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ABSTRACT

We review, from a practical standpoint, the evolving literature on assessing external validity (EV) 
of estimated treatment effects. We review existing EV measures, and focus on methods that 
permit multiple datasets (Hotz et al., 2005). We outline criteria for practical usage, evaluate the 
existing approaches, and identify a gap in potential methods. Our practical considerations 
motivate a novel method utilizing the Group Lasso (Yuan and Lin, 2006) to estimate a tractable 
regression-based model of the conditional average treatment effect (CATE). This approach can 
perform better when settings have differing covariate distributions and allows for easily 
extrapolating the average treatment effect to new settings. We apply these measures to a set of 
identical field experiments upgrading slum dwellings in three different countries (Galiani et al., 
2017).
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1 Introduction

For any empirical causal study, one can decompose its validity into internal and external

components. Internal validity concerns whether the estimated effect is valid for the partic-

ular setting studied. External validity (EV), in contrast, looks beyond the sample studied.

In evaluating the external validity of a set of experiments, one poses the question, to what

other populations can this effect be generalized? (Campbell, 1957) In studies that utilize

well-understood sources of variation, it is possible to assess their internal validity. External

validity, however, is typically harder to assess as it is difficult to know how a treatment

effect may change in different populations.

We review the measures of external validity,and focus on those that compare across

settings. We use these methods to assess the external validity of estimated treatments

effects from an existing study (Galiani et al., 2017) that conducted identical experiments

in three countries. Since these were randomized controlled trials (RCTs), the threats to

internal validity are small and addressed in the original study. Thus, we focus our attention

here on external validity.

For practicality, we will focus our evaluation of methods on (a) does the method provide

a simple statistical test of whether the effect generalizes across the available settings (and

does this extend to more than two settings), and (b) how easily can results be extrapolated

to predict the expected treatment effect in a new setting (e.g., does one need the full

original data?, and will extrapolating to a new domain require changing the interpretation

of the estimate in a complicated way? ).

Single-setting measures of external validity were proposed by Bo and Galiani (2021).

They provide a formal definition of external validity and a general theoretical treatment,

as well as propose two specific measures for assessing external validity based on how esti-

mations vary as the experimental data are reweighted. Reweightings are used to simulate
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different possible populations. Reweighting “enables the researcher to compare the treat-

ment effects in different locations” (Athey and Imbens, 2017). Bo and Galiani (2021) base

their method on 1-to-1 matching. After constructing treated-control pairs, they gener-

ate reweighting vectors uniformly distributed over all possible reweighting vectors. They

categorize treatment effects according to their statistical-significance category (positive sig-

nificant, insignificant, and negative significant), and then gauge how often a reweighted

sample results in an estimate that is in a different category. This measure of EV is derived

from their more general definition of external validity, namely, external validity on the

overarching population. They also propose a local measure that relates how their measure

of EV changes with the correlation between the reweighting vector and the pair-level out-

come differences (as this directly impacts the treatment effects). This measure of EV is

motivated by their definition of external validity from one population onto another, letting

the degree of external validity depend on how different is the parameter vector that char-

acterizes the target population in relation to the one that characterizes the sample studied.

While providing some sense of generalizability, there methods are necessarily limited by

their focus on a single dataset. We do not discuss their methods as it does not allow for

extrapolation to specific new settings.

The above measures consider only the observable data. If one is willing to make certain

assumptions about how the role of unobservables may be different in other settings, then

bounds on the estimated treatment effects can be derived (Nguyen et al., 2017; Andrews

and Oster, 2019; Gechter, 2021).

While some instructive information can be gathered from a single dataset, ultimately,

EV is established by replicating the same experiments in different populations (Angrist,

2004; List, 2020). Conceptually, a difference in the average treatment effect (ATE) across

settings could be due to either a common, but heterogeneous conditional average treatment

effect (CATE) coupled with differing covariates, or entirely differing treatment effects by
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setting, e.g., due to differences in unobserved “macro-effects” across settings (Hotz et al.,

2005). Formally, using the potential outcomes framework of Rubin (1974), the CATE is

defined as τ(x) = E[Yi(1) − Yi(0)|Xi = x] where Yi(d) is the potential outcome for unit i

receiving treatment d and X are the covariates. Via iterated expectations, we can take the

expectation over the CATE to recover the ATE, τ = E[Yi(1)− Yi(0)], but this will differ if

the distribution of X differs.

Some papers approach EV informally, discussing differences in means for a subset of

covariates between the two datasets (Attanasio et al., 2011; Bloom et al., 2014; Muralid-

haran et al., 2019). It is typically difficult, however, to use this information on its own, as

one would also need to know how the treatment effect differs along those dimensions.

Hotz et al. (2005) provided a formal theory for EV across settings. The main challenge is

that two settings may be different, and the observable characteristics may not be sufficient

for adjustment. The concern is analogous to that in treatment effect studies when there

is selection bias. The necessary assumptions required for generalizability (on top of those

for internal validity in the respective settings) are therefore also analogous: overlap of the

settings in terms of similar observations in both the “Sample” (i.e, the inference population)

versus the “Population” (i.e, the target population) and that the setting is unconfounded

conditional on observable covariates. With these in place, they then take a reweighting

approach to assess external validity. They estimate of model predicting whether an obser-

vation is from the Sample or Population. Then they use inverse propensity-weights to test

for statistically significant differences between control unit outcomes across settings, and

then treated unit outcomes across settings. From a practical perspective, this approach

does provide a simple statistical test of EV. It does not, however, make it easy to extrap-

olate results to new settings, as there are interpretational challenges and one would likely

need access to the full original data.

Stuart et al. (2011) surveys the reweighting schemes such as those used in Hotz et al.
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(2005), noting that the propensity scores can be used for unit-level weights, matching, or

subclassification. They also suggest that overlap in the distribution of propensity scores

between both settings alone may not be sufficient for robust inference. They suggest check-

ing the average propensity score between the two settings and that if the difference is over

0.25 standard deviations of the propensity score distribution for the controls, the results

may depend too heavily on extrapolation.

An alternative to the reweighting approach is to model the CATE directly. Here, we

provide a novel solution building on two strands of the literature. The first estimates

CATE models from subsets of the settings and then calculates what mean-squared-error

(MSE) would result in extrapolating the estimated CATE to new settings as compared to

re-estimating the CATE solely on the new setting (Kern et al., 2016; Dehejia et al., 2019;

Pritchett and Sandefur, 2014).1 While these approaches do allow for extrapolation, they

do not provide a simple statistical test.

