers place on computer skills. First, I conducted a small phone survey of temporary employment agencies in New York City, San Francisco, Cleveland, and Dallas. and asked several questions concerning the computer use and pay of the secretaries they place. 141 temporary agencies were contacted, and at least partial responses were received from 83 (58.9 percent) agencies.? Interestingly, 84 percent of surveyed firms currently give job applicants a written or hands-on test of computer skills. One of the questions we asked the placement firms was: "In your experience, are employers willing to pay secretaries more if they have computer skilis than if they don't have computer skills?". Ninety-eight percent of agencies responded yes.

We also asked the placement firms: "What is the typical hourly pay rate a secretary is paid who does no: have computer skills?", and "What is the rypical hourly pay rate a secretary is paid who is ocherwise identical but does have computer skills? The mean hourly rate for a secretary with computer skills was $\$ 12.77$ (std error $-\$ 0.43$), and the mean hourly rate for a secretary without computer skills was $\$ 9.14$ (std. error - \$0.25). The difference in the mean log wage for computer vs. noncomputer use in this sample is 33 (std. error - .02), which is much greater than the estimated log-wage differential for computer use derived for secretaries
${ }^{7}$ Employment agencies in the survey were selected from the yellow pages of the phone books for these four cities. The survey was conducted in August 1991, and the questions were eddressed to "someone who is knowledgeable about placement." More information on the sample frame and questionnaire is avallable on request.

Indepencene Vartable	Occober 1984 (1)	October 1989 (2)
Incercept	$\begin{gathered} 1.387 \\ (0.019) \end{gathered}$	$\begin{gathered} 1.208 \\ (0.180) \end{gathered}$
Uses computer at work (l-yes)	$\begin{gathered} 0.059 \\ (0.024\} \end{gathered}$	$\begin{gathered} 0.093 \\ (0.030) \end{gathered}$
Years of education	$\begin{gathered} 0.014 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.035 \\ (0.008) \end{gathered}$
Experience	$\begin{gathered} 0.009 \\ (0.003) \end{gathered}$	$\begin{gathered} 0.024 \\ (0.004) \end{gathered}$
$\begin{aligned} & \text { Experience-Squared } \\ & \div 100 \end{aligned}$	$\begin{aligned} & -0.007 \\ & (0.008) \end{aligned}$	$\begin{aligned} & -0.047 \\ & (0.009) \end{aligned}$
BLack (Inyes)	$\begin{aligned} & -0.079 \\ & (0.012) \end{aligned}$	$\begin{gathered} 0.065 \\ (0.053) \end{gathered}$
Ocher race (i-yes)	$\begin{aligned} & -0.095 \\ & (0.080) \end{aligned}$	$\begin{gathered} 0.065 \\ (0.074) \end{gathered}$
Part-time (l-yes)	$\begin{aligned} & -0.321 \\ & (0.032) \end{aligned}$	$\begin{aligned} & -0.160 \\ & (0.034) \end{aligned}$
Lives in SMSA (l-yes)	$\begin{gathered} 0.159 \\ (0.024) \end{gathered}$	$\begin{gathered} 0.152 \\ (0.025) \end{gathered}$
Female (l-yes)	$\begin{gathered} 0.090 \\ (0.166) \end{gathered}$	$\begin{gathered} 0.146 \\ (0.127) \end{gathered}$
Married (Lmes)	$\begin{gathered} 0.422 \\ (0.219) \end{gathered}$	$\begin{aligned} & -0.027 \\ & (0.027) \end{aligned}$
Married*Femate	$\begin{aligned} & -0.387 \\ & (0.220) \end{aligned}$	---
Union member (1-yes)	$\begin{gathered} 0.016 \\ (0.040) \end{gathered}$	$\begin{gathered} 0.046 \\ (0.046) \end{gathered}$
R^{2}	0.256	0.222

Notes: Standard errors are shown in parentheses. Sample size is 751 for 1984 and 618 foz 1989. Regressions also Include 3 region dumy variables variables. Mean (s.d.) of the dep. vardable for col. 1 fs 1.86 (.36), and for col. 2 is 2.08 (.34).
using CPS data.
Lastly, we asked the employment agencies whether they provide computer training to the workers they place, and who pays for the raining. Some 62 percent of employment agencies responded that they provide up-front training for the workers they place. And in 96 percent of the instances in which training is provided, the employment agency pays for the training. In the remaining 4 percent the employee pays for training; none of the firms responded that the firm where the worker is placed pays for training. The finding that employment agencies pay for computer training for temporary employees is quite surprising because the training is likely to be of general use. Moreover, this phenomenon differs from on-the-job training since temporary workers canot pay for training by taking a lower initial wage because they receive the training before they start work, and they are under no obligation to subsequently work. The fact that temporary agencies seem to find it profitable to provide computer training to the workexs they place suggests there is a substantial return to computer skills.

Second, a survey of 507 secretaries employed by large firms conducted by Kelly Services (1984, p, 13) provides some additional evidence on whether employers truly pay a wage premium to secretaries with computer skills. This survey found that 30 percent of secretaries received a pay raise as a resulc of obtaining word processing skills.

Although the estimated wage premium for secretaries who use computers at work based on CPS data may appear to be large by economic standards (e.g., at least as important as one year of additional schooling), it does not seem implausible given this external evidence. In fact, the phone survey of temporary empioyment agencies suggests that the CPS may
underestimate the premium for computer use. From a practical perspective, the large wage differential for secretaries who are proficient at operating computers suggests that public-sector training programs might profitably concentrate on providing trainees with computer skills.

