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1 Introduction

The distributions of wealth in the US and many other countries are strikingly concentrated on the
top and skewed to the right (Piketty (2014), Saez and Zucman (2016), Bricker et al. (2016), and
Smith, Zidar, and Zwick (2021)). For example, using the US administrative tax data, Smith, Zidar,
and Zwick (2021) estimate that the top 0.1% and 1% wealth shares increased from 9.9% and 23.9%
in 1989 to 15% and 31.5% in 2016, respectively. Understanding the sources of the wealth inequality
and the mechanism that generates such inequality is important not only for policy makers, but also
for academic researchers.

The goal of our paper is to provide a tractable model that accounts for the US distributions of
earnings and wealth. Our model builds on the standard quantitative theory used in the heterogeneous-
agent literature within macroeconomics: the Bewley-Huggett-Aiyagari (BHA) model (Bewley (1980),
Huggett (1993), and Aiyagari (1994)). As is well known (e.g., Benhabib and Bisin (2018) and
Stachurski and Toda (2019)), a standard BHA model with infinitely-lived agents facing idiosyn-
cratic labor income risks alone generates a counterfactual result that the tail thickness of the model
output (wealth) cannot exceed that of the input (income).

We depart from the standard BHA model by introducing two key ingredients. First, we introduce
portfolio heterogeneity by separating illiquid capital assets from liquid safe assets (bonds). In the
standard BHA model, both types of assets are perfect substitutes and earn the same constant return
(interest rate) in a stationary equilibrium. In our model, capital assets are illiquid and incur adjust-
ment costs (Kaplan and Violante (2004) and Kaplan, Moll, and Violante (2018)). Thus the capital
return differs from the interest rate.

Second, we introduce idiosyncratic investment risks in the form of Poisson jumps of capital
returns, which apply only to new capital investments, but not to rate of return on capital already in
place. At each point in time, each household has a chance of conducting innovations/R&D. Such
activities arrive as rare events and may generate large stochastic returns. These returns are critical to
account for the top wealth shares. This feature is consistent with the wealth accumulation of some
richest Americans in recent years. By examining 100 of them listed in the Forbes magazine, Graham
(2021) argues that “[b]y 2020 the biggest source of new wealth was what are sometimes called ‘tech’
companies. Of the 73 new fortunes, about 30 derive from such companies. These are particularly
common among the richest of the rich: 8 of the top 10 fortunes in 2020 were new fortunes of this
type.”

Incorporating the above two ingredients in a tractable continuous-time model, we make a tech-
nical contribution by adopting the affine-jump diffusion (AJD) framework of Duffie, Pan, and Sin-
gleton (2000) in the finance literature. Specifically, we assume that labor income follows a square-
root process (Cox, Ingersol, and Ross (1985)) and each household’s preferences are represented by
continuous-time recursive utility of Duffie and Epstein (1992). We embed the power-exponential

2



specification of the discrete-time recursive utility model of Weil (1993) into our continuous-time
setup. This specification features a constant elasticity of intertemporal substitution (EIS) and a
constant coefficient of absolute risk aversion (CARA). Abstracting away from binding borrowing
constraints, we are able to derive a close-form solution to the individual consumption/saving prob-
lem under uninsurable Brownian labor income risk and Poisson capital return jump risk. Unlike
the usual exponential-affine model (e.g, Caballero (1990), Angeletos and Calvet (2006), and Wang
(2007)), our model setup delivers positive labor income and positive optimal individual consump-
tion under some mild assumptions. The separation between EIS and CARA in our utility model is
important not only for understanding precautionary saving (Weil (1993)), but also for generating a
large marginal propensity to consume (MPC) as in the data.1 This feature is critical for the existence
of a stationary equilibrium and also for matching the data.

We provide three major theoretical results. First, we prove the existence of a stationary equi-
librium in which the interest rate is lower than the subjective discount rate as in Aiyagari (1994).
We show that the equilibrium prices and aggregate quantities can be determined independently of
the full wealth distribution because only the mean matters for the aggregate variables. After the
equilibrium prices are pinned down, our explicit solution for the optimal consumption and wealth
processes allows us to simulate the wealth distribution tractably and efficiently.2

Second, we show that the joint equilibrium wealth and labor income process is an AJD process.
Extending the method of Wang (2007), we provide an explicit recursive formula to compute the
moments of the stationary wealth and labor income distributions. Our explicit formula shows clearly
how the capital return jump intensity and the jump size distribution can generate a larger skewness
and a larger kurtosis for the wealth distribution relative to the labor income distribution.

Because skewness and kurtosis may not fully characterize the tail behavior of a distribution,
our third result, which is also the most novel theoretical result in the paper, studies this issue. We
show that both the stationary wealth and labor income distributions have an exponential tail when
the jump size follows a hyper-exponential distribution (HED), i.e., a finite mixture of exponential
distributions (Feldmann and Whitt (1998)). Moreover, we explicitly characterize their exponential
decay rates. We identify conditions on the HED such that the tail of the wealth distribution decays
more slowly than that of the labor income distribution. In this case the wealth distribution has a
heavier tail than the labor income distribution.

To examine the quantitative implications of our theory, we calibrate our model to confront the US
data. We choose parameter values to match the US micro and macro data, and especially statistics
related to the wealth and earnings distributions. Our adoption of the HED specification for the jump

1See Kaplan and Violante (2021) for discussions of the impact of recursive utility on the MPC in the discrete-time
BHA framework.

2Because we have a closed-form solution for the wealth process, we do not need to use the PDE approach of Achdou
et al. (2020) to solve for the wealth distribution. As Gouin-Bonenfant and Toda (2020) argue, the usual numerical
methods may suffer from large truncation errors at the upper tail of the wealth distribution.
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size allows us to compute the stationary equilibrium tractably because the HED delivers explicit
formulas for the moment generating function and the Laplace transform. Moreover, the HED can
approximate any completely monotone distribution including the Pareto distribution (Feldmann and
Whitt (1998)) and thus is very flexible for us to match the wealth distribution data.3

By specifying three exponential components for the HED, we find that our calibrated model
can match the wealth distribution in the data closely, including the wealth shares on the very top.
In particular, we can match the wealth shares held by the top 0.1% and 1%. As is well known,
matching such data in general equilibrium is a challenging task. The recent literature has focused
on generating a Pareto tailed wealth distribution (e.g., Benhabib, Bisin, and Zhu (2011) and Gabaix
et al. (2016)). By contrast, our quantitative results show that even an exponential tailed distribution
can also match the data quite well. The reason is that it is very difficult to distinguish empirically the
exponential-type tails from power-type (Pareto) tails given a finite sample of data (Heyde and Kou
(2004)). Heyde and Kou (2004) show that sample sizes typically in the tens of thousands or even
hundreds of thousands are necessary to distinguish power-type tails from exponential-type tails.

A nice feature of our model is that it can be applied to study the impact of taxing the super rich.
Specifically, consider taxation on the capital return jumps drawn from the component distribution of
the HED with the largest mean. We find that the impact on wealth inequality depends crucially on
how tax revenues are distributed. When tax revenues are transferred to all households evenly, such
a policy raises wealth inequality. But when tax revenues are used to inject credit to borrowers, such
a policy reduces wealth inequality.

Related literature. Our paper contributes to the macroeconomics literature on wealth inequality
in the tradition of the BHA model.4 Early studies have tried to modify assumptions in the BHA
model to make wealthier agents want to save more. Examples include the warm-glow bequest and
human capital motives of De Nardi (2004), very large earnings risk for high-earning households of
Castaneda, Diaz-Gimenez, and Rios-Rull (2003), random subjective discount rates of Krusell and
Smith (1998). Our paper is also closely related to the work on the importance of entrepreneurship
of Quadrini (2000) and Cagetti and De Nardi(2006).