To estimate a CATE model, one must first determine its “structure” – the ways in which

the model allows the CATE to vary. While this is sometimes manually specified, the second

strand of CATE literature employs machine learning techniques to automate this model

selection. Some of these use quite flexible methods (e.g., Wager and Athey 2018 and Nie

and Wager 2020), though they do not (a) allow for a simple global test of differences in

CATE across settings, and (b) do not allow for easy extrapolation to new settings. Others

employ linear models, such as Chernozhukov et al. (2018) and Semenova et al. (2017), the

latter using regularization to achieve a lower-dimensional model. Our method builds off of

this idea as it enables an easy test of the CATE across settings as well as easy extrapolation.

Throughout this paper, we will use as an empirical example the randomized control trial

of Galiani et al. (2017). That research was the first to evaluated the causal effect on the
1With a sizable set of replications, Vivalt (2020) and Meager (2019) use Bayesian hierarchical models

to evaluate the ability of a subset of studies to extrapolate to others in the set.

5



extremely poor of upgrading slum dwellings and was conducted in El Salvador, Mexico, and

Uruguay. Inexpensive pre-fabricated houses where provided in situ to treated households by

the same NGO in all three countries, providing considerable consistency of the treatment.

In these countries, experimental sites were chosen to be marginalized sites that typical

face problems of insufficient services (water, electricity, and sanitation), contamination,

and overcrowding. The location characteristics differed somewhat across the countries. In

El Salvador, these sites where spread throughout the country, but excluded the capital

San Salvador. In Mexico the slums were adjacent to Mexico City and in Uruguay they

were located in Montevideo and Canelones. The researchers’ most consistent finding was

improvement in the quality of life of the treated households in all three countries. They

found mixed results on safety and child-health, and no effect possession of durable goods

or labor outcomes. We will focus on the the quality of life treatment effect. Improving

the housing conditions of the poor is a common development project in many developing

countries and so we seek to understand better the generalizability of this treatment effect.

This paper proceeds as follows. In Section 2 we discuss more in detail our empiri-

cal application. In Section 3 we first assess external validity using the propensity-score

reweighting methods of Hotz et al. (2005). Next, in Section 4, we assess external valid-

ity by modeling the CATE, where we build off the existing literature to develop a novel

algorithm. We then show that this method allows easy extrapolation for forecasting the

treatment effect in other, not studied, populations. Section 5 concludes.

2 Empirical Setting

Throughout the paper, we use as an application, the housing experiment evaluated in

Galiani et al. (2017) so we first briefly describe their setting and empirical results we will

focus on.
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Galiani et al. (2017) estimate the effect of upgrading slum housing on the living con-

ditions of the extreme poor. The upgrades were almost identical and done by the same

organization in El Salvador (ES), Uruguay (UY), and Mexico (MX). Their main finding

is that better houses have a positive effect on overall housing conditions and general well-

being: treated households are happier with their quality of life.

We focus on their main outcome, the “Satisfaction” Index. This is an aggregate index

that summarizes several satisfaction sub-measures: Satisfaction with Floor, Wall Quality,

Roof Quality, House Protection against water when it rains, and Qualify of Life. Each

of those measures is turned into a Z-score, signed so that the positive direction indicates

an improvement, and then added together. We focus on their specification that controls

for covariates. These comprise three sets: main baseline covariates, indicators for whether

the baseline controls were imputed due to being missing, and indicators for subnational

geographic clusters.

We first replicate, for each country, the original estimates of Galiani et al. (2017).

Results are shown in Table 1. The estimated effect is positive and statistically significant

across all three countries.

Given the consistency of the results across countries, we would hope that the results

would generalize well, and so we look at methods to compare across them. We show that a

simple comparison that does not account for treatment effect heterogeneity fails, and then

we turn to methods to address this: reweighting and modelling the CATE.

We first, though, take some preliminary steps to make the settings more comparable.

This is embodied in one of the preliminary assumptions of Hotz et al. (2005), who propose

that when comparing treatment effects across countries, we restrict ourselves to analyzing

“overlap” households that are similar to those in the other countries. To get a sense of

the difference between countries, we first compare the distributions of a few measures that
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Table 1: Satisfaction

(1) (2) (3)

Treatment 1.031** 0.317** 0.295**

(0.0866) (0.0618) (0.0519)

[0.861,1.201] [0.196,0.439] [0.193,0.397]

Observations 656 718 826

Country ES UY MX

Outcome is Satisfaction Index. Stats=b/se/ci.

Models include baseline controls from Galiani et al. (2017).

∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)

summarize the housing situation: the baseline measures for the main outcome2 along with

Housing quality and Housing investment, which are the two main measures related to the

physical house. We show the distributions in Figure 1. El Salvador has much lower baseline

levels than the other two countries for these measures, indicating some trimming for sample

overlap will be required. We subsequently include these three covariates in our main set

of covariates and remove observations that are outside the min-max range of the other

countries for all the main baseline variables.

With just two settings, label one the Sample and the other the Population. To assess

if the unadjusted average treatment effects (ATEs) are statistically different in the two

settings, we first estimate an equation where we interact the standard ATE model with an
2The follow-up outcome constructs Z-scores by normalizing sub-measures according to each cluster’s

control group’s mean and standard-deviation. This is helpful when analyzing follow-up data, as it can

control for variation in the scale of response across locations. When using this baseline version of this

measure as a control, we want to be able to compare across clusters. We therefore normalize each sub-

measure by the full (three-country) control group mean and variance.
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Figure 1: Comparison of Key Baseline Measures

Notes: Densities of baseline variables. El Salvador (ES) has a consistently lower distribution.

indicator for being in the Sample:

Yi = Diβ +Di × 1i∈Sδ +Xiγ +Xi × 1i∈Sγd + εi, (1)

where Y is the outcome (Satisfaction Index), D is the treatment assignment, X are the

control variables, and 1i∈S is an indicator for whether the observation is in the Sample.

We can then test the statistical significance of δ̂ to assess if the ATE are different in the

Sample and in the Population.

With more than two settings, following Hotz et al. (2005), we rotate through them,

each time considering all but one as the Sample and the other as the Population. Results

for our three countries are shown in Table 2. In all three configurations, δ̂ is statistically

significant at p < 0.05 and in one configuration it is also statistically significant at p < 0.01,

indicating that the ATE is different across countries.

As mentioned before, the difference in the ATE across the countries could be due to
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Table 2: ATE Sample-interacted

(1) (2) (3)

Treatment × Is Sample -0.567** 0.200** 0.199**

(0.111) (0.0842) (0.0797)

Observations 1814 1814 1814

R2 0.177 0.164 0.164

Sample UY+MX ES+MX ES+UY

Population ES UY MX

p-val no ATE difference 0.000000327 0.0176 0.0127

Outcome is Satisfaction Index. Stats=b/se.

Omitting non-sample-interacted coefficients.

∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)

either a common, but heterogeneous CATE model coupled with differing covariates, or

entirely differing treatment effects by country. We will pursue two approaches to disen-

tangling these possibilities: a reweighting approach that attempts to make the covariate

distributions similar and a regression approach that models the CATE directly.

3 Reweighting

For the reweighting approach, we follow the general path of Hotz et al. (2005), but make

modifications that allow us to continue to control for covariates when estimating treatment

effects.

For each Sample-Population configuration, we first estimate a prediction model over

the pooled data of whether an observation is in the Sample:
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1i∈S = Xi · ζ + ei. (2)

where 1i∈S is an indicator variable whether observation i is in the Sample, Xi are covariates

used for prediction, and ei is the residual. For the covariates, we use all available variables

(the main covariates and missing indicators), though drop cluster dummies as these would

perfectly predict being in the Sample and do not help characterize what differs across the

settings. We estimate the model using a logistic regression. Results are shown in Table 3.

Many of the covariates are statistically significant, suggesting that some adjustment is nec-

essary to make the covariate distributions similar. Using this model we calculate predicted

probabilities for each observation (propensity to be in the Sample), p̂i, that will be used to

construct weights.

Stuart et al. (2011) suggests that if the covariate distributions are very dissimilar, then

reweighting may rely heavily on extrapolation and may not be robust to functional form

changes. They suggest calculating the difference between Sample and Population average

predicted probabilities and dividing it by the standard deviation of the distribution of

those predicted probabilities of the Population. They also suggest a rule-of-thumb cutoff

of 0.25, arguing that a reweighting approach may not be trustworthy in situations where

the normalized difference described above is higher than that. Table 3 shows that all the

normalized differences are above the threshold, and so there should be some caution in

terms of using a reweighting approach.

Following Hotz et al. (2005) we construct weights in each configuration according to

inverse-probabilities to make the Sample and Population similar. Sample units are weighted

by 1/p̂i and Population units are weighted by 1/(1−p̂i). To enable controlling for covariates,

as the original analysis did, we use these weights and re-estimate Equation 1 using weighted

OLS. Results are shown in Table 4. In this model, the coefficient on “Is Sample” reports

whether the reweighting made the control outcomes similar. Hotz et al. (2005) view this
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Table 3: Sample vs Population Prediction
(1) (2) (3)

Is Sample
Head of HH Educ. 0.167** -0.158** 0.0181

(0.0252) (0.0211) (0.0177)
Head of HH Female -0.777** 1.253** -0.625**

(0.159) (0.131) (0.114)
Head of HH Age -0.0220** 0.0166** 0.00333

(0.00481) (0.00474) (0.00356)
HH Asset value/capita -0.000347 0.000334 -0.000199

(0.000458) (0.000538) (0.000362)
HH Income/capita 0.0150** -0.000700 -0.00556**

(0.00219) (0.00122) (0.00104)
Missing Head of HH Educ. -0.240 -1.059** 0.936**

(0.428) (0.388) (0.389)
Missing HH Asset value/capita 1.629** -0.866** -0.133

(0.246) (0.194) (0.155)
Missing HH Income/capita 0.854** 0.0479 -0.426**

(0.193) (0.193) (0.143)
Z-score Housing quality (Baseline) 0.559** -0.0484** -0.315**

(0.0348) (0.0241) (0.0220)
Z-score Housing investment (Baseline) 0.301** -0.522** 0.201**

(0.0295) (0.0288) (0.0205)
Z-score Satisfaction (Baseline) 0.0830** 0.0824** -0.0968**

(0.0196) (0.0182) (0.0134)
Constant 1.551** 0.499* 1.122**

(0.302) (0.264) (0.215)
Observations 2155 2155 2155
Sample UY+MX ES+MX ES+UY
Population ES UY MX
Pr. Score Diff. 1.848 1.519 0.894
Outcome is In Sample and statistics are coefficient, (standard error), and [confidence interval]
Estimation done by logit.
∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)
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Table 4: Reweighted Pooled Treatment Effect Estimation

(1) (2) (3)

Treatment 1.080** 0.320** 0.361**

(0.165) (0.106) (0.0622)

Is Sample -0.266 -0.141 0.934**

(0.234) (0.254) (0.218)

Is Sample x Treatment -0.847** 0.173 0.192**

(0.175) (0.122) (0.0912)

Observations 2155 2155 2155

Sample UY+MX ES+MX ES+UY

Population ES UY MX

Outcome is Satisfaction Index and statistics are coefficient and (standard error). Models include baseline controls.

Propensity estimation done by logit.

∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)

as a test of whether observable characteristics are sufficient to make the data comparable.

In our data, this is statistically significant with p < 0.05 for one of the comparisons,

indicating that covariates adjustments are likely not sufficient for that comparison. For

those comparisons where this difference is not statistically significant, we can then check

the coefficient on “Is Sample x Treatment” to test if the estimated treatment effect is similar

across settings. We find that this is statistically insignificant only for the configuration

comparing El Salvador and Mexico to Uruguay. Overall, the reweighting approach indicates

that the ATE generalizes in only one of the three configurations.

To understand if these results are sensitive to the estimation of the propensity scores,

we re-estimate the propensity (to be in the “Sample”) function using a flexible Machine

Learning algorithm, Random Forests (Breiman, 2001), that is quite common for these
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Table 5: Reweighted Pooled Treatment Effect Estimation (Using Random Forest)

(1) (2) (3)

Treatment 1.062** 0.306** 0.337**

(0.107) (0.0812) (0.0599)

Is Sample -0.451* -1.434** 0.828**

(0.255) (0.234) (0.237)

Is Sample x Treatment -0.780** 0.263** 0.222**

(0.117) (0.0952) (0.0832)

Observations 2155 2155 2155

Sample UY+MX ES+MX ES+UY

Population ES UY MX

Outcome is Satisfaction Index and statistics are coefficient and (standard error). Models include baseline controls.

Propensity estimation done by random forest.

∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)

types of tasks (Taddy, 2019).3 Results are show in Table 5, and they are qualitatively

similar to those in Table 4.

From a practical perspective, while this method provides a simple test for each Sample-

Population configuration of the data, with more than two settings no aggregate test is

given. One approach could be to reject generalizability if any of the pair-wise tests showed

a statistically significant difference, while adjusting the tests to control for the Family-wise

error rate (and accounting for the correlation among tests as they are estimated on the

same data). Conceptually, we believe that this is likely to be too conservative to be useful
3To estimate the random forest model, we used R’s ranger package with default settings of 500 “trees”.

We use out-of-sample (“out-of-bag”) predictions for the propensity scores to remove the overfitting bias

from Machine Learning models (Chernozhukov et al., 2018).
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in practice, especially as S becomes large. We address the desire for a more practical,

multi-setting aggregate test in Section 4.3.

Extrapolation to a new setting is feasible with reweighting, though somewhat difficult.