I have estimated the computer wage differential for six additional white collar occupations. ${ }^{8}$ To sumarize these results, the estimated computer differential (α) and standard error for these occupations in 1989 are: .137 (.035) for managers; .101 (.044) for registered nurses; .060 (.038) for school teachers; . 185 (.046) for sales supervisors; -.052 (.073) for sales representatives; and .089 (.062) for book keepers. Further analysis indicates that the computer premium tends to be smaller in threedigit occupations that have a greater proportion of workers using computers.

c. Repeated cross-section methods

Thus far, we have treated the CPS data sets as independent crosssections. We can also take advantage of the repeated nature of the CPS data sets by linking cohorts over time. Specifically, write the wage equations for 1984 (indicated by subscript 1) and for 1989 (indicated by subscript 2) as:
(4) $\quad \ln \mathrm{H}_{\mathrm{i} 2}-\mathrm{X}_{\mathrm{i} 2} \beta_{2}+\mathrm{C}_{i 2} \alpha_{2}+\varepsilon_{i 2}$

[^6]If we are willing to assume that $\alpha_{1}=\alpha_{2}=\alpha$ is constant between 1984 and 1989, we can estimate the computer-use wage differential using repeated cross-section/multiple cohort models. ${ }^{9}$ This estimator takes advantage of the fact that the proliferation in computer use was not constant across cohorts. Because the same set of individuals are in these cohorts over time (ruling out labor force participation issues), computer use is not correlated with unobservables at the cohort level. In principle, this approach yields a consistent estimate of even if C_{i} and c_{i} are correlated.

Specifically, define $Y_{i j}(j=1929, \ldots .1959)$ as a set of cohort dumby variables that equal one $I f$ an individual is born in year f and zero otherwise, and define T_{i} as a period dummy variable that equals one if an indyidual is abserved in 1989 and zero if observed in 1984. Under the assumptions listed above, we can estimate the following equation for a pooled sample of individuals drawn from the 1984 and 1989 October CPS's:

$$
\begin{equation*}
1 \pi W_{i}-X_{i} \beta_{1}+T_{i} \cdot X_{i}\left(\beta_{2} \cdot \beta_{1}\right)+T_{i} \delta+\Sigma \xi_{j} \cdot Y_{1 j}+C_{i} \alpha+\varepsilon_{i} \tag{5}
\end{equation*}
$$

Equation (5) is estimated by two-stage least squares (TSLS), using $T_{i} Y_{i j}$ as exclusion restrictions. 10

Figure 2 illustrates the relationship between the change in mean log hourly earnings for a birth cohort and the change in the proportion of workers in that cohort using a computer at work over the period 1984-89. Each point represents the experience of a single year-of-bixth cohort ranging from 1924 to 1959, and the birth year is indicated on the graph.

[^7]

Some birth cotorts clearly experienced greater expansion in computer use than others. Further, the scatter diagram displays an upward sloping relatlonship between earnings growth and the growth in computer use for these birth cohorts. However, the upward sloping relationshfp exhibited in the figure is largely a result of siower wage growth for older workers. Equation (5) includes a set of unestricted cohort dumies and a year dumay to control for differences in age.

Table 5 reports estimates of equation (5). The sample has been narrowed to individuals born between 1929 and 1959 to avoid major life-cycle changes in labor force participation. The model in column (1) simply reports the OLS estimate of equation 5. Column (2) and (3) identify the computer differential from cohort variation in the growth in compurer use between 1984 and 1989. Notice that the models differ insofar as which of the X-variables are free to have varying coefficients over time. The model in column (2) is the least restrictive specification: all of the X-varlables are allowed to have time-varying coefficients, but the cohort dumies and computer dumy are restricted to have constant effects over cime. Column (3) only Erees up the gender, race, and education vartables over time.

The TSLS models in columns (2) and (3), which rely on the repeated cross-sections for identification, show that the wage differential for using a computer on the job is about 29 percent, about twice as large as their standard errors. Although the TSLS estimate is larger than the OLS estimate, the difference between them is not statistically significant. However, both 2SLS models fail a test of error-instrument orthogonality at conventional levels of significance. Futhermore, the estimates are

Table 5: Repeated cross-section estimates of the effect of computer use on pay. Dependent variabie: In (hourly wage).

Notes: Standard errors are shown in parentheses. Sample size is 18,471.
Sample includes workers who were born between 1929 and 1959.

```
extremely sensitive to minor changes in the specification: For example, if
experience and expertence-squared are included instead of che 30 cohort
dummies, the computer (log) wage differential increases to 0.45 (t-4,8).
```

d. Estimates based on the High School and Beyond Survey

To control for a more comprehensive set of personal characteristics, I have examined data from the High School and Beyond Survey. This longitudinal data set contains information on computer use, achievement test scores, and school performance for individuals who were high school sophomores or seniors in 1980. The 1984 wave of the survey asked about earnings and work experience. I restrict the sample to workers with exactly a high school education because anyone with addtional schooling would not have spent much time in the labor market by 1984. Further description of the sample and variables is provided in Appendix B.

Unfortunately, the computer use question in the HSBS is not ideally suited for my purposes. Information on computer use at work was collected only in the 1984 wave of the survey. In that year, individuals were asked whether they ever used a computer on a job. Some individuals may have used a computer on an earlier job but not on their present job. Consequently, computer use and earnings are not perfectly aligned. Nevercheless, the HSBS provides another data set with which to examine the robustness of the effect of computer utilization at work on earnings.

Table 6 presents several OLS estimates of the effect of computer use at work on wages using the HSBS. The first column simply reports the difference in the mean log wage rate in 1984 for workers who have used a computer at work and those who have not. The differential of 11 log points is lower than the estimate derived from the October 1984 CPS.