The recent literature has shifted attention to generating a Pareto tailed wealth distribution. Im-
portant papers include Benhabib, Bisin, and Zhu (2011, 2015, 2016), Benhabib, Bisin, and Luo
(2019), Gabaix et al. (2016), Nirei and Aoki (2016), Cao and Luo (2017), Jones and Kim (2018),
Toda (2018), Moll, Rachel, and Restrepo (2019), Sargent, Wang, and Yang (2020), and Hubmer,
Krusell, and Smith (2021). This literature applies either the Kesten process (Kesten (1973)) or the

3A distribution with the pdf g (x) is completely monotone if the nth derivative g(n) (x) exists and (−1)n g(n) (x) ≥
0 for any n ≥ 1.

4See Heathcote, Storesletten, and Violante (2009), Guvenen (2011), Quadrini and Rios-Rull (2015), Krueger, Mit-
man, and Perri (2015), and Benhabib and Bisin (2018) for recent surveys.
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random growth process to model the earnings and wealth processes and tries to give microfundations
to such processes. We refer readers to Gabaix (2009) and Benhabib and Bisin (2018) for surveys of
this literature and additional references.

Unlike this literature, our wealth and income processes belong to the class of AJD processes of
Duffie, Pan, and Singleton (2000). Given exponential-type jump size distributions, these processes
have exponential tails. We give conditions such that the wealth process has a heavier tail than the
labor income process. As exponential-type tails and power-type tails are almost indistinguishable
empirically (Heyde and Kou (2004)), our model can generate the wealth distribution on the top close
to the data.

Our modeling of investment risks builds on Angeletos and Calvet (2006), Angeletos (2007), and
Angeletos and Panousi (2009). Our model differs from theirs in three major ways in addition to some
technical details: (i) We introduce capital return jump risks in addition to labor income risks. (ii)
We adopt the recursive utility specification of Weil (1993) in a continuous-time setup, which ensures
consumption is always positive. (iii) Our model generates a nondegenerate wealth distribution as in
the data, matching the top wealth shares up to the 0.1%.

Our model is also related to Wang (2007), who adopts recursive utility with a consumption-
dependent rate of time preference (Uzawa (1968)). Such a specification in an exponential-affine
framework allows him to derive a closed-form solution to the individual consumption/saving prob-
lem and a moment characterization of the wealth distribution. As discussed earlier, his model suffers
from the problem of the standard BHA model and cannot generate realistic income and wealth dis-
tributions as in the data.

2 Model

Consider an infinite-horizon continuous-time model in which there is a continuum of infinitely-lived
households, indexed by i and distributed uniformly over [0, 1]. At each time t ≥ 0, each household
is endowed with one unit of labor. It owns and runs a private firm, which employs labor supplied
by other households in the competitive labor market but can only use the capital stock invested by
the particular household. Each household faces two independent sources of idiosyncratic shocks
that hit its private firm and its earnings. It can only trade riskless bonds and cannot fully diversify
away idiosyncratic shocks. We assume that there is no aggregate uncertainty so that all aggregate
variables are deterministic by a law of large numbers. We focus on a stationary economy in which
all aggregate (per capita) quantities and prices (wage and interest rate) are constant over time.
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2.1 Preferences

All households have the same recursive utility over consumption in continuous time (Duffie and
Epstein (1992)). It helps intuition much better by motivating such utility as the limit of a discrete-
time model (Epstein and Zin (1989)) as the time interval shrinks to zero.

Let dt denote the time increment. The continuation utility Ut at time t over a consumption
process {ct}t≥0 satisfies the following recursive equation:

Ut = f−1 [f (ct) dt+ exp (−βdt) f (Rt (Ut+dt))] , (1)

where β > 0 denotes the rate of time preference, f denotes a strictly increasing time aggregator
function, andRt denotes a conditional certainty equivalent. Notice that Ut is ordinally equivalent to
f (Ut) for a strictly increasing function f. We adopt the specification of Weil (1993):

f (c) =
c1−1/ψ

1− 1/ψ
, Rt (Ut+dt) = u−1Etu (Ut+dt) , u (Ut+dt) =

− exp (−γUt+dt)
γ

, (2)

where γ > 0 is the coefficient of absolute risk aversion and ψ > 0 (ψ 6= 1) is the EIS parameter.
In Appendix B, we derive the continuous-time limit for Ut as dt → 0 in the presence of both jump
and diffusion risks. Such a construction ensures dynamic consistency of the continuation utility. By
varying the consumption process {ct}t≥0 , we obtain the utility function U

(
{ct}t≥0

)
= U0.

The specification of f in (2) implies that consumption can never be negative. Moreover, the
CARA specification of u allows the consumption/saving problem with additive labor income risk
to admit a close-form solution (Weil (1993)). Angeletos and Calvet (2006) also consider CARA
specification for u, but they assume that f (c) = −ψ exp (−c/ψ) is an exponential function. This
specification implies that optimal consumption can be negative and cannot generate a stationary
wealth distribution. To ensure the existence of a stationary wealth distribution, Wang (2007) adopts
recursive utility with CARA specification for u = f and with consumption-dependent rate of time
preference (Uzawa (1968)).5

2.2 Decision Problem

In this subsection we study a household’s decision problem holding the interest rate and the wage
rate constant over time. For simplicity we omit the household-specific index i. Let the production

5Another way to generate a stationary wealth distribution is to adopt the overlapping-generations framework of
Blanchard (1985) with death probability independent of age, or with “perpetual youth,” yielding a decreasing exponential
age distribution. As pointed out in Benhabib and Bisin (2018), an implication of the “perpetual youth” assumption is
that the right tail becomes populated with agents that are unrealistically old for calibrations that match the right tail of
the wealth distribution.
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function take the form
yt = Akαt l

1−α
t , α ∈ (0, 1) , A > 0,

where A, yt, kt, and lt denote total factor productivity (TFP), output, capital, and labor, respectively.
Profit maximization implies

Rkkt = max
lt
{Akαt l1−αt − wlt − δkt} =

[
αA

(
(1− α)A

w

) 1−α
α

− δ

]
kt, (3)

where w and Rk denote the wage rate and capital return, and δ > 0 denotes the depreciation rate.
The household faces idiosyncratic investment risk and labor income (earning) risk. The effective

market hours are represented by `, which is hit by a Brownian shock driven by the dynamics

d`t = ρ` (L− `t) dt+ σ`
√
`tdW

`
t , (4)

where W `
t is a standard Brownian motion and σ`, ρ` > 0. One can interpret ` as the product of labor

hours and idiosyncratic labor productivity. To ensure `t is positive, we assume that 2ρ`L ≥ σ2
` .

The estimation from PSID data later supports this restriction. The long-run mean of `t is equal to
aggregate labor supply L.

The capital return is hit by a jump shock dJt, where Jt is a Poisson jump process. For each
realized jump, the jump size q is drawn from a fixed probability distribution ν over [0,∞). Assume
that all shocks are independent of each other and across households.

Suppose that the intensity at which a jump occurs depends upon kt and is given by λt = λkkt,

where λk > 0. Intuitively, during any time interval [t, t+ dt] , the household receives an average
capital income λkktEν (q) dt. The interpretation is that there is a rare event that the investment earns
large returns and the success probability is positively related to the capital stock. It represents ad-
ditional output from entrepreneurial risk taking activities like innovations or R&D.6 It is related to
the early seminal work of Quadrini (2000) which introduces entrepreneurship through stochasti-
cally arising profitable investment opportunities for households in a “non-corporate sector” subject
to borrowing constraints, and to the work of Cagetti and De Nardi (2006) that also incorporates
entrepreneurial entry, exit, and investment decisions in the presence of borrowing constraints in an
OLG framework of perpetual youth as in Blanchard (1985). Our modeling is also similar to the
“awesome state” or rare event in which individual labor productivity can become extremely high
(Castaneda, Diaz-Gimenez, and Rios-Rull (2003)). The key difference is that in our model the large
income comes from capital.