One needs access to the original data to estimate a new propensity model between existing

data (Sample) and new data (Population). To extrapolate an ATE for the Population, one

would estimate the ATE over the Sample using weights (1− p̂i)/p̂.

4 CATE Modelling

In this section, we outline an alternative approach based on modelling the CATE directly.

We will show that it can have a lower rate of false positives when covariate distributions

are different. We will also recast the testing process as a simple combined test, rather

than as a set of pair-wise tests, as the latter approach will invariably find some pairwise

differences as the number of countries increases. We show that this approach allows for

easy extrapolation to new settings to test for external validity.

We first outline the basic CATE method. A simple CATE model would include inter-

actions of the treatment variable (D) with a set of variables, X̃, derived from the baseline

covariates. For ease of notation, assume that X̃ includes an intercept. The model would

then be:

Yi = Di × X̃iβX̃ +XiγX + εi, (3)

where βX̃ is the vector of the CATE parameters. In order to test if the estimated β̂X̃ are

different between two settings, we extend Equation 1 and interact the parameters of the

model with an indicator of whether an observation is in the Sample:

Yi = (Di × X̃iβX̃ +XiγX) + (Di × X̃i × 1i∈SδX̃ +Xi × 1i∈SδX) + εi, (4)

where δX̃ is the vector of coefficients that capture how the CATE parameters differs between

subsets. We can then test for generalizability of the CATE parameters by testing whether
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the δ̂X̃ coefficients are jointly zero. Notice that even, though Equation 4 (with coefficient

vector δX̃) nests Equation 1 (with coefficient δ), if there is a common CATE between

settings we can find that δ̂ is statistically significant, but δ̂X̃ , is not statistically significant.

4.1 Simulation Comparison

We motivate the use of the CATE model partially due to potential concerns about high

false-positive rates with the reweighting method when the covariate distributions are dif-

ferent. A well known problem with inverse propensity weighting methods is that when

probabilities are close to 0 or 1, they can result in biased and variable estimates (Crump

et al., 2009). We show how this can result in a higher level of false-positives using a sim-

ple simulation. We construct a simple DGP of two countries (“Sample” and “Population”)

where there is a single covariate which affects both the treatment effect and the probability

of being in the sample:

yi =Di ×Xiβ0 + ui

Pr(Di = 1) =0.5

Pr(i ∈ S) =invlogit(Xiθ)

X, u ∼N(0, 1)

β0 =1

θ ∈[0, ..., 6]. (5)

We vary θ across our simulations to show how the rate of false positives using each approach

changes the covariate distributions become more dissimilar. Results are shown in Figure 2.

For each θ, we simulate 10,000 samples, each with N = 10, 000. We can see that when θ is

small (the samples are similar) then both methods have similar low error rates. But as θ

increase, the reweighting method does worse even though the CATE method is unaffected.
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Notes: Diagnostics from simulations according to Equation 5. The “Type I Error” plots are for the

proportion of simulations where that method found a statistically different treatment effect between the

Sample and Population. No data trimming was used for either method.

4

There is a literature that seeks to remedy the bias from extreme propensity scores (Li

and Thomas, 2018), but it can be difficult to know which of the various approaches to use,

and they tend to make the interpretation of the estimate more opaque. For this reason,

and for the benefits for extrapolation which we detail below, we also pursue a CATE-based

approach
4The reweighting technique’s false positive rate for higher values of θ also does not improve when the

true propensity scores are used in place of the estimated propensity scores (online Appendix Figure 3).
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4.2 Determining the CATE Structure

The previous simulation was simple in that there was only a single covariate used. We did

not additionally need to determine what dimensions the CATE parameter vector varies

over. In the real world, this structure is unknown and must be estimated as well. To allow

for (a) testing for global differences in CATE across settings, and (b) easy extrapolation

to new settings, we will focus on selecting a low-dimensional linear model from a high-

dimensional set of possibilities, similar to Semenova et al. (2017). This will have the added

benefit that the final estimation will be similar to how treatment effect heterogeneity is

often estimated in practice.

Though a simple idea would be to include all covariates (and possible transformations),

this has the downside that the test for δ̂X̃ = 0 will be less powerful if X̃ includes extra-

neous variable unrelated to heterogeneity in the CATE. Those variables will tend to be

insignificant and weaken the F-test. We therefore develop a machine learning approach to

automatically select variables that are important dimensions of heterogeneity of the CATE.

As is common in the causal ML literature (Belloni and Chernozhukov, 2013; Belloni

et al., 2014), we will use the Lasso method (Tibshirani, 1996) to select the relevant CATE

variables and then estimate the CATE parameters using an OLS regression. The Lasso

estimator is used to select the set of variables that together are the most predictive of the

outcome variable. It augments the typical OLS objective function so that coefficients are

selected to minimize the sum of squared residuals as well the sum of the coefficient sizes.

Applied to the OLS objective function for CATE estimation (Equation 3), this is

min
βX̃ ,γX

N∑
i=1

(Yi − (Di × X̃iβX̃ +XiγX))
2 + λ

∑
k̃∈K̃

|βX̃,k̃|+
∑
k∈K

|γX,k|

 , (6)

where K and K̃ is the number of variables in X and X̃, respectively, and λ is a hyper-

parameter that controls the level of penalization against complex models. The penalty on

the L1-norm of the coefficients causes some of them to be exactly zero when λ is suffi-
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ciently high (unlike the Ridge Regression with an L2 penalty, which never sets coefficients

to exactly zero).5 “Selected” variables are then those with non-zero Lasso coefficients.

A theoretical motivation for using the Lasso for variable selection is that, if most co-

variates are truly irrelevant and only a sparse set affects the outcome variable, the Lasso

method, under certain conditions, would select the relevant set asymptotically (Zou, 2006).

In finite samples, however, it is common for small perturbations in the data to result in the

Lasso estimator selecting different subsets of predictors, especially when they are correlated

(Mullainathan and Spiess, 2017). If our primary goal were to identify a CATE model for

rigorous inspection and independent uses, such as to provide detailed policy recommenda-

tions on policy design, then the Lasso method may not be satisfactory. We, however, view

the CATE parameter vector as a nuisance parameter in service of the goal of testing ex-

ternal validity. We therefore use the Lasso method merely as a disciplined and automated

way to select a set of variables that likely matter to model treatment effect heterogeneity.

We note that the Lasso does not select variables based on statistical significance, but on

predictive performance. An example of a variable that highlights this difference, is a binary

variable that has a strong effect on the outcome, but is rarely non-zero. Since this variable

only helps the prediction of a small number of units, even if it is statistically significant in

OLS, it may not be selected by the Lasso.