Table b: OLS tog wage regrescions using the high schoot and Eeyond survey

Independent Varisble	bacar (SO)	(1)	(2)	(3)	(4)	(¢)
Used computer at work (1=yes)	$\begin{gathered} 0.19 \\ 00.399 \end{gathered}$	$\begin{gathered} 0.109 \\ (0.015) \end{gathered}$	$\begin{aligned} & 0.114 \\ & 0.0 .15) \end{aligned}$	$\begin{gathered} 0.110 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.110 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.097 \\ (0.017) \end{gathered}$
Used compuiter a: home	$\begin{gathered} 0.20 \\ 50.401 \end{gathered}$	-..	\cdots	\cdots	\cdots	$\begin{aligned} & -0.026 \\ & (0.017) \end{aligned}$
Used computer at home and work	$\begin{gathered} 0.05 \\ \{0.24\} \end{gathered}$	- -	-	---	---	$\begin{aligned} & 0.057 \\ & (0.034) \end{aligned}$
Ferisle (1=ye5)	$\begin{gathered} 0.52 \\ (0.50) \end{gathered}$	-..	$\begin{aligned} & -0.102 \\ & 50.014) \end{aligned}$	$\begin{aligned} & -0.102 \\ & \{0.014\} \end{aligned}$	$\begin{aligned} & -0.104 \\ & (0.014) \end{aligned}$	$\begin{aligned} & -0.105 \\ & (0.014) \end{aligned}$
Elack (1-yes)	$\begin{gathered} 0.14 \\ 10.34] \end{gathered}$	\cdots	$\begin{aligned} & -0.056 \\ & 40.0187 \end{aligned}$	$\begin{aligned} & -0.060 \\ & (0.019) \end{aligned}$	$\begin{aligned} & -0.079 \\ & 60.0203 \end{aligned}$	$\begin{aligned} & -0.070 \\ & (0.020) \end{aligned}$
Other Race (i=yes)	$\begin{gathered} 0.27 \\ 10.445 \end{gathered}$	--*	$\begin{gathered} 0.054 \\ (0.014) \end{gathered}$	$\begin{aligned} & =0.008 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.014 \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.0\} 4 \\ & (0.016) \end{aligned}$
married (1-yes)	$\begin{gathered} 0.25 \\ 10.43 j \end{gathered}$	"**	$\begin{gathered} 0.083 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.085 \\ (0.062) \end{gathered}$	$\begin{gathered} 0.08 \% \\ (0.022) \end{gathered}$	$\begin{gathered} 0.090 \\ 60.026 \end{gathered}$
Marcied*Female	$\begin{gathered} 0.16 \\ \{0.36\} \end{gathered}$	***	$\begin{aligned} & -0.059 \\ & (0.029) \end{aligned}$	$\begin{aligned} & -0.065 \\ & 0.028 \end{aligned}$	$\begin{aligned} & =0.064 \\ & (0.028) \end{aligned}$	$\begin{aligned} & -0.083 \\ & (0.028) \end{aligned}$
Union member (i=yes)	$\begin{gathered} 0.13 \\ \{0.33\} \end{gathered}$	-**	$\begin{gathered} 0.100 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.102 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.101 \\ (0.018) \end{gathered}$	$\begin{array}{r} 0.802 \\ 60.0182 \end{array}$
Senior in 1980 (1=yes)	$\begin{gathered} 0.44 \\ \{0.50\} \end{gathered}$	---	$\begin{gathered} 0.142 \\ 0.0223 \end{gathered}$	$\begin{gathered} 0.139 \\ (0.021) \end{gathered}$	$\begin{gathered} 0.133 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.133 \\ (0.022) \end{gathered}$
fative born ($1=$ yes)	$\begin{gathered} 0.93 \\ 10.253 \end{gathered}$	- ${ }^{-}$	$\begin{aligned} & -0.034 \\ & (0.024) \end{aligned}$	$\begin{aligned} & -0.020 \\ & (0.024) \end{aligned}$	$\begin{aligned} & -0.032 \\ & (0.024) \end{aligned}$	$\begin{aligned} & -0.031 \\ & (0.024) \end{aligned}$
Acacemic high school	$\begin{gathered} 0.36 \\ 10.481 \end{gathered}$	---	*-.	$\begin{aligned} & -0.041 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.028 \\ & (0.016) \end{aligned}$	$\begin{aligned} & -0.027 \\ & 0.015) \end{aligned}$
General high schoot	$\begin{gathered} 0.37 \\ 10.48 \end{gathered}$	--.	***	$\begin{aligned} & -0.024 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.021 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.021 \\ & (0.015) \end{aligned}$
Urban hicgit school	$\begin{gathered} 0.24 \\ {[0.45]} \end{gathered}$	-	***	$\begin{gathered} 0.045 \\ 0.014\} \end{gathered}$	$\begin{gathered} 0.016 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.016 \\ (0.014) \end{gathered}$
9 Region Durs. for hish school.	***	No	no	Yes	Yes	Yes
parerts eduction (10 dum. vars.)	-..	H6	HO	Ho	Yes	Yea
Achievement sest score, $1980(/ 100)$	$\begin{gathered} 0.50 \\ 10.091 \end{gathered}$	-.	\cdots	---	$\begin{aligned} & -0.179 \\ & (0.090) \end{aligned}$	$\begin{aligned} & -0.169 \\ & \{0.099\} \end{aligned}$
Grade point Averege (/100)	$\begin{aligned} & 0.81 \\ & 0.751 \end{aligned}$	- -	-	\cdots	$\begin{gathered} 0.047 \\ (0.095) \end{gathered}$	$\begin{gathered} 0.049 \\ (0.093) \end{gathered}$
Disciplinery problem (izyes)	$\begin{gathered} 0.13 \\ \{0.331 \end{gathered}$	- -	---	---	$\begin{gathered} 0.018 \\ 0.018) \end{gathered}$	$\begin{gathered} 0.018 \\ \{0.018 \end{gathered}$
Disability !imits work	$\begin{array}{r} 0.060 \\ 10.241 \end{array}$	-	---	---	$\begin{aligned} & -0.059 \\ & 0.025) \end{aligned}$	$\begin{aligned} & -0.059 \\ & (0.025) \end{aligned}$
R^{2}		0.011	0.876	0.092	0.069	0.009