Capital assets are illiquid and trading kt of them incurs adjustment costs given by ηk2t /2 + χkt

6One may assume that the intensity contains a constant component in that λt = λ0 + λkkt for λ0 > 0. In this case
there is always a chance that the household receives additional output without making any investment.
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per unit of time, where η > 0 and χ > 0 are parameters. The household can also trade riskless bonds
at the interest rate r to insure against idiosyncratic shocks. Let bt denote the household’s holding
of bonds. Households can borrow and lend among themselves without any trading frictions so that
bt < 0 represents borrowing. To deliver a close-form solution, we do not impose binding borrowing
constraints, but a transversality condition on the value function must be satisfied to rule out Ponzi
schemes (e.g., Merton (1971)).

Let xt = bt + kt denote the household’s wealth level. Then the household faces the following
dynamic budget constraints

dxt = rxtdt+
(
Rk − χ− r

)
ktdt−

η

2
k2t dt+ dJt + w`tdt− ctdt. (5)

The household problem is to choose consumption and capital investment processes (ct, kt)t≥0 to
maximize utility U

(
{ct}t≥0

)
subject to the budget constraints (5), given initial wealth x0 = x and

initial labor `0 = `.
Let V (x, `) denote the value function. In Appendix A, we use dynamic programming to derive

the following result:

Proposition 1. Suppose that 0 < r < β and that Eν exp (−αq) and Eν (q) are finite for any α > 0.

Then the optimal consumption rule is given by

ct = θ1−ψ (xt + ξ``t + ξ0) , (6)

the capital demand is given by

kt = k ≡ 1

η

[
Rk − χ+

λkEν (1− exp (−γθq))
γθ

− r
]
, (7)

and the value function takes the form

V (xt, `t) = θ (xt + ξ``t + ξ0) , (8)

where θ, ξ`, and ξ0 are given by

θ = [ψ (β − r) + r]
1

1−ψ , (9)

ξ` =
− (ρ` + r) +

√
(ρ` + r)2 + 2σ2

` θγw

θγσ2
`

> 0, (10)

ξ0 =
1

r

{(
Rk − χ− r

)
k − η

2
k2 +

λkk

γθ
Eν [1− exp (−γθq)] + ξ`ρ`L

}
. (11)

Equation (7) describes the optimal capital rule similar to that in the portfolio choice literature
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(Merton (1971)) and can be rewritten as

Rk + λkEν [q]− r = (ηk + χ) + λk

[
Eν [q]− Eν (1− exp (−γθq))

γθ

]
. (12)

The left side of this equation represents the expected return on capital investment in excess of the
interest rate (i.e., equity premium). The expected return consists of the usual return Rk from neo-
classical production and the return λkEν [q] from business risk-taking activities. The right side has
two components. The first component ηk + χ represents the marginal capital adjustment or main-
tenance cost, which reflects liquidity premium. The second component represents the risk premium
due to the jump risk and increases with the risk aversion parameter γ and the jump intensity λk.
Notice that optimal capital demand k is constant and independent of individual variables and hence
will be equal to the aggregate capital stock in equilibrium.

To understand the consumption rule in (6), we need to introduce the concept of human wealth,
which is defined as the expected present value of future labor income. For our incomplete markets
model with uninsured risk, there is no unique stochastic discount factor used to discount future labor
income. The literature typically uses the interest rate r > 0 as the discount rate. Formally, we define
human wealth as

ht ≡ Et
[∫ ∞

t

e−r(s−t)w`sds

]
=

w

r + ρ`

(
`t +

ρ`L

r

)
. (13)

Then we can rewrite (6) as
ct = ϑ (xt + ahht + Γ) , (14)

where we define
ϑ ≡ ψ (β − r) + r > 0 (15)

ah ≡
(r + ρ`) ξ`

w
∈ (0, 1) , (16)

Γ ≡ ηk2

2r
. (17)

The variable ϑ represents the marginal propensity to consume (MPC), which is important to
understand the consumption behavior and the wealth distribution. The assumption of 0 < r < β

ensures that the MPC ϑ > 0 by equation (15), which also shows that the MPC increases with the
EIS parameter ψ. This assumption will be satisfied in general equilibrium. As is well known, the
MPC is equal to r in the standard time-additive CARA utility model (e.g., Caballero (1990) and
Wang (2007)). Importantly, recursive utility in our model helps generate a MPC higher than r.

It follows from (10) that ah ∈ (0, 1). As pointed out by Wang (2007), the square-root process
in (4) implies that a higher level of current labor income generates a more volatile stream of future
labor incomes. Hence the household’s precautionary saving is larger when its labor income level
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is higher, causing the household to consume less out of its human wealth than out of its financial
wealth. Such precautionary saving is given by (1− ah)ht, which is stochastic. The remaining term
in (14), Γ = ηk2/ (2r) , can be rewritten as

Γ =
1

r

{(
Rk − χ− r

)
k +

λkk

γθ
Eν [1− exp (−γθq)]− η

2
k2
}
,

according to (7). Thus Γ is essentially equal to the present value of expected (risk- and cost-
adjusted) profits from the capital investment. The risk adjustment captures precautionary savings
against capital jump risks.

2.3 Stationary Equilibrium

We now add household-specific index i, conduct aggregation, and define equilibrium in the steady
state. Aggregate consumption, labor, capital, wealth, and output are given by

Ct =

∫
citdi, L =

∫
`itdi, Kt =

∫
kitdi, Xt =

∫
xitdi,

Yt =

∫
yitdi+ λkEν [q]

∫
kitdi.

Aggregate output Yt consists of two components: total output generated by firm production
∫
yitdi

and extra output generated by business risk taking.
A stationary competitive equilibrium consists of constant wage w and interest rate r, individual

choices {cit, kit, lit}t≥0 for i ∈ [0, 1] , and constant aggregate quantities C, Y, and K, such that (i)
given (w, r) , the processes {cit, kit, lit}t≥0 are optimal choices for each household i; (ii) the bond and
labor markets clear ∫

bitdi = 0,

∫
litdi = L.

According to the constant-returns-to-scale technology in (3), we can show that the capital/labor
ratio is identical for all households. Thus we have

Rk = αAKα−1L1−α − δ, (18)

w = (1− α)AKαL−α, (19)

and AKαL1−α =
∫
yitdi. Moreover, it follows from (7) that k = K. Then we have

RkK + wL = AKαL1−α − δK. (20)

In the steady state, aggregate wealth satisfies X = K. Aggregating the budget constraint (5) and
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using (20), we can derive the resource constraint

C + δK +
η

2
K2 + χK = Y, (21)

where aggregate output is given by

Y = AKαL1−α + λkEν [q]K. (22)

By (14), aggregate consumption is given by

C = ϑ (K + ahH + Γ) , (23)

where we can write aggregate Γ and aggregate human wealth (from (13)) as

Γ =
ηK2

2r
, (24)

H ≡
∫
hitdi =

wL

r
. (25)

3 Equilibrium Analysis

In this section we first analyze the properties of the stationary wealth distribution taking prices
(interest rate and wage) as given and then study the determination of equilibrium prices.

3.1 Wealth Distribution

To study the wealth distribution, we substitute the optimal consumption rule (6) into the wealth
dynamics (5) to derive

dxt = −ρxxtdt+ µxdt+ φw`tdt+ dJt, (26)

where
µx ≡

(
Rk − χ− r

)
k − η

2
k2 − ϑξ0, (27)

ρx ≡ ψ (β − r) , φ ≡ 1− ϑξ`
w
. (28)

Clearly ρx < 0 if r < β. The term φ represents the marginal propensity to save (MPS) out of labor
income. We restrict parameter values such that φ > 0 in equilibrium.