One point stressed by the literature on using ML for causality (e.g., Chernozhukov

et al. 2018) is that taking into account non-linearities can be particularly helpful. We

therefore have as our candidate set of variables, all main covariates and their second-order

interactions, which results in 72 potential CATE parameters.6 To keep the set from being
5Given the penalization is on the magnitude of the coefficient, the Lasso is not invariant to covariate

scaling (unlike OLS). The standard practice is to pre-normalize all covariates to have the same mean and

variance.
6More generally one could provide a dictionary of high-order transformations. Given our data size, we

include just the second-order interactions.
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too large, imputation dummy variables and cluster indicators are only used as control

variables in the model.

One novel aspect of using a selection algorithm when modelling the CATE is that

for every variable we include in the CATE parameter vector, we need to include it as a

control. That is, if we model heterogeneity along a particular dimension k, we need to

include the pair of regressors Xik and Di ×Xik in the model so that we can estimate the

relative difference for the treatment group. The previous Lasso technique, however, will

not necessarily ensure this, as it may select Xik, but drop Di×Xik. While we could ex-post

adjust the set of selected regressors, this is less efficient than including this constraint in

the main estimation. A way to model this structure using the general Lasso approach is to

use the Group Lasso (Yuan and Lin, 2006), which allows putting coefficients into groups so

that entire groups to be either “selected” (all having non-zero coefficients) or “unselected”

(all having zero coefficients). If each group has a single member, then this reduces to the

normal Lasso. When applied to CATE estimation, each dimension of CATE heterogeneity

then would have a group of two elements and covariates that are just controls would be

singletons,

min
βX̃ ,γX

N∑
i=1

(Yi − (Di × X̃iβX̃ +XiγX))
2 + λ

∑
k̃∈K̃

√
β2
X̃,k̃

+ γ2
X,k +

∑
k∈K\K̃

|γX,k|

 . (7)

Groups will be selected if together they are predictive. This need to be true for both

covariates individually. For example, if X̃k is not very predictive, it could still be selected

if its accompanying CATE predictor (Di × X̃k,i) is very predictive

When using a selection technique, such as the Group Lasso, one must be careful to use

the methods on separate data from that used for statistical tests so that the inference can

be trusted (Leeb and Pötscher, 2008a,b). Using the ideas from Athey and Imbens (2016),

we therefore split our data in “training” and “estimating” halves.7 We will use the Group
7If one is willing to make stronger assumptions on the data generating process, one could use the
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Lasso on the training data to select the variables that should be in the CATE and then use

the estimating data to estimate the Sample-interacted CATE model and test for differences

across the country groups.

The procedure will be most useful when the two halves (train and estimate) have similar

distributions to the whole. If they are different, then the Lasso is more likely to select

variables that are later unimportant. Splitting data while ensuring similar distributions in

the splits is a common concern in RCTs where they assign treatment while often wanting to

ensure balance across covariates. We will therefore employ two common methods to ensure

similar distributions across the halves: blocking and rerandomization. Blocking partitions

the dataset into blocks and ensures a consistent split between training and estimating

halves across the blocks. By splitting an important variable into blocks, we can ensure that

an even split is achieved at multiple levels of the important variable. Rerandomization

conducts multiple randomizations (given constraints such as blocking) and then compares

differences in means for important variables between the train and estimate halves. It

then picks, as the final randomization, the one that resulted in the smallest maximum

t-statistic across the compared variables. Blocking is common with discrete variables (e.g.,

location), where exact balance can be achieved, and rerandomization can be thought of

as an approximation for continuous variables (where we just ensure balance in means). In

Machine Learning, data-dependent splitting rules like these are common and improve the

similarity between models estimated on a subset and on the whole data (Kohavi, 1995;

Diamantidis et al., 2000; Forman and Scholz, 2010).

4.3 Combined Test For Multiple Settings

The final component of our approach is to reframe the test of generalizability to provide

a simple result when there are S > 2 settings, where S now stands for the number of

Post-Lasso OLS using the whole data as in Belloni and Chernozhukov (2013)
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settings. The approach used with reweighting provided S separate pair-wise tests rather

than attempting to distill the S results to a single, combined test. A combined test would

be useful, especially as S increases.

One approach, mentioned earlier, could be to reject generalizability if any of the S tests

showed a statistically significant difference. This has two challenges. First, one needs to

adjust for multiple hypothesis testing. This can be done by controlling for the Family-

wise error rate, though this is not straight-foward with the reweighting approach, as one

would have to account for the correlation among tests as they are estimated on the same

data. Second, this approach treats all test equally, even if the number of observations

varies across the settings. We believe, in contrast, that statistically significant differences

in larger samples are more important that those in smaller samples.

These challenges motivate use to provide a single combined test of generalizability, by

expanding Equation 4 to have each setting interacted with the CATE.

Yi = (Di × X̃iβX̃ +XiγX) +
∑
s>1

(Di × X̃i × 1i∈sδs,X̃ +Xi × 1i∈sδs,X) + εi. (8)

We estimate this on the “Estimation” half of the data then conduct a joint test of the com-

bined vector of coefficients δ̂∗,X̃ = (δ̂2,X̃ , ..., δ̂S,X̃). This provides a single, simple composite

test that naturally adapts to the samples size differences across settings.

4.4 Full Approach

With the components of CATE selection and a combined test for multiple settings, the

full approach is shown in Algorithm 1. Note that for any particular split of the data into

training and estimating halves, the Group Lasso does not affect the distribution of the

F-statistic as the selection is conducted on separate data.8

8In randomized experiments, as compared to here, adjustments must be made for analyses that use

blocking (simply adding block dummies) and rerandomization (more complicated) because the model is
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We use Algorithm 1 to estimate EV for each configuration of Sample and Population

countries. We use as blocking variables the product of “treatment x cluster” (which are

subnational). This ensures that both train and estimate halves of the data have treatment

and control observations from every cluster, ensuring that the treatment effect estimated

from each is suitably representative. We also use 100 rerandomizations comparing across

the outcome and main covariates.

Algorithm 1 CATE Estimation and Test of EV

1. Split the data into training and estimating halves using tools that balance covariates.

First block on any blocking variables, and then use R rerandomizations to pick the

split that has the smallest maximum t-statistic over the variables to be compared.

2. Using the training portion of the data, fit a Group Lasso model of CATE (Equation 7)

where the full set of CATE terms, X̃, includes all second-order interactions of the

main covariates. We set the Lasso regularization parameter, λ, to minimize 10-fold

cross-validation error. Call the subset of X̃ selected by the Group Lasso X̃∗.

3. The CATE model can be estimated by using the estimating portion of the data and

the variables selected by the Group Lasso. (Used in Algorithm 2.)

4. Using the estimating portion of the data, estimate a Setting-interacted CATE model

as in Equation 8 using the variables selected by the Group Lasso yielding δ̂∗,X̃ .