Hotes: standerd errory are shom in parentheses. Same gize is $4,686$.
Regressions laco include age, age-quared, and e constant. The mean isol of log hourly earnings it 1.59 f .411 . Semple consists of workers with execily \% high school educstion. see Appentix for further information on the smaly.

```
Column (2) adds several demographic variables, column (3) adds several
variables measuring the kind of high school the individual attended, and
column (4) adds the worker's self-reported high school grade point average,
a composite test score measuring reading and mathematics skills, and
additional background characteristics (e.g., parents' education).
Including these variables has lictle effect on the magnitude of the wage
premium for work-related computer use.
    Interestingly, in the HSBS data there is a statistically significanr,
positive association between a worker's propensity to use a computer at
work and both his achievement test score and grade point average. For
example, a one standard deviation increase in the cognitive test measure is
associated with a 2.7 percentage point increase in the likelihood of
computer use at work. }\mp@subsup{}{}{11}\mathrm{ A possible concern about the estimates in column
(4) is that the test score variable has a negative effect on earnings. To
explore this further, in other estimates I have used workers' }198
achievement test score, which is available only for sophonores, as an
instrumental variable for their 1980 test score: However, these estimates
continue to show a negative relationship betweer achievement test scores
and wages.
```

The 1984 wave of the HSBS also inquired about individuals "recreational" use of computers; that is, whether they have used a computer outside of work and school. I have used this information to estimate equation (2) for the HSBS sample, where "home" computer use denotes

[^8]"recreational" use. These results are reported in column (5). Similar to the estimates from the CPS, the results indicate that computer use at work is an important determinant of earnings, whereas computer use at home does not significantly affect earnings.

IV. The Effect of the Computer Revolution on Other Wage Differentials

The previous sections tentatively establish that workers who use computers on their jobs earn more as a result of their computer skilis. A natural question to raise is: What effect has the proliferation of computers at work had on the relationship between earnings and other variables, such as education This issue is particularly relevant because computer use, and the expansion of computer use, has not been uniform across groups. Here I only estimate the direct effect of holding compurer use constant on other earnings differentials; potentially important spill over effects of computer use on non-computer users (e.g., the effect of a secretary using a computer on his or her boss) are not taken into account.

To explore the effect of computer use on other wage differentials, Table 7 presents OLS estimates of wage equations in 1984 and 1989, with and without including the computer use dumny variable. Columns (2) and (5) simply reproduce estimates in Table 2. Colums (3) and (6) report an alterative specification, which includes both a computer dumy and ar, interaction between the computer dumay and years of education. This specification indicates that the computer differential is greater for more highly educated workers.

Notably, the table shows that the rate of return to education increased by one point between 1984 and 1989 if the computer dumny is not

Table 7: OLS regression estimates of the effect of computer use on pay Dependent variable: In (hourly wage)

Independent Variable	Ocrober 1984			October 1989		
	(1)	(2)	(3)	(4)	(5)	(6)
Uses compurer at work (l-yes)		$\begin{gathered} 0.170 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.073 \\ (0.048) \end{gathered}$	--	$\begin{gathered} 0.188 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.005 \\ (0.043) \end{gathered}$
Computer Dum. x Education	-	-	$\begin{gathered} 0.007 \\ (0.003) \end{gathered}$	\cdots	-	$\begin{gathered} 0.013 \\ (0.003) \end{gathered}$
Years of education	$\begin{gathered} 0.076 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.069 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.067 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.085 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.075 \\ (0.001) \end{gathered}$	$\begin{gathered} 0.071 \\ (0.002) \end{gathered}$
Experience	$\begin{gathered} 0.027 \\ (0.001) \end{gathered}$					
Exper. Squared $\div 100$	$\begin{aligned} & -0.042 \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.041 \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.042 \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.044 \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.041 \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.042 \\ & (0.002) \end{aligned}$
Black (1-yes)	$\begin{aligned} & -0.106 \\ & (0.013) \end{aligned}$	$\begin{aligned} & -0.098 \\ & (0.013) \end{aligned}$	$\begin{aligned} & -0.099 \\ & (0.013) \end{aligned}$	$\begin{aligned} & -0.141 \\ & (0.013) \end{aligned}$	$\begin{aligned} & -0.121 \\ & (0.013) \end{aligned}$	$\begin{aligned} & -0.122 \\ & (0.013) \end{aligned}$
Other race (1-yes)	$\begin{aligned} & -0.120 \\ & (0.020) \end{aligned}$	$\begin{aligned} & .0 .205 \\ & (0.020) \end{aligned}$	$\begin{aligned} & -0.106 \\ & (0.020) \end{aligned}$	$\begin{aligned} & -0.037 \\ & (0.021) \end{aligned}$	$\begin{aligned} & -0.029 \\ & (0.020) \end{aligned}$	$\begin{aligned} & -0.032 \\ & (0.020) \end{aligned}$
Part-time (l-yes)	$\begin{aligned} & -0.287 \\ & (0.010) \end{aligned}$	$\begin{aligned} & -0.256 \\ & (0.010) \end{aligned}$	$\begin{aligned} & -0.256 \\ & (0.010) \end{aligned}$	$\begin{aligned} & -0.261 \\ & (0.010) \end{aligned}$	$\begin{aligned} & -0.221 \\ & (0.010) \end{aligned}$	$\begin{aligned} & -0.221 \\ & (0.010) \end{aligned}$
Lives in SMSA (l-yes)	$\begin{gathered} 0.123 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.111 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.111 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.148 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.138 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.138 \\ (0.007) \end{gathered}$
Veteran (l-yes)	$\begin{gathered} 0.043 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.038 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.039 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.027 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.025 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.029 \\ (0.012) \end{gathered}$
$\begin{aligned} & \text { Female } \\ & \text { (1-yes) } \end{aligned}$	$\begin{aligned} & -0.140 \\ & (0.012) \end{aligned}$	$\begin{aligned} & -0.152 \\ & (0.012) \end{aligned}$	$\begin{aligned} & -0.160 \\ & (0.012) \end{aligned}$	$\begin{aligned} & -0.142 \\ & (0.012) \end{aligned}$	$\begin{aligned} & -0.172 \\ & (0.012) \end{aligned}$	$\begin{aligned} & -0.168 \\ & (0.012) \end{aligned}$
Married (l-yes)	$\begin{gathered} 0.162 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.156 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.156 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.169 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.159 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.158 \\ (0.011) \end{gathered}$
Married*Female	$\begin{aligned} & -0.171 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.168 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.168 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.146 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.141 \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.139 \\ & (0.015) \end{aligned}$
Union member (1-yes)	$\begin{gathered} 0.267 \\ (0.009) \end{gathered}$	$\begin{gathered} 0.181 \\ (0.009) \end{gathered}$	$\begin{gathered} 0.181 \\ (0.009) \end{gathered}$	$\begin{gathered} 0.164 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.182 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.182 \\ (0.010) \end{gathered}$
R^{2}	0.429	0.446	0.446	0.428	0.451	0.452
Mean-Sq. Error	0.168	0.163	0.163	0.176	0.169	0.169