Let zt ≡ w`t denote labor income. It follows from (4) that

dzt = ρ` (Z − zt) dt+ σz
√
ztdW

l
t , (29)
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where Z ≡ wL and σz ≡
√
wσ`. For ρx > 0 and ρ` > 0, the joint wealth and labor income pro-

cess {xt, zt} has a limiting stationary distribution if Eν ln (1 + q) < ∞ (Jin, Kremer, and Rüdiger
(2020)). The assumption on the jump distribution ν means intuitively that large jumps are not strong
enough to push the process eventually to infinity. By a law of large numbers, the stationary distri-
bution of the joint process gives the cross-sectional stationary distribution of wealth and earnings.
This distribution can be derived numerically using the transform analysis of Duffie, Pan, Singleton
(2000). Instead of solving for this distribution due to its technical complexity, we first establish
an important property of optimal consumption and then provide a moment characterization of the
wealth distribution.

Unlike the usual exponential-affine model (e.g, Caballero (1990) and Wang (2007)), our model
setup can generate a positive equilibrium consumption process.

Proposition 2. Suppose that the assumptions in Proposition 1 hold and Eν ln (1 + q) < ∞. Then

wealth xt has a stationary distribution with the support (µx/ρx,∞). If ξ0 +µx/ρx > 0, then optimal

consumption ct in a stationary equilibrium is positive for all t.

Notice that the drift of the financial wealth process xt is µx, which may be negative or positive
depending on particular parameter values. As the support of the stationary wealth distribution is
(µx/ρx,∞), some poor households can be in debt with negative wealth in the long run if µx < 0.

By the optimal consumption rule (6) or (14), each household consumes a fraction of its financial and
human wealth as well as investment profits at each time. Due to the square-root process specification,
labor income is positive. Due to innovations or R&D, the household’s financial wealth may jump
up randomly. Thus optimal consumption can never be negative in a stationary equilibrium if ξ0 +

µx/ρx > 0. This assumption ensures that investment profits are large enough to offset debt. By our
calibration in Section 4, this condition is indeed satisfied.

As is well known, the stationary distribution of the labor income process (square-root process)
is a Gamma distribution. It is positively skewed and has a positive excess kurtosis (leptokurtic)
if σ2

z > ρ`Z or σ2
` > ρ`L. A leptokurtic distribution also implies the distribution has a tail fatter

than the normal distribution. Because there is no closed-form solution for the stationary wealth
distribution, we extend Wang’s (2007) method to compute moments by incorporating capital return
jump risks. We characterize all moments whenever they exist in closed form by a recursive formula.
For a quantitative analysis, we will use simulations to characterize the full wealth and earnings
distribution in Section 4.

As the mean of xt is X and the mean of zt is Z, let x̃t = xt−X and z̃t = zt−Z. Then it follows
from (26) that the demeaned processes satisfy the dynamics

dx̃t = [−ρxx̃t + φz̃t − λkKEν (q)] dt+ dJt, (30)
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dz̃t = −ρ`z̃tdt+ σz
√
z̃t + ZdW l

t , (31)

where Jt is a Poisson process with intensity λkK. Let the cross moment be

Mm,n = E [x̃mt z̃
n
t ] , m, n = 0, 1, 2, ....

Proposition 3. Let the assumptions in Proposition 1 hold and let Eν ln (1 + q) < ∞. Suppose that

ζj ≡ Eν [qj] > 0 is finite for 1 ≤ j ≤ j∗ and ζj does not exist for j = j∗ + 1. Then the moments of

the joint stationary distribution of (xt, zt) satisfy the recursive equation for 0 ≤ m ≤ j∗ and n ≥ 0 :

Mm,n =
1

κm,n

[
P0 (n)Mm,n−1 + P0 (n)ZMm,n−2 + P1 (m)Mm−1,n+1

+P2 (m)Mm−2,n +
∑m

j=3 Pj (m)Mm−j,n

]
, (32)

where M0,0 = 1,M0,1 = M1,0 = 0,

κm,n ≡ ρxm+ ρ`n,

P0 (n) ≡ 1

2
σ2
zn (n− 1) , P1 (m) ≡ φm,

P2 (m) ≡ (λkK)

(
m

2

)
ζ2,

Pj (m) ≡ λkK

(
m

j

)
ζj, 3 ≤ j ≤ m.

The moment Mm,n does not exist for any m > j∗.

To apply this proposition we need to initialize the recursion by computing moments for 0 ≤
m < 3 or 0 ≤ n < 2. We provide the details in Appendix A.

Proposition 4. The variance ratio of wealth to income is given by

V arx
V arz

=
φ2

ρx (ρx + ρ`)
+

λkKζ2
2ρxV arz

, (33)

where V arz = σ2
zZ/ (2ρ`) is the long-run income variance. The correlation between the wealth and

labor income processes is given by
φ

ρx + ρ`

√
V arz
V arx

. (34)

As equation (26) shows, the variable φ can be interpreted as the MPS out of labor income. The
first term on the right side of (33) is the same as that in equation (53) of Wang (2007). A larger
value of MPS out of labor income induces a larger variance ratio of wealth to labor income. In the
presence of capital assets, the capital return variability contributes to the wealth variance as well.
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The second term in (33) reflects this contribution which comes from the random capital return jump.
Equation (34) shows that if φ > 0, then wealth and labor income are positively correlated.

To understand the income and wealth inequality, we study the skewness and the kurtosis, denoted
by Skew[x] and Kurt[x] for any variable x. In Appendix A we derive the following result.

Proposition 5. Suppose that ζj ≡ Eν [qj] is finite for 1 ≤ j ≤ 4. Then

Skew [x] = Skew [z]
2
√
ρx (ρx + ρ`)

2ρx + ρ`

[
1 +

(λkKζ2) (ρx + ρ`)

2M0,2φ2

]−3/2
+

λkKζ3

3ρx (M2,0)
3/2
, (35)

and

Kurt [x] = Kurt [z]
ρx (5ρ` + 6ρx)

(3ρx + ρ`) (2ρx + ρ`)

[
1 +

$1ρx (ρx + ρ`)

φ2

]−2
(36)

+3
φ2 (ρ` [ρx (ρx + ρ`)$1 + φ2] + 3φ2ρx)

(3ρx + ρ`) [ρx (ρx + ρ`)$1 + φ2]2
− 3

+

[
3φ2

ρx (3ρx + ρ`)

σ2
zZM0,2$1

2 (ρx + ρ`)
+$2

]
1

M2
2,0

,

where $1 > 0 and $2 > 0 are given in Appendix A.

If capital and bonds are perfect substitutes (i.e., λk = χ = η = 0), this proposition is reduced to
equations (62) and (63) in Wang (2007). In this case the wealth skewness and kurtosis are smaller
than the labor income skewness and kurtosis. This result is related to Theorem 8 of Stachurski and
Toda (2019), which states that the tail thickness of the model output (wealth) cannot exceed that of
the input (labor income) in the standard BHA model. Our model departs from such a standard BHA
model by separating illiquid capital assets from liquid assets and by introducing capital return jump
risk.

Jump risk does not necessarily generates a more positively skewed and fatter tailed wealth dis-
tribution. The first term on the right side of equation (35) shows that the capital return jump risk
reduces the wealth skewness relative to the earnings skewness. However, the second term raises the
wealth skewness when ζ3 > 0.

Equation (36) shows that the wealth kurtosis consists of three components. The capital return
jump risk reduces the first component (the first line of (36)) as $1. We can also show that the second
component (the second line of (36)) is negative. Only the last component (the third line of (36)) can
raise the kurtosis of the wealth distribution because $1 > 0 and $2 > 0. In Appendix A, we show
that $2 is positively related to ζ4 > 0.

In summary, the capital return jump risk may not generate higher skewness and higher kurtosis
for the wealth distribution relative to the labor income. The jump size distribution (the third and
fourth moments) is critical to determine the skewness and kurtosis of the wealth distribution. As
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is well known, skewness and kurtosis may not fully capture the tail behavior of a distribution. In
Section 5 we will provide an explicit characterization of the tail behavior of the wealth and labor
income distributions.