5. Use an F-statistic to test if the δ̂∗,X̃ vector of coefficients is jointly different from zero.

We show δ̂X̃ from the setting-interacted CATE model in Table 6. This includes all CATE

variables selected by the Group Lasso. We do not reject the joint test that the estimated

estimated using both halves of the data as the split defines the treatment variable. Here, these procedures

aim to improve how well the test statistic represents the result if it could have been conducted on the whole

sample.
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conditional average treatment effects are different across the countries (p > 0.05). We take

this as evidence of the generalizability of the treatment effect (in the presence of covariate

differences and treatment effect heterogeneity). As we treat the selected CATE models as

nuisance parameters, we do not inspect them directly. We do see, though, that the size of

the CATE model is much smaller than 72.

As the CATE procedure estimates treatment effect differences excluding the training

data, we want to ensure that results have not changed simply because of the reduction in

sample size. We therefore replicate the previous treatment effect approaches (the simple

ATE comparison and the reweighting approaching) using the same subsample in online

Appendix Tables 7 and 8. They are qualitatively similar. In the simple ATE comparison,

two of the configurations had statistically significant differences in the ATE at p < 0.05. In

the reweighting approach, one configuration had statistically different outcomes for control

units and another had statistically different outcomes for the treated units.

4.5 Extrapolation

One benefit of constructing a regression-based CATE model is that we can now easily pro-

vide a method to assess external validity in new settings, even in the presence of treatment

effect heterogeneity and differing covariate distributions. With the reweighting approach,

to assess external validity on a new setting, one needs access to the original data in order to

estimate the Sample-prediction model (Equation 2) to derive the weights. Our CATE-based

approach avoids this; all that is needed are the estimates of the CATE model.

For our data, we now consider all three countries as the Sample (any new setting would

be the Population) and conduct steps 1-3 of Algorithm 1. This yields the selected CATE

variables, X̃∗ and Sample CATE estimates β̂S,X̃∗ and the associate sub-matrix V̂S,β of the

overall estimator variance-covariance matrix. These are show in online Appendix Tables

10 and 11.
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Table 6: Setting-interacted CATE
(1) (2) (3)
UY ES offset MX offset

Treatment -0.546 0.612 0.820
(0.419) (0.598) (0.570)

Treatment x Head of HH Educ. 0.0874** -0.00557 -0.0580
(0.0352) (0.0525) (0.0464)

Treatment x Head of HH Female 0.0540 -0.182 -0.100
(0.273) (0.445) (0.346)

Treatment x Head of HH Age 0.0111 0.00521 -0.0109
(0.00831) (0.0110) (0.0110)

Treatment x Z-score Satisfaction (Baseline) -0.0839 -0.0198 0.0503
(0.0615) (0.0936) (0.0724)

Treatment x HH Asset value/capita Sq. 0.00000420 -0.00000361 -0.00000281
(0.00000481) (0.00000499) (0.00000519)

Treatment x Head of HH Educ. x Z-score Satisfaction (Baseline) 0.0116 -0.0109 -0.0105
(0.00852) (0.0118) (0.0106)

Treatment x Head of HH Female x HH Asset value/capita 0.0000221 -0.000210 0.00112
(0.00242) (0.00278) (0.00296)

Treatment x Head of HH Age x Z-score Housing quality (Base-
line)

0.0000367 0.000394 0.000221

(0.00166) (0.00242) (0.00202)
Treatment x HH Asset value/capita x Z-score Housing quality
(Baseline)

-0.000708 0.000991 0.000123

(0.000454) (0.000623) (0.000591)
Treatment x HH Asset value/capita x Z-score Housing invest-
ment (Baseline)

-0.000545 -0.000126 -0.0000767

(0.000383) (0.000625) (0.000554)
Treatment x HH Income/capita x Z-score Housing quality
(Baseline)

0.0000724 -0.00218 -0.00110

(0.000579) (0.00134) (0.000910)
Treatment x HH Income/capita x Z-score Satisfaction (Base-
line)

-0.0000880 0.00335** 0.000297

(0.000438) (0.00166) (0.000543)
Treatment x Z-score Housing quality (Baseline) x Z-score Hous-
ing investment (Bas

0.00749 0.0207 0.0165

(0.0216) (0.0386) (0.0311)
Treatment x Z-score Housing investment (Baseline) x Head of
HH Educ.

-0.0198** 0.0302 0.0200

(0.0100) (0.0203) (0.0177)
Treatment x Z-score Housing investment (Baseline) x Head of
HH Female

0.104 -0.0216 -0.0236

(0.0807) (0.137) (0.114)
Treatment x Z-score Housing investment (Baseline) x Z-score
Satisfaction (Baseli

-0.00205 0.00833 -0.0139

(0.0149) (0.0241) (0.0183)
Observations 905 905 905
R2 0.339 0.339 0.339
p-val no CATE difference 0.243 0.243
Outcome is Satisfaction Index and statistics are coefficient and (standard error). Test-sample only.
Omitting non-sample-interacted coefficients.
∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)

Notes: The three columns report coefficients from a single (setting-interacted CATE) model. Only CATE
coefficients are shown. The UY column contains the base coefficients and the ES and MX offset columns

report the coefficient for those same variables interacted with dummy variables for whether the
observation was in that country.
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On a new setting (Population) one can then use Algorithm 2 to extrapolate what the

ATE would be expected and test whether the original treatment effect generalizes:

Algorithm 2 ATE Extrapolation and Test of Generalization

1. Calculate the Population’s average values for X̃∗
P . Call this rP .

2. The estimate of the ATE using extrapolation in the Population is then β̂P,Ext =

r′P β̂S,X̃∗ .

3. Construct confidence intervals for this new ATE using the standard Wald test for

linear combinations of coefficients, V ar(β̂P,Ext) = r′P V̂S,βrP .

4. Estimate the ATE in the Population directly, β̂P,Dir.

5. If β̂P,Dir is outside the confidence interval β̂P,Ext, then this implies a failure of gener-

alization in this case.

4.6 Effect of Trimming

We note that the preceding treatment effect estimations were conditional on trimming

observations that had values of key covariates outside the bounds of the countries. We check

if our results are robust to inclusion of these observations in two ways. For both checks,

we will need to compare estimated coefficient vectors across sample trimming methods.

We therefore hold fixed the selected CATE variables and consider the initially trimmed

observations as part of the “estimation” subset of the data. First, we check if the estimated

CATE coefficients β̂X̃ pooling all three countries changes with the inclusion of the initially

trimmed observations. A joint test of the difference in coefficients yields a p-value of 0.89.