Notes: Standard errors are shown in parentheses. Sample size is 13,335 for 1984 and 13,379 for 1989. Regressions also includes 3 region dummy variables and an intercepe.
included in the regressions; if the computer dumy is included the return to education Increased by 0.6 points. To further investigate the timeseries trend in the return to education, Figure 3 plots estimates of the return to education for the full sample and for three subsamples; based on data from the Outgoing Rotation Group (OGRG) Files of the CPS each year from 1979-1990. ${ }^{12}$ The figure indicates that the log-linear estimate of the return to education increased steadily between 1979-1988, although the upward tend appears to have levelled off in 1989-90.

I have examined the effect of computer use on the return to education in several other samples. These results are sumarized in Tables 8 and 9. First consider Table 8, which reports estimates of the rate of return to education (times 100), with and without including a dumy indicating computer use at work. The first subsample is private sector workers. ${ }^{13}$ Between October 1984 and 1989 the conventional OLS estimate of the return to education in the private sector increased by .96 points. If, however, computer use is held constant, the return to education is estimated to have increased by .56 points. Thus, it appears that increased computer use can "account" for 41.6 percent ($-100 \cdot(.96-.56) / .96$) of the increase in the return to education in the private sector.

Turning to the other samples, the return to education increased by less for women than for men between 1984 and 1989. Holding computer use constant accounts for over half the increase in the return to education

[^9]Figure 3: Rate of Return to Education
(Data: CPS OGRG Files, 1979-1990)

observed for female workers, and nearly 40 percent for male workers. Also, It appears that although the return to education increased by more for younger workers than for older workers, controlling for computer use accounts for a larger share of the increase for older workers.

Tabie 9 reports results with and without including both a computer use dumay and an interaction between computer use and years of education. Specifically, I estimate the equation:

$$
\begin{equation*}
\ln H_{i}-X_{i} \beta+E_{i} \rho+C_{i} c_{i}+C_{i} E_{i} \gamma+c_{i} \tag{6}
\end{equation*}
$$

where in W_{i} represents the \log hourly wage rate, E_{i} education, C_{i} a computer use dummy variable, and X_{i} a set of covarlates. I am interested in the question: What would the return to education be if computer use remained constant at its 1984 level? This is given by $\rho+\gamma \cdot 246$, where 246 is the proportion of workers that used computers in 1984.

Because $\gamma>0$ for most subsamples and has increased over time (compare columns (3) and (6) of Table 7), the specification that includes the interaction between the computer use cumpy and education tends to account for a somewhat greater share of the increase in the return to education. For example, the augmented specification accounts for 50.5 percent of the increase in the return to education for the entire sample, and nearly twothirds of the increase for private sector workers. For women, increases in computer use appear to account for more than the cotal observed fncrease in the return to education. For older workers, however, the wage differential for using a computer declines with education ($\gamma<0$), so more of the increase in the return to education for this sample is accounced for by compucer use in the dumy variable specification in Table 8 .
Table 8
The Effect of Computer Use on the Return to Education, 1984-89 Percent of Change
Including Computer Dumm
1984 1989 change
0.638
0.561
0.775
0.233
55. 6\%
22.8%
53.5%
The returns to education have been multiplied by 100 .
官
Table 9
The Effect of Computer Use on the Return to Education, 1984-89 Interactive Specification