3.2 Aggregate Investment and Savings

We now use the asset/investment demand and supply analysis of Aiyagari (1994) to understand the
aggregate equilibrium determination. A tractable feature of our model is that we do not need to
know the full wealth distribution to conduct aggregation. In particular only the mean matters for the
aggregate. Thus we can compute stationary equilibrium independent of the full wealth distribution,
which is determined after the equilibrium interest rate and wage are determined.

We first derive the aggregate investment demand curve. Combining equations (7) and (18) yields

α(K/L)α−1 − χ− δ = ηK + r − λkEν [1− exp (−γθq)]
γθ

. (37)

Because θ is a function of r given in (9), we can use the above equation to derive aggregate capital
K as a function of the interest rate r, denoted by K (r) . Then we obtain the aggregate investment
demand curve δK (r) . The lemma below characterizes the properties of K (r) .

Lemma 1. Let the assumptions in Proposition 1 hold. Then there is a unique solution to equation

(37) for any r > 0, denoted by K (r) , which decreases with r and satisfies limr→βK (r) = K (β)

and limr→0K (r) = K (0) .

Next we derive the aggregate saving curve. Aggregate savings S are given by

S ≡ Y − C − η

2
K2 − χK = AKαL1−α + λkEν [q]K − ϑ (K + ahH + Γ)− η

2
K2 − χK, (38)

where we have substituted the aggregate consumption function in (23) into the above equation. Since
aggregate capital K is a function of r, aggregate output Y is also a function of r. We use (18) and
(19) to derive Rk and w as functions of r and hence aggregate consumption is also a function of r
by (24) and (25). As a result, S is a function of r.

In Appendix A, we show that

S (r) = (r + δ + χ− ϑ)K + wL (1− ϑah/r) +
1

2
ηK2

(
1− ϑ

r

)
(39)

+λkK

(
Eν [q]− Eν [1− exp (−γθq)]

γθ

)
.

Aggregate savings consist of four components: The first component (r + δ − χ− ϑ)K represents
savings out of capital assets. The second component is precautionary savings against the Brownian
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labor income risk. The third component represents savings out of capital returns. The last component
represents precautionary savings against the capital return jump risk.

By the market-clearing condition, aggregate saving is equal to aggregate investment so that

S (r) = δK (r) , (40)

which determines the stationary equilibrium interest rate. The following lemma characterizes the
aggregate saving function:

Lemma 2. Let the assumptions in Proposition 1 hold. Then

lim
r↑β

S (r) > δK (β) and lim
r↓0

S (r) = −∞.

The limiting behavior of the saving function is very different from that in Aiyagari (1994). In
his model with time-additive power utility and borrowing constraints, S (r) approaches infinity as r
increases to β and S (r) approaches to the borrowing limit as r decreases to zero. In our model with
recursive utility and without borrowing constraints, S (r) tends to negative infinity as r decreases
to zero. That is, households want to borrow as much as possible because there is no borrowing
constraint. As r increases to β, the MPC ϑ approaches β = r. Thus the first component of aggre-
gate savings in (39) approaches δK (β) . But all other components of aggregate savings in (39) are
nonnegative and precautionary savings are strictly positive. We thus deduce that aggregate savings
are higher than aggregate investment as r → β.

Combining Lemmas 1 and 2, we immediately obtain the following result:

Proposition 6. Suppose that Eν exp (−αq) and Eν (q) are finite for any α > 0. Then there exists an

equilibrium with 0 < r < β.

For comparison, we consider two alternative economies for which we modify the investment
demand curve (37) and the saving curve (39):

(i) The complete markets economy with fully insured idiosyncratic risks. In this case we have
σ` = 0 and each household receives λkEν [q] as capital return. From (10) and (16), we can show
that ah = 1 when σ` = 0. Then the investment demand δK (r) can be derived from the following
equation:

αAKα−1L1−α − δ + λkEν [q]− χ− r = ηK.

The saving function becomes

Sc(r) = (r + δ + χ− ϑ)K + wL(1− ϑ/r) +
1

2
ηK2(1− ϑ/r).

In steady-state equilibrium, we have Sc(r) = δK (r), which leads to r = β.
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(ii) The BHA economy with only labor income risks, in which capital and bond assets are perfect
substitutes, i.e., η = χ = λk = 0. In this case investment demand δK (r) is determined by

αAKα−1L1−α = r + δ,

and the saving function is

SBHA(r) = (r + δ − ϑ)K + wL(1− ϑah/r).

The marginal product of capital is equal to the interest rate plus the depreciate rate. By similar
arguments in the proof of Proposition 6, we have 0 < r < β.

Figure 1 illustrates the three economies with the parameters to be discussed in the next section.
The investment demand curves are all downward sloping functions of the interest rate r. In the
complete markets case, the saving function only intersects with the investment demand curve at the
interest rate r = β. The standard BHA economy features an intersection at 0 < r < β for precau-
tionary saving reasons. In our model economy, there are additional idiosyncratic investment risks, so
the interest rate is even lower. Interestingly, the saving function in our model initially increases but
later decreases with the interest rate r. This is due to the different income and substitution effects.
The investment curve intersects the saving curve only once, giving one equilibrium solution even
when the saving function is hump-shaped.

Figure 1: Investment and Savings functions in three economies
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We close this section by discussing the equilibrium level of capital stock. Angeletos (2007)
argues that the investment risk raises precautionary savings, but also decreases investment demand.
Thus the net effect on the steady-state capital stock is ambiguous even though r < β. In our model
we have both labor income and investment risks. The steady-state capital stock under incomplete
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markets is lower than that under complete markets given our calibrated parameter values discussed in
the next section. The main reason is that the decrease in investment demand due to large investment
(jump) risks dominates the precautionary saving effect.

4 Quantitative Results

In this section we calibrate our model and examine its quantitative implications for the aggregate
economy and for the income and wealth distributions. We solve for the stationary equilibrium
numerically and suppose that one unit of time in our model corresponds to one year.

4.1 Calibration

We group all model parameters in three sets and choose parameter values such that the stationary
equilibrium of the calibrated model matches the US macro- and micro-level data.

Standard Parameters. First, consider {α, δ, ψ, χ, η, β, γ} . We set the capital share α = 0.33 as
in the macro literature. Set the depreciation rate δ = 7.33% to target 16.4% investment to output
ratio in the US data. We set the EIS parameter ψ = 1.41 in line with the finance literature on long-
run risk, and later we conduct a sensitivity analysis with respect to ψ. Set the linear adjustment
cost parameter χ, the quadratic adjustment cost parameter η, the subjective discount rate β, and the
CARA parameter γ to target the following equilibrium variables: the interest rate r = 1.8%, the
capital return premium Rk − r = 1%,7 the MPC ϑ = 0.25 by (15), in line with most of OECD
aggregate MPC measures (Carroll, Slacalek, and Tokuoka (2014)), and the coefficient of relative
risk aversion γC = 5, where C is the aggregate consumption level in the stationary equilibrium.

Earnings Process. Second, we calibrate the parametersL, ρ`, and σ` in (4) to match some statistics
for earnings in the PSID data. We normalize labor supply L to 1/3 labor hours. We also normalize
the steady-state wage rate to one by adjusting the TFP parameter A. As a result, the labor income
process (29) is the same as the employment shock process (4). We can then choose ρ` and σ` to
minimize the distance between the statistics from the process (4) and from earnings in the PSID
data. In particular, we target the earning shares for the top 1%, 5%, 10%, 50%, and 90% earners in
the PSID data (see Table 1).