Second, we check if Algorithm 1 still yields an insignificant result from the joint test of the

sample-interacted CATE coefficients. Results are shown in online Appendix Table 9, where

26



we see that we still do not reject that overall country-specific CATE changes across countries

are zero. Given this, we conclude that the effects in Galiani et al. (2017) generalizes,

regardless of sample trimming.

5 Conclusion

In this paper, we evaluate various strategies for practically assessing external validity (EV)

of treatment effects estimates. We evaluate if the various methods provide (a) a simple

statistical test of whether the effect generalizes across the available settings (and does this

extend to more than two settings), and (b) how easily can results be extrapolated to predict

the expected treatment effect in a new setting (e.g., does one need the full original data?,

and will extrapolating to a new domain require changing the interpretation of the estimate

in a complicated way? ). We then apply the various methods to data from an RCT that

was conducted across three countries (Galiani et al., 2017). This study found a strong and

statistically significant effect across all three countries of housing upgrades on a summary

index of respondent’s satisfaction with their housing situation.

We evaluate two ways of assessing if there is a common conditional average treatment

effect (CATE) coupled with changes in the covariate distribution, or if the treatment effects

fundamentally differ. Results from the reweighting procedure of Hotz et al. (2005) suggests

that the treatment effects do differ across countries. We show that this procedure can yield

false-positives in the presence of covariate differences, which we have in this data.

To address this short-coming, we provide a method that allows for modelling the CATE

directly. To allow for a tractable regression-based model that can be used for statistical

tests, we develop a new machine-learning (ML) based method that uses the Group Lasso

(Yuan and Lin, 2006) to select a possibly non-linear the CATE model. We note that, while

we model the CATE directly, we view it as a nuisance parameter in the service of testing for
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external validity. We do not, therefore, need to estimate the true CATE, just a reasonable

approximation, which is what the ML algorithm allows us to do.

When we apply our procedure to the data and test for differences in the CATE across

countries, the results are no longer statistically different, indicating that the procedure was

able to find a common treatment effect in the presences of covariate differences. We then

show that this regression-based CATE model allows researchers in new settings to predict

the treatment effect and confidence intervals in a new setting without access to the original

data.

The authors report there are no competing interests to declare.
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A Online Appendix
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Figure 3: Simulations of False Positives by Estimation Method (Using True Propensity)

Notes: Diagnostics from simulations according to Equation 5. The “Type I Error” plots are for the

proportion of simulations where that method found a statistically different treatment effect between the

Sample and Population. No sample trimming was used for either method. In this figure the reweighting

method uses the estimated propensity score rather than the true one.
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Table 7: ATE Sample-interacted (Excluding Training Data)

(1)

Treatment × Is ES 0.689**

(0.178)

Treatment × Is MX 0.116

(0.128)

Observations 905

R2 0.251

p-val no ATE difference 0.000361

Outcome is Satisfaction Index and and statistics are coefficient and (standard error). Excludes training data.

Omitting non-sample-interacted coefficients.

∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)

34



Table 8: Reweighted Pooled Treatment Effect Estimation (Excluding Training Data)

(1) (2) (3)

Treatment 1.111** 0.326** 0.354**

(0.160) (0.105) (0.0625)

Is Sample 0.154 -0.00806 0.956**

(0.271) (0.782) (0.386)

Is Sample x Treatment -0.764** 0.260** 0.158

(0.174) (0.129) (0.108)

Observations 1312 1295 1358

Sample UY+MX ES+MX ES+UY

Population ES UY MX

Outcome is Satisfaction Index and statistics are coefficient and (standard error). Models include baseline controls.

Propensity estimation done by logit.

Exludes Training data.

∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)
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Table 9: Sample-interacted CATE (Including Initially Trimmed Observations)
(1) (2) (3)
UY ES offset MX offset

Treatment -0.228 0.576 0.382
(0.333) (0.505) (0.455)

Treatment x Head of HH Educ. 0.0557* 0.00230 -0.0261
(0.0311) (0.0492) (0.0400)

Treatment x Head of HH Female 0.154 0.0152 -0.107
(0.247) (0.379) (0.302)

Treatment x Head of HH Age 0.00878 0.00328 -0.00896
(0.00662) (0.00940) (0.00856)

Treatment x Z-score Satisfaction (Baseline) -0.0809 0.00661 0.0754
(0.0563) (0.0835) (0.0637)

Treatment x HH Asset value/capita Sq. 0.00000289 -0.00000261 -0.00000316
(0.00000375) (0.00000377) (0.00000378)

Treatment x Head of HH Educ. x Z-score Satisfaction (Baseline) 0.0122 -0.0114 -0.0125
(0.00768) (0.0114) (0.00930)

Treatment x Head of HH Female x HH Asset value/capita -0.000905 0.000425 0.00251
(0.00210) (0.00223) (0.00228)

Treatment x Head of HH Age x Z-score Housing quality (Base-
line)

-0.000216 0.00169 0.000490

(0.00131) (0.00187) (0.00150)
Treatment x HH Asset value/capita x Z-score Housing quality
(Baseline)

-0.000593 0.000717 0.000213

(0.000370) (0.000475) (0.000410)
Treatment x HH Asset value/capita x Z-score Housing invest-
ment (Baseline)

0.0000260 -0.000362 0.0000214

(0.000260) (0.000409) (0.000354)
Treatment x HH Income/capita x Z-score Housing quality
(Baseline)

-0.0000121 -0.00140* -0.000462*

(0.000146) (0.000783) (0.000260)
Treatment x HH Income/capita x Z-score Satisfaction (Base-
line)

-0.0000985 0.00181 0.000254

(0.000133) (0.00112) (0.000235)
Treatment x Z-score Housing quality (Baseline) x Z-score Hous-
ing investment (Bas

0.0113 0.0273 -0.0177

(0.0117) (0.0193) (0.0167)
Treatment x Z-score Housing investment (Baseline) x Head of
HH Educ.