Sample	Excluding Computer Dummy			Including computer*Educ.			Percent of Change Accounted for by Computer Use
	1984	1989	Change	1984	1989	Chanqe	
All workers	$\begin{gathered} 7.577 \\ (0.144) \end{gathered}$	$\begin{gathered} 8.596 \\ (0.147) \end{gathered}$	1.019	$\begin{gathered} 6.917 \\ (0.183) \end{gathered}$	$\begin{gathered} 7.422 \\ (0.191) \end{gathered}$	0.505	50.5\%
Private sector	$\begin{gathered} 7.918 \\ (0.172) \end{gathered}$	$\begin{gathered} 8.882 \\ (0.171) \end{gathered}$	0.964	$\begin{gathered} 7.117 \\ (0.217) \end{gathered}$	$\begin{gathered} 7.449 \\ (0.209) \end{gathered}$	0.332	65.5\%
Men	$\begin{gathered} 7.073 \\ (0.192) \end{gathered}$	$\begin{gathered} 8.335 \\ (0.200) \end{gathered}$	1.262	$\begin{gathered} 6.263 \\ (0.217) \end{gathered}$	$\begin{gathered} 6.944 \\ (0.250) \end{gathered}$	0.681	46.0\%
Women	$\begin{gathered} 8.526 \\ (0.220) \end{gathered}$	$\begin{gathered} 9.051 \\ (0.216) \end{gathered}$	0.525	$\begin{gathered} 8.031 \\ (0.219) \end{gathered}$	$\begin{gathered} 7.890 \\ (0.216) \end{gathered}$	-0.141	126.9\%
Al1 workers age 25-34	$\begin{gathered} 8.279 \\ (0.338) \end{gathered}$	$\begin{gathered} 9.966 \\ (0.338) \end{gathered}$	1.687	$\begin{gathered} 7.368 \\ (0.340) \end{gathered}$	$\begin{gathered} 8.504 \\ (0.414) \end{gathered}$	1.236	32.78
All workers age 45-54	$\begin{gathered} 7.101 \\ (0.467) \end{gathered}$	$\begin{gathered} 8.158 \\ (0.500) \end{gathered}$	1.057	$\begin{gathered} 6.585 \\ (0.496) \end{gathered}$	$\begin{gathered} 7.200 \\ (0.558) \end{gathered}$	0.615	41.88

To sumarize the estimates from these two specifications, it would appear that the increase in computer use can account for between one-third and one-half of the increase in the return to education between 1984 and 1989. Even the lower bound suggests that the proliferation of computers at work may be an important component of the increase in the return to education.
a. Occupational vage structure

Lastly, I examine how the growth in computer use has affected the occupational wage structure. Specifically, I used the 1984 and 1989 October CPS's to calculate the propartion of workers who use a computer at work for 485 three-digit occupations, and I used the 1984 and 1989 outgoing rotation group files of the CPS to calculate the mean \log wage for the same set of occupations. I then regressed the change in mean log wage on the change in computer use. The coefficient estimates, with standard errors in parentheses, are as follows:

$$
\begin{equation*}
\Delta \overline{\ln W}_{j}-\frac{.152}{(.004)}+\underset{(.029)}{.105} \Delta \bar{C}_{j} \quad R^{2}=.03 \tag{7}
\end{equation*}
$$

where $\Delta \overline{\operatorname{lnW}}_{j}$ is the growth in mean log hourly earnings in occupation f and $\Delta \bar{C}_{j}$ is the growth in the proportion of workers who use computers at work in occupation f. The equation was estimated by welghted least squares, using the number of workers in occupation f in 1989 as weights. These results indicate that computer growth is positively associated with wage growth in an occupation.
Y. Conclusion

This paper presents a detailed investigation of whether employees who use computers at work earn a higher wage as a consequence of their hands-on computer use. A variety of estimates suggest thet employees who directiy use a computer at work earn a 10 to 15 percent higher wage rate.

Furthemore, because more highly educated workers are more likely to use computers on the $j o b$, the estimates imply that the proliferation of computers can account for between one-third and one-half of the increase in the rate of return to education observed between 1984 and 1989. Although it is unlikely that a single explanation can adequately account for all the wage structure changes that occurred in the $1980 s$, these results provide support for the view that technological change - and in particular the spread of computers at work - has significantly contributed to recent changes in the wage structure.

One frequent objection to the conclusion that the computer revolution is an important cause of recent changes in the wage structure is made by Blackburn, Bloom, and Freeman (1991): "U.S. productivity during the 1980s showed only sluggish growth, not the rapld advance one might expect if technological change were the chief cause of the changing structure of wages." Although there may be some merit to this view, there are two reasons to question its importance. First, Griliches and Seigel (1991) find a positive relationship between total factor productivity growth and the prevalence of computers among industries.

Second, technological change may cause changes in the distribution of earnings without a dramatic effect on aggregate productivity growth or aggregate wage growth. For example, suppose the advent of computers has
increased the productivity of workers who use them by $10-15$ percent, but has not changed the productivity of other workers at all. And suppose that the computer premium is a return to general human capital. Because roughly 35 percent of workers directly use a computer on the job, we would only expect wage growth of 3.5 to 5.3 percent from the spread of computers. Furthermore, since the growth in computers was gradual over a period of at least a decade, the annual increment to aggregate productivity and income due to computers could easily be masked by other factors.

An important question is whether the wage structure changes observed in the last decade will persist in the future. The estimates in this paper suggest that, at least in part, the evolution of the wage structure is tied to future developments in technology. In the five years between 1984 and 1989 there was nearly a 50 percent increase in the percentage of workers who use computers on the job, yet the estimated payoff to using a computer at work did not fall. An obvious explanation for this finding is that employers' demand for computer-1iterate workers increased even faster than the supply of such workers in the 1980s. On the other hand, a measure of caution should probably be used in interpreting these results in cerms of shifts of both supply and demand curves because, with only two observations, movements in both supply and demand are capable of explaining any observed pattern of changes in prices and quantities.

Nevertheless, it sems reasonable to speculate that the supply of workers who are proficient at operating computers is likely to continue to increase in the future. For example, data from the 1989 October CPS indicate over half of all students in the U.S. are given training on computers in school. At the same time, it would seem unlikely that the
demand for computer-literate workers will continue to expand as rapidiy as it has in the past decade. If these conjectures hoid, one would expect that the wage differential for using a computer at work will fail in the future. On the other hand, there is little evidence that the value of computer skills has declined in recent years. Thus, computer training may at least in the short run, be a profitable investment for public and private job training programs.