Once L is fixed, the square-root process (4) has a known limiting distribution, which is a Gamma
type with a shape parameter 2ρ`L/σ

2
` and a scale parameter 2ρ`/σ

2
` . Since the Gamma distribution

7One interpretation of Rk− r is liquidity premium. It may be measured by the average of the spread between AAA
corporate bonds and treasuries of similar maturity after 1984, which is roughly 1% (see Krishnurmuthy and Vissing
Jorgensen (2012), Del Negro et al. (2017), and Cui and Radde (2020)). The private equity premium is around 2%
according to Angeletos (2007) for compensating idiosyncratic risks.
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Table 1: Calibrated Earning Process

Top 1% 5% 10% 50% 90%
Data 11.0% 22.3% 32.3% 81.5% 99.2%

Model 5.3% 19.0% 31.7% 83.3% 99.3%

Note: statistics are averages between 2000 and 2014 in PSID.

is affected by the ratio ρ`/σ2
` only, there are multiple pairs of ρ` and σ` that can generate the same

statistics as in Table 1. Thus we also target the variance of annual log earnings changes, 0.23, as
in Guvenen et al. (2021) to pin down σ`. Since the data is annual income, we aggregate the high-
frequency individuals’ income in computation. Our estimation/calibration procedure is similar to
the simulated methods of moments, e.g., Kaplan, Moll, and Violante (2018). The main difference
is that we do not need to simulate the labor income process (4) to match the percentiles in the data
(Table 1) because the stationary distribution of this process is known. Figure 2 shows the simulated
earnings distribution and the distribution for annual changes of log earnings under our calibration.
The latter distribution is centred around zero and is almost symmetric, which is consistent with the
finding of Guvenen et al. (2021) using the US census data.

Figure 2: Square-root Earning Distribution

It merits emphasis that the square-root earnings process does not feature a fat tail, but it matches
reasonably well many statistics in the world-wide inequality database (WWID). In fact, the very top
earners have smaller labor income than the others compared to WWID. For example, the average
top 0.01% earnings are about 68 times of those of the top 60% people, while the WWID has a factor
about 150-200. The average top 5% earnings are 5.2 times of the median earnings, and it is about
5 in the WWID database. Nevertheless, as will be shown later, we can still generate an equilibrium
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wealth distribution that is much more right skewed and has a much fatter tail than the earnings
distribution, due to the capital jump return.

Jump Intensity and Jump Size Distribution. Finally, we consider the remaining parameters in
Table 2 that govern the jump process. The jump intensity parameter λk is set to 5%, and given the
equilibrium capital stock K, the annual probability λkK of an innovation or R&D is 8%. It should
be noted that our model allows both success and failure of innovations or R&D, because the jump
returns may not be enough to compensate the loss arising from adjustment costs. This can happen if
the jump size is close to zero. We acknowledge that the success probability varies across different
sectors and industries. For example in the pharmaceutical industry, the success probability ranges
from 4% to 15% across different development stages. Therefore, we experiment with different
success probability, and recalibrate parameters. We find that the model implication for the wealth
distribution statistics does not change significantly.

The jump size distribution ν is important to match the wealth distribution in the data. Following
Cai and Kou (2011), we adopt a hyper-exponential distribution (HED), which is a weighted average
of n exponential distributions with nonnegative weights. This type of distributions is flexible and
can approximate any completely monotone distributions (Feldmann and Whitt (1998)).8 The PDF
for the HED can be written as

f (q) =
n∑
j=1

pj
exp (−q/µj)

µj
, q > 0, (41)

where pj ∈ [0, 1] , µj > 0, and
∑n

j=1 pj = 1. An interpretation is that given an arrival of innovation,
a fraction of pj households draw capital returns from the exponential distribution with mean µj.

An important advantage of the HED is that it is analytically tractable. Its moment generating
function has a closed form. For the PDF in (41), we have

Eν exp (tq) =
n∑
j=1

pj
1− µjt

, (42)

for t < minj{1/µj}. Thus the Laplace transform Eν exp (−αq) exists and has a simple analytical
expression for all α > 0. This expression will be used in the household decision rules such as (7)
and (11). Also notice that the HED in (41) has moments of all orders, which admit a closed form,

Eν [qm] = n!
n∑
j=1

pjµ
m
j for m ≥ 1.

8Cai and Kou (2011) also study more general mixed-exponential distribution (MED) with possibly negative weights.
The MED can approximate any distribution arbitrarily closely (Botta and Harris (1986)). Cai and Kou (2011) show that
HED or MED for the jump size is useful for computing option prices given fat-tailed stock returns.
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It follows from Proposition 3 that all moments for the wealth process also exist. Clearly, the wealth
distribution in our model does not have a power-law tail. Nevertheless, we show below that our
calibrated model can still match reasonably well the wealth shares in the data. In Section 5, we will
provide more discussions on this issue.

We consider n = 3 components in the HED and choose values of µ1, µ2, µ3, p2, and p3 to target
five statistics: 14% of the average private returns to innovations and/or R&D (i.e., λkEν [q] in the
model), and top 0.1%, 1%, 10%, and 20% wealth shares in the US data. Griffith (2000) estimates
the private returns ranging from 14% to 20% in the US. The public return can be even higher. Our
target of 14% for the private return is conservative.

Using administrative tax data, Smith, Zidar, and Zwick (2021) estimate that the top 0.1% and
1% wealth shares increased from 9.9% and 23.9% in 1989 to 15% and 31.5% in 2016, respectively.
They also show that the most recent estimates from several approaches in the literature tell starkly
different stories about the level and evolution of these wealth shares. We choose 15% and 31.5% in
2016 as our target for the top 0.1% and 1% wealth shares, respectively. According to the average
between 2000 and 2019 obtained from the distributional financial account of Federal Reserve Board,
the top 1% and 10% wealth shares are 30.2% and 66.7%, respectively. According to the average from
the Survey of Consumer Finance after 2000, the top 20% wealth share is 79.8%. We choose 66.7%
and 79.8% as our target for the top 10% and 20% wealth shares, respectively.

To compute the wealth shares in our model, we run 100 simulations and compute the average.
For each simulation, we discretize the equilibrium wealth process xt (26). The time increment
represents one day. In the end, we run 100 simulations of the wealth process xt, each simulation
having 15 years and 365 days per year and 100,000 people. Increasing simulation length and/or
the number of people does not change our results significantly. In (26), important parameters that
govern the wealth distributions are µx = −0.1483, ρx = 0.2320, and φ = 0.8968 according to our
calibration.

Table 2: Calibrated Parameter Values

Value Explanation/Target Value Explanation/Target
β 0.1825 MPC = 0.25 µ1 0.21 top 20% wealth share
γ 8.60 relative risk aversion 5 µ2 16.4 top 10% wealth share
ψ 1.41 exogenous µ3 251.7 top 1% wealth share
α 0.33 capital share p1 0.8982 p1 + p2 + p3 = 1
δ 0.0733 I/Y = 0.164 p2 0.0978 average innovation return 14%
A 0.8857 w = 1 p3 0.0040 top 0.1% wealth share
η 0.001 Rk − r = 1% χ 0.0086 interest rate r = 1.8%
L 0.33 normalization ρ` 0.0697 estimated from PSID
λk 0.05 innovation probability σ` 0.2115 estimated from PSID
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We emphasize that our specification of the HED for the jump size plays an important role due
to its flexibility. There is a tension between matching the macro statistics and matching micro
statistics, if we adopt a distribution with a limited number of parameters such as the exponential
distribution. Given a particular mean in the aggregate, a mixture of distributions gives the model
additional parameters to match the cross-sectional distribution statistics without affecting aggregate
quantities significantly.

Our choice of the mixture of exponential distributions is parsimonious and tractable. It allows
us to match the data reasonably well, especially the top 0.1% wealth share. Of course, the larger
the number n of component distributions, the more statistics the model can match. However, as
n increases, the probability pj of one of the jumps in the mixed distribution decreases, making the
draw from this jump distribution less likely to happen. Therefore, increasing n = 3 to n = 4 requires
substantial more number of people in our simulation which quickly becomes infeasible for standard
computing facilities, while the model performance is not substantially improved.9

4.2 Results and Sensitivity Analysis

Table 3 presents the baseline quantitative results based on our calibration. Though not targeted, our
model generates about 0.5% wealth share for the bottom 50%, slightly smaller than the data 1.7%.
Our model also generates 33.2% wealth share for the top 50% to 10%, slightly larger than the data
32%. Given that agents in our model do not face borrowing constraints and there is no tax or transfer
in the benchmark simulation, this result is acceptable.