-0.0141** 0.0265** 0.0114

(0.00631) (0.0127) (0.0118)
Treatment x Z-score Housing investment (Baseline) x Head of
HH Female

0.0176 0.0710 0.0632

(0.0559) (0.0911) (0.0762)
Treatment x Z-score Housing investment (Baseline) x Z-score
Satisfaction (Baseli

-0.00736 0.00663 -0.00246

(0.00677) (0.0135) (0.0107)
Observations 1291 1291 1291
R2 0.321 0.321 0.321
p-val no CATE difference 0.243 0.243
Outcome is Satisfaction Index and statistics are coefficient and (standard error). Test-sample only.
Omitting non-sample-interacted coefficients.
∗ (p <0.10), ∗∗ (p <0.05), ∗∗∗ (p <0.01)
The three columns report coefficients from a single (setting-interacted CATE) model. Only CATE

coefficients are shown. The UY column contains the base coefficients and the ES and MX offset columns
report the coefficient for those same variables interacted with dummy variables for whether the

observation was in that country.
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Table 10: CATE Coefficients

(1)

Treatment -0.1055

Treatment x Head of HH Educ. 0.03306

Treatment x Head of HH Female 0.1399

Treatment x Head of HH Age 0.008237

Treatment x Z-score Satisfaction (Baseline) -0.02852

Treatment x HH Asset value/capita Sq. 2.759e-07

Treatment x Head of HH Educ. x Z-score Satisfaction (Baseline) -0.0007141

Treatment x Head of HH Female x HH Asset value/capita 0.0006955

Treatment x Head of HH Age x Z-score Housing quality (Baseline) -0.001679

Treatment x HH Asset value/capita x Z-score Housing quality (Baseline) -0.0003103

Treatment x HH Asset value/capita x Z-score Housing investment (Baseline) -0.0002562

Treatment x HH Income/capita x Z-score Housing quality (Baseline) 0.0001504

Treatment x HH Income/capita x Z-score Satisfaction (Baseline) 0.0001566

Treatment x Z-score Housing quality (Baseline) x Z-score Housing investment (Bas 0.01394

Treatment x Z-score Housing investment (Baseline) x Head of HH Educ. -0.01247

Treatment x Z-score Housing investment (Baseline) x Head of HH Female 0.07701

Treatment x Z-score Housing investment (Baseline) x Z-score Satisfaction (Baseli 0.001989

Observations 905

Outcome is Satisfaction Index. Stats=b. Test-sample only.

Variables align with those in Table 11.
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Table 11: CATE Variance-Covariance Sub-Matrix
V_complex_lmt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 .0527297 -.0023474 -.0125147 -.0007591 .0001889 -1.30e-08 -.0000424 .0000143 -1.95e-06 -1.20e-07 -2.76e-06 -3.08e-06 -5.15e-06 -.0002755 .0000327 .0003476 .0000456

2 -.0023474 .000321 -.0001757 .0000268 -.0000413 9.78e-10 .0000101 -4.19e-07 -4.27e-07 -7.07e-08 1.83e-07 2.74e-07 5.39e-07 .0000182 -.000032 .0000669 -6.26e-06

3 -.0125147 -.0001757 .0168428 .0000519 .0001028 3.20e-08 -.0000253 -.0000385 -5.15e-06 1.03e-06 -1.67e-06 2.39e-06 4.34e-07 .0000476 .0001501 -.0007106 -.0000375

4 -.0007591 .0000268 .0000519 .0000155 -4.53e-06 6.94e-11 1.05e-06 -1.93e-07 1.14e-07 -1.55e-08 4.50e-08 1.97e-08 3.38e-08 9.45e-07 -1.52e-06 6.36e-06 2.99e-07

5 .0001889 -.0000413 .0001028 -4.53e-06 .0007343 1.05e-09 -.0000783 -7.83e-07 1.35e-06 2.44e-07 -4.74e-07 -1.24e-06 -4.05e-06 .000018 7.62e-06 .000027 .0000346

6 -1.30e-08 9.78e-10 3.20e-08 6.94e-11 1.05e-09 8.01e-13 -1.98e-10 -7.26e-10 -4.88e-11 2.39e-11 -3.77e-11 2.11e-11 4.07e-12 -1.41e-09 2.55e-10 2.61e-09 -6.99e-10

7 -.0000424 .0000101 -.0000253 1.05e-06 -.0000783 -1.98e-10 .0000178 1.86e-07 -9.16e-08 -4.69e-08 1.03e-07 2.03e-08 1.56e-07 -1.21e-06 -1.78e-06 4.19e-06 -6.06e-06

8 .0000143 -4.19e-07 -.0000385 -1.93e-07 -7.83e-07 -7.26e-10 1.86e-07 8.05e-07 3.37e-08 -8.83e-09 4.20e-08 -2.23e-08 -3.88e-09 1.17e-06 -3.28e-07 -2.64e-06 5.31e-07

9 -1.95e-06 -4.27e-07 -5.15e-06 1.14e-07 1.35e-06 -4.88e-11 -9.16e-08 3.37e-08 4.25e-07 -3.79e-08 8.16e-09 -1.04e-07 -1.42e-08 2.11e-07 -1.92e-07 -4.17e-07 3.72e-07

10 -1.20e-07 -7.07e-08 1.03e-06 -1.55e-08 2.44e-07 2.39e-11 -4.69e-08 -8.83e-09 -3.79e-08 4.60e-08 -8.26e-09 -9.49e-09 -1.46e-09 -8.25e-08 1.28e-07 1.70e-07 -4.97e-08

11 -2.76e-06 1.83e-07 -1.67e-06 4.50e-08 -4.74e-07 -3.77e-11 1.03e-07 4.20e-08 8.16e-09 -8.26e-09 3.79e-08 -2.51e-09 -2.40e-10 2.01e-07 -2.00e-07 -1.15e-06 -1.96e-07

12 -3.08e-06 2.74e-07 2.39e-06 1.97e-08 -1.24e-06 2.11e-11 2.03e-08 -2.23e-08 -1.04e-07 -9.49e-09 -2.51e-09 1.24e-07 1.48e-08 -6.13e-07 8.47e-09 4.65e-09 -8.62e-08

13 -5.15e-06 5.39e-07 4.34e-07 3.38e-08 -4.05e-06 4.07e-12 1.56e-07 -3.88e-09 -1.42e-08 -1.46e-09 -2.40e-10 1.48e-08 6.33e-08 -8.29e-08 4.04e-09 -8.12e-07 -3.64e-07

14 -.0002755 .0000182 .0000476 9.45e-07 .000018 -1.41e-09 -1.21e-06 1.17e-06 2.11e-07 -8.25e-08 2.01e-07 -6.13e-07 -8.29e-08 .0001199 -.0000121 -6.59e-06 -1.27e-06

15 .0000327 -.000032 .0001501 -1.52e-06 7.62e-06 2.55e-10 -1.78e-06 -3.28e-07 -1.92e-07 1.28e-07 -2.00e-07 8.47e-09 4.04e-09 -.0000121 .0000343 -.0001466 3.10e-06

16 .0003476 .0000669 -.0007106 6.36e-06 .000027 2.61e-09 4.19e-06 -2.64e-06 -4.17e-07 1.70e-07 -1.15e-06 4.65e-09 -8.12e-07 -6.59e-06 -.0001466 .0016716 2.12e-06

17 .0000456 -6.26e-06 -.0000375 2.99e-07 .0000346 -6.99e-10 -6.06e-06 5.31e-07 3.72e-07 -4.97e-08 -1.96e-07 -8.62e-08 -3.64e-07 -1.27e-06 3.10e-06 2.12e-06 .0000555

Notes: Variables align with those in Table 10.
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