Appendix A: CPS Data Sets

The CPS data used in Table 1 are from all rotation groups of the October 1984 and 1989 CPS. The CPS data used in the rest of the paper are limited to the outgoing rotation groups because only these individuals are asked about their weekly wage. The sample is further restricted to individuals between age 16 and 65 who were working or had a job but were not at work. The "usual hourly wage" is the ratio of usual weekly earnings to usual weekly hours. Individuals who earned less than $\$ 1.50$ per hour or more than $\$ 250.00$ per hour are deleted from the sample.

The weekly wage variable in the 1984 CPS is top coded at $\$ 999$, whereas the weekly wage in the 1989 survey is top coded at $\$ 1,923$. To make the wage variables comparable over time, I calculated an estimate of the mean log hourly wage for individuals who were topcoded in 1984 as follows. I first converted the wage data in the October 1989 CPS into 1984 dollars using the GNP deflator. Using the deflated 1989 CRS, I then calculated the mean \log hourly wage rate for indivicuals whose weekly earnings equalled or exceeded $\$ 999$. This Eigure (3.27), was assigned to each individual who was topcoded in the 1984 CPS . If the shape of the wage distribution remained roughly constant becween 1984 and 1969, this procedure should circumvent problems caused by changes in copcoding over time. (This procedure was also used to assign a wage value to individuals who were copcoded in each year's estimates used in Figure 3.)

The "uses computer at work" dumy equals one if the employee "directly" uses a computer at work (item 48). The computer may be a personal computer, minicomputer, or mainframe computer. The "uses computer at home" dumy equals one if the individual "directly" uses a comprter at
home (item 53). The "married" dumy variable equals one if the worker is currently married. The "part-time" dumy variable equals one if the worker usually works less than 35 hours per week. "Potencial experience" is age minus education minus 6 .

The sample of secretaries used ir Table 4 consists of individuais 1 n chree-digit census occupation code (CCC) 313, 314 and 315. The following table lists the sample size and census occupation code used for the other samples described in Section III b.

Occuparion	COC	Sample Sfze
Managers	19	757
Registered Nurse	95	264
Teachers	$156-158$	456
Sales supervisor	243	341
Sales representative	259	188
Book Keeper	337	242

The wage data used to estimate equation (7) are from all outgoing rotation groups of the 1984 and 1989 CPS files. Computer utilization for three-digit occupations is derived from all rotation groups of the 1984 and 1989 October CPS files.

Appendix B: High School and Beyond Survey Sample

The High School and Beyond Survey consists of a base-year survey conducted in 1980, and follow-up waves conducted in 1982. 1984 and 1986. The sample used here consists of individuals who were sophomores or seniors in 1980 and who graduated from high school by 1986 , but did not receive any additional education. The sample is further restricted to individuals who responded to all waves of the survey, were employed in 1984, earned between $\$ 1.50$ and $\$ 100.00$ per hour, and had valid responses to the computer use questions. Many of the variables used in the analysis, such as race and sex, are defined in a standard fashion and are not described here. For a detalled description of the HSBS, Including the sample design, questionnaire, and tabulations of variables, see Sebring, et al. (1987).

The variable "used computer at work" is derived from the 1984 survey wave. If the worker reports ever having used a computer at work, he or she is assigned a one for the computer use dumy variable. Computer use may Involve using a microcomputer, minicomputer, or mainframe computer. The variable defined as "used computer at home" equals one if the worker used a computer terminal, microcomputer, minicomputer, or mainframe computer for "recreational" purposes (i.e., nonwork and nonschool related use).

The hourly wage rate pertains to the worker's current job as of 1984 , and is derived from the reported pay schedule and reported weekly hours: The variable called "Sentor in 1980 " equals one for individuals who were high school sentors in 1980, and zero for individuals who were sophomores in 1980. The variable called "union member" indicates whether the worker was a member or active participant in a union, farm, trade or professional association in 1985 or 1986 . There are three categories of high school
types in the survey: general, academic, and vocational. Vocational high schools are the omitted dumy category. "Urban" measures whether the worker attended a school in an urban area.

Farent's education consists of 5 dumy variables for the mother and for the father, indicating whether each parent's education is missing, high school, some college, college, or post college. (Less than high school is the base group.) In 1980 all students were given a 73 minute cognitive test of vocabulary, reading, and mathematics. The students' score on the 1982 test is the variable called "achevement test score". The sophomores were given a similar test again in 1982. "Grade point average" is the studenc's self-reported grade point average in 1982. "Discipiinary problem" is a dunny variable that indicates whether a student reports having had a disciplinary problem in high school in the last year. "Disability limits work" is a dumy variable that equals one if a student reports having a physical disability that limits the kind or amount of work that he or she can do on a job, or that effects his or her chances for more eduction.

References

Allen, Steven G., "Technology and the Wage Structure." mimeo., North Carolina State University, May 1991.

Bartel, Ann P., and Frank R. Lichtenberg, "The Comparative Advantage of Educated Workers in Implementing New Technology," Review of Economics and Statiscics 69 (February 1987): 1-11.

Berndt, Ernst and Zvi Griliches, "Price Indexes for Microcomputers: An Exploratory Study," NBER Working Paper No. 3378, June 1990.

Blackburn, McKinley L., David E. Bloom, and Richard B. Freeman, "The Declining Economic Position of Less Skilled American Men," in Gary Burtless (ed.), A. Future of Lousy Jobs? (Washington, DC: Brookings Institution, 1990).

Blackburn, McKinley L., David E. Bloom, and Richard B. Freeman, "An Era of Falling Earnings and Rising Inequality?" The Brookings Review; Winter 1990-91. pp. 38-43.