As is well known in the literature, it is notoriously challenging to match the extreme right tail
of the wealth distribution in the data. The baseline simulation of our model generates 15.0% wealth
share for the top 0.1% people. Compared to the previous literature, our result is much closer to
the data. For example, the model of Kaplan, Moll, and Violante (2018) generates 2.3% of liquid
wealth and 7% of illiquid wealth held by the top 0.1% people. Even with a Pareto-tailed wealth
distribution, the model of Cao and Luo (2017) generates a top 0.1% wealth share of 11%. Notice
that our model-generated top 1% wealth share is higher than the data but still not too far. The reason
is that our adopted HED specification of the jump size distribution implies that the wealth shares of
the top 0.1% and 1% are closely related. We choose to let the model hit the top 0.1% wealth share,
which is considerably harder, at the cost of allowing the top 1% wealth share to be slightly higher
than the data.

Our model-generated wealth Gini coefficient is 0.77, slightly smaller than the data (0.80), again
because some households are in debt in our simulations and these households do not receive gov-

9The simulation has been tested in Mac Book Pro 2020 i7 with 16GB memory. The simulation of the labor income
process is around 90 seconds and the simulation of the wealth distribution is around 15 seconds.
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Table 3: Wealth Distribution Statistics

Wealth Top 0.1% Top 1% Top 10% Top 20% Top 50-10% Bottom 50% Gini
US Net worth 15% 31.5% 66.7% 79.8% 32.0% 1.7% 0.80

Model 15.0% 33.4% 66.0% 80.1% 33.2% 0.5% 0.77

Note: The measure of top 0.1% share is from Smith et.al. (2020). Top 20% data is the average from survey of consumer
finance after 2000. The rest are the averages between 2000 and 2019 obtained from distributional financial account of
Federal Reserve Board. The model statistics is the average of 100 simulation of 15 years with dt approximated by one
day, and each simulation has 100K people starting from the same initial level of labor income and wealth.

ernment transfer.10 As can be seen from the wealth distribution in Figure 3, there are roughly 25%
people having negative wealth, although none of them has negative consumption by Proposition 2.

Figure 3: Wealth Distribution Histogram

How do key parameters affect the result presented in Table 3? To address this question, we
conduct a sensitivity analysis by changing values of some key model parameters: the EIS parameter
ψ, the risk aversion parameter γ, the Poisson arrival rate λk, and the largest mean jump size µ3 for a
component exponential distribution (see Table 4).11 When changing one parameter value, we keep
other parameter values fixed as in the benchmark calibration in Table 2. The sensitivity analysis also
helps us better understand our model mechanics.

We first examine the impact of the EIS ψ. Intuitively, consumption/savings behavior depends on

10There is a well-known issue of calculating the Gini coefficient for a distribution with negative realizations. In our
case, the negative wealths from some borrowing agents are all treated as zero. If we move the whole distribution to the
right by a constant such that the lowest wealth is zero (instead of a negative number), the Gini will be 0.81.

11We also experiment with the probability of the 3rd jump p3 conditioning on arrival. However, since there is a
restriction of p1 + p2 + p3 = 1, either p1 or p2 needs to vary at the same time. Nonetheless, increasing p3 has a similar
effect both on the aggregate and on the distribution to that of increasing µ3
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the EIS. On the one hand, the higher the EIS ψ, the larger the substitution effect and thus the lower
the savings under incomplete markets. As a result, the equilibrium interest rate r rises with the EIS
ψ, ceteris paribus. This can be seen from the downward shift of the saving curve in the left panel
of Figure 1. On the other hand, the capital/investment demand changes with ψ by (7) or (12) as
θ = [ψ (β − r) + r]

1
1−ψ in (9) depends on ψ. The value of θ is very sensitive to a small change of ψ

under our calibration compared to varying other parameters. We find that θ declines as ψ increases
and hence the jump risk premium in (12) falls with ψ. But the aggregate demand for capital slightly
increases with ψ under our parameterization by (37). It turns out that the fall in savings dominates
so that the equilibrium interest rate r and the capital return Rk increase with ψ, but the equilibrium
capital stock declines with ψ. Aggregate output and consumption also decline with ψ.

We can also look at the MPC ϑ = ψ(β − r) + r in our model: an increase in ψ raises the
MPC for a fixed r ∈ (0, β).12 Intuitively, an increase in the MPC reduces saving incentives even
though capital demand increases. Notice that there is a general equilibrium price feedback effect as
a higher r reduces ϑ given ψ > 1. In our numerical experiment, the former direct effect dominates.
Therefore, households borrow more with a higher ψ, and the general equilibrium must feature a
higher interest rate to clear the bond market.

The impact of an increase in ψ on wealth inequality depends on four channels. First, a reduc-
tion in saving because of a high MPC reduces wealth inequality; this also reduces capital stock,
causing innovations to be less likely, and hence reducing capital jump returns and wealth inequality.
Second, a decreased capital stock raises the marginal product of capital Rk and hence raises wealth
inequality. Third, an increased equilibrium interest rate r raises wealth of the rich and middle class
households, but reduces wealth of the poor borrowers, commonly known as the income/wealth ef-
fect. At the same time, households will save more or reduce borrowing, in facing a higher interest
rate, commonly known as the substitution effect. Fourth, a decreased capital stock reduces the
marginal product of labor or the equilibrium wage rate w and thus raises wealth inequality. The net
effect is ambiguous. Table 4 shows that the top 10%, 1%, and 0.1% wealth shares as well as the
wealth Gini coefficient all rise with ψ in general equilibrium. Therefore, the net effect is dominated
by the contribution of a rising interest rate r and falling wage rate w as capital stock declines with
ψ.

When we fix the interest rate r and the wage rate w in partial equilibrium, the capital return Rk

in (3) as a function of w is also fixed. By (7) or (12), capital demand increases with ψ as the jump
risk premium decreases with ψ. We find that wealth inequality increases even more with ψ as the
last three channels vanish. Working in the opposite direction of the first channel generates increased
wealth inequality due to increased aggregate capital. Moreover, the bottom 50% people are in debt;
for example, their debt is 4.5% of aggregate wealth for ψ = 1.45. This is in contrast to the case in

12By assuming r > β, Weil (1993) shows that the MPC declines as ψ increases.
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general equilibrium, in which the increased interest rate as ψ increases induces the poor people to
save so that their wealth share becomes 0.4%.

Table 4: Sensitivity Analysis

Capital Wealth r(%) MPC(%) Bottom
50%
(%)

Top
10%
(%)

Top
1%
(%)

Top
0.1%
(%)

Gini
(%)

Benchmark 1.60 1.60 1.80 25.00 0.5 66.0 33.4 15.0 76.8
ψ =1.45 1.52 1.52 2.19 25.48 0.4 66.5 34.1 15.2 77.1
– and PE 1.69 1.44 1.80 25.66 -4.5 72.2 37.4 16.8 80.5
ψ =1.5 1.42 1.42 2.68 26.04 0.2 67.1 34.5 15.6 77.5

– and PE 1.81 1.26 1.80 26.48 -12.4 82.5 43.2 19.0 84.5
γ =6 1.55 1.55 2.05 24.90 -0.2 66.2 33.6 14.8 77.1

– and PE 1.69 1.51 1.80 25.00 -3.6 70.7 36.1 15.9 79.7
γ =4 1.48 1.48 2.39 24.76 -1.2 67.6 34.6 15.2 77.9

– and PE 1.83 1.39 1.80 25.00 -9.9 79.5 41.3 18.0 83.6
λk =0.06 1.68 1.68 1.49 25.13 -3.0 71.6 36.5 15.9 80.2
– and PE 1.64 1.82 1.80 25.00 1.2 66.5 33.5 14.5 77.1
λk =0.07 1.74 1.74 1.24 25.23 -6.8 77.5 39.1 16.5 83.1
– and PE 1.68 2.05 1.80 25.00 1.8 67.7 34.0 14.7 77.8
µ3 =300 1.63 1.63 1.68 25.05 -0.9 68.6 37.0 17.6 78.6
– and PE 1.60 1.67 1.80 25.00 0.5 66.8 35.7 16.8 77.4
µ3 =350 1.66 1.66 1.57 25.09 -2.4 71.9 40.7 20.3 80.6
– and PE 1.60 1.74 1.80 25.00 0.6 67.8 37.8 18.8 78.1

Note: For each parameter, the corresponding row shows the result in the stationary equilibrium; the row “- and PE”
under denotes the corresponding economy with factor prices r and w fixed.