Bound, John and George Johnson, "Changes in the Structure of Wages During the 1980s: An Evaluation of Alternative Explanations," NBER Working Paper No. 2983, May 1989.

Card, David, "The Effects of Unions on the Distribution of Wages:
Redistribution of Relabelling?" Princeton University, Industrial
Relations Section W.R: No: 287; July 1991.
Davis, Steven J., and John Haltiwanger, "Hage Dispersion Between and Wichin
U.S. Manufacturing Plants, 1963-1986," NBER Working Paper No., 3722,

May 1991.
Deaton, Angus, "Fanel Data from Time Series of Cross-Sections," Journal of
Econometrics 30, (October/November 1985): 109-126.

Griliches, Zvi, "Capital-Skill Complementarity," Review of Economics and Statistics 51 (November 1969): 465-458.

Heckman, James I., and Richard Robb, Jr., "Altemative Methods for Evaluating the Impact of Interventions, ${ }^{\prime}$ in J. Heckman and E. Singex (eds.), Longitudinal Analysis of Labor Market Data Cambrigge: Cambridge University Press, 1985;: 156-246.

Hirschhorn, Larry, "Computers and Jobs: Services and the New Mode of Production," in Richard Cyert and David Kowery (eds.). The mpact of Technological Change on Employment and Economic Growth (Cambridge, MA: Ballinger Publishing Co., 1988): 377-418.

Juhn, Chinhui, Murphy, Kevin, and Pierce, Brooks, "Hage Inequality and the Rise in Returns to Skili," manuscript, University of Chicago, October 1989.

Katz, Lawrence, and Alan Krueger, "Changes in the Structure of Wages in the Public and Private Sectors," NBER Working Paper No. 3667, March 1991.

Katz, Lawrence, and Kevin Hurphy, "Changes in Relative Wages, 1963-1987:
Supply and Demand Factors," mimeo. Harvard University, Aprif 1990.
Katz, Lawrence, and Ana L. Revenga, "Changes in the Structure of Wages: The United States and Japan," Journal of the Japanese and International Economies 3 (November 1989): 522-553.

Kelly Services, Inc., "The Kelly Report on People in the Electronic Office III: The Secretary's Role," Troy Michigan, 1984.

Levy, Frank, "Recent Trends in U.S. Earnings and Family Incomes," NBER Macroeconomics Anmal, vol. 4 , edited by Olivier Blanchard and Stanhey Fischer, 1989.

Lewis, H.G., Unfon Relative Wage Effects; A Survey (Chicago, IL: University of Chicago Press, 1986).

Mincer, Jacob, "Human Capital, TechnoZogy, and the Wage Structure: What Do Time Series Show?" NBER Working Paper No. 3581, January 1991.

Murphy, Kevin M., and Finis Welch, "The Structure of Wages," manuscript, University of Chicago, 1988.

Murphy, Kevin M., and Finis Welch, "Wage Differentials in the 1980s: The Role of International Trade," Economic Inquiry, forthcoming 1991.

Reilly, Kevin T., "Human Capital and Information: The Employer Size-Wage Effect," mimeo., University of Waterloo, April 1991.

Sebring, Penny, et al., High School and Beyond 1980 Sophomore Cohort Third Follow-Up (1986) Vol. 1, (Washington, DC: Center for Education Statistics, U.S. Department of Education).

Siegel, Donald, and Zvi Griliches, "Purchased Services, Outsourcing, Computers, and Productivity in Manufacturing," NBER Working Paper No. 3678, April 1991.

[^0]: HOW COMPUTERS HAVE CHANGED THE WAGE STRUCTURE: EVIDENCE EROM NICRODATA, 1984-89

[^1]: Alan B. Krueger Department of Economics Princeton University Frinceton, NJ 08544 and NBER

[^2]: ${ }^{1}$ Excellent examples of this literature include: Blackburn, Bloom, and Freeman (1990), Murphy and Welch (1988), Katz and Revenga (1989), Katz and Murphy (1991), Bound and Johnson (1989), Levy (1989), Mincer (1991), and Davis and Haltiwanger (1991).

[^3]: ${ }^{4}$ According to the interviewers' instructions, "'Using a computer' refers only to the respondent's 'DIRECT' or 'HANDS ON' use of a computer with typewriter like keyboards." The computer may be a personal computer, minicamputer or mainframe computer. (See CPS Field Representative's Memorandum No. 89-20, Section II, October 2989.)

[^4]: ${ }^{5}$ Results for 1984 are similar: the wage differential falls to 11.3 percent if 44 occupation dumades are included, and to 9.0 percent if 48 two-digit industry dummies are included.

[^5]: Grhe effect of home computer use on pay may be biased upwards because some individuals may use computers at home for work-related tasks.

[^6]: ${ }^{8}$ The occupations were selectec on the basis of sample size: threedigit occupations with 180 or more observations were selected. (Elementary school, secondary school, and special education teachers were combined.) The regressions included the same variables as in column (5) of Table 2. See Appendix for further details.

[^7]: ${ }^{9}$ See Deaton (1985) and Heckman and Robb (1985) for references on repeated cross-section methods.
 ${ }^{10}$ It is implicitly assumed that $\operatorname{var}\left(\epsilon_{i 1}\right)-\operatorname{var}\left(\epsilon_{12}\right)$.

[^8]: ${ }^{11}$ The association between "recreational" computer use (i.e., computer use that is uncelated to work or school) and test scores is even higher. For example, a one standard deviation increase in the test score raises the probability of recreational computer use by 9.6 percentage points.

[^9]: 12 used in column (l) af en similar to the sample
 ${ }^{13}$ Katz and Krueger (1991) find that the increase in the return to education was much greater for private sector workers than for public sector workers.