Next we consider the impact of the risk aversion parameter γ. Table 4 shows that the impact of
a decrease in γ is similar to that of an increase in the EIS ψ. The main difference is that an increase
in γ raises the precautionary saving incentives and pushes down the interest rate, so the MPC ϑ =

ψ(β− r) + r increases with γ as ψ > 1. As a result, the MPC falls when we reduce γ. Unlike in the
case for the EIS ψ, the aggregate and distributional effects are much less sensitive to changes in γ.

Lastly we examine the role of jump risks by focusing on the jump intensity λk as well as the
component of jump size distribution with the largest mean µ3. Indeed, the jump risks contribute to
rising inequality. In partial equilibrium with fixed prices, both a higher λk and a higher µ3 imply
more inequality. Households save more according to the first-order condition for capital k. This can
been seen from the larger wealth share of the bottom 50%. However, more frequent jumps still imply
more wealth concentrated at the very top, leading to more inequality. In general equilibrium, since
investment goes up with either a higher λk or a higher µ3, the interest rate falls below the baseline.
Therefore, the poor households save less or borrow more, contributing to even more inequality. The
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MPC slightly rises with a higher r and a fixed EIS ψ > 1, but the aggregate saving still goes up to
utilize the better jump returns.

4.3 Application: Taxing the (Super) Rich

In this subsection we study an application of our model by introducing one type of taxation: taxing
the super rich households who benefit from the potential large jump returns on investment. This
type of policies has gained recent interest because of rising inequality over the past decades.13 We
consider two ways of distributing tax revenues. The first is to transfer tax revenues evenly to all
households. The second is to use tax revenues to inject credit to the bond market. We examine the
aggregate and redistribution effects.

Specifically, let τ3 be the proportional tax rate levied on the capital jump return drawn from
the third component distribution with the largest mean. Thus on expectation a household receives
returns (1− τ3)µ3 per unit of capital if the jump size is drawn from the third component exponential
distribution. Total tax revenues are T = τ3λkKp3µ3.

When these tax revenues are transferred to each household evenly, we can show that the house-
hold’s problem is modified such that ξ0 in (11) becomes

ξ0 =
1

r

{(
Rk − r

)
k − η

2
k2 +

λkk

γθ
Eν [1− exp (−γθq)] + ξ`ρ`L+ T

}
,

to accommodate the transfer T . This policy also affects the term Eν [1− exp (−γθq)] to reflect
taxation. For the aggregate consumption function in (23), the component Γ becomes

Γ ≡ ηk2t
2r

+
T

r
.

Table 5 shows the outcomes of a τ3 = 20% tax rate with equal lump-sum transfer to each
household. We first consider the solution in partial equilibrium when prices are fixed at the pretax
level. We find the aggregate capital stock K declines as expected, but the change is negligible. The
reason is that capital demand in (7) is affected by the change of Eν [1− exp (−γθq)] , which is very
small as our calibrated λk = 0.05 and p3 = 0.004. Intuitively, the very rich would still invest as
much whether they earn $600M or $100M a year, as long as it keeps them at the top.

Importantly, the government transfer provides self-insurance and reduces precautionary savings
(which affects ξ0 and the wealth accumulation process), leading the poor households to borrow.
Because there is no borrowing constraint in our model, the bottom 50% people are in debt of 67.6%

13See New York Times article “Private Inequity: How a Powerful Industry Conquered the Tax System” by Jesse
Drucker and Danny Hakim (September, 2021) and Propublica article “The Secret IRS Files” by Jesse Eisinger, Jeff
Ernsthausen, and Paul Kiel (June, 2021).
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of total wealth and the top 1% people own even more wealth with their wealth share rising from
33.4% to 72.4%. Unlike the Aiyagari (1994) model with a fixed borrowing limit, our model implies
that the support of the wealth distribution shifts down. Aggregate wealth X also declines from 1.60
to 0.65. The wealth Gini coefficient increases from 0.768 to 0.90. Thus the policy of taxing the
super rich and redistributing evenly raises wealth inequality in partial equilibrium.14

We find this result is robust to general equilibrium. But the increase in wealth inequality is less
severe. The wealth shares of top 1% and top 0.1% decline, since the tax policy is designed to reduce
their wealth. But the top 10% wealth share increases, and the bottom 50% people are still in debt.
The wealth Gini coefficient increases from 0.768 to 0.783.

The main reason is the indirect price feedback effect. In general equilibrium, the interest rate
must rise to reduce borrowing because the net bond supply is zero. As a result, aggregate capital
K is equal to aggregate wealth X in equilibrium and both levels decline from the benchmark level
1.60 to 1.34 after the taxation. Thus, the arrival rate λkK of capital return jumps declines, thereby
reducing wealth inequality relative to the case in partial equilibrium. Though the wage rate declines
as K declines, this negative effect on wealth inequality is dominated because of the higher debt
incurred by the poor.

Table 5: Taxing Capital Return

Capital Wealth r(%) MPC(%) Bottom
50%
(%)

Top
10%
(%)

Top
1%
(%)

Top
0.1%
(%)

Gini
(%)

Benchmark 1.60 1.60 1.80 25.00 0.5 66.0 33.4 15.0 76.8
τ3 = 0.2, transfer 1.34 1.34 3.15 24.45 -4.1 68.8 32.9 13.2 78.3

– and PE 1.60 0.65 1.80 25.00 -67.6 141.6 72.4 29.6 90.0
τ3 = 0.2, injection 1.60 1.53 1.80 25.00 0.47 63.9 30.4 12.3 75.6

– and PE 1.60 1.53 1.80 25.00 0.45 64.3 30.7 12.5 75.8

Notes: For each parameter, the corresponding row shows the result in the stationary equilibrium; the row “- and PE”
under denotes the corresponding economy with factor prices r and w fixed.

Now we consider the second distribution policy by injecting tax revenues to the credit market.

14In a partial equilibrium model without considering distribution of tax revenues, Benhabib et al. (2011) show
that capital tax on r and Rk reduces wealth inequality when wealth follows a Kesten process with a stochastic rate of
return. The reason is that the thickness of the right tail depends on the probability of the stochastic wealth return (net
of consumption out of wealth) that is above 1 in discrete time and above 0 in continuous time. Inequality is the result
of some lucky agents that get long streaks of realizations of high returns. Taxing the stochastic return of wealth/capital
reduces the range of its realized values and therefore the inequality. In our framework the rate of wealth return is not
stochastic. The policy of taxing capital and redistributing tax revenues evenly reduces precautionary savings of the
poor, leading to more inequality. This policy also reduces the equilibrium capital stock and the wage rate and thus
disproportionately affects those with lower wealth, further increasing inequality. Such a result is not reported here and
available upon request.
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This policy changes the bond market clearing condition from B = 0 to B + T = 0. Then this
policy only changes the term Eν [1− exp (−γθq)] to reflect taxation in the household consump-
tion/investment problem. As in the first policy experiment with small λk = 0.05 and p3 = 0.004,
the policy here does not change aggregate capital K much in partial equilibrium. Aggregate wealth
satisfies X = K + B = K − T and is equal to 1.53. Unlike the first transfer policy, the second
one reduces wealth inequality because the second policy does not affect households precautionary
incentives. In other words, now poor households do not receive transfers that provide self-insurance,
so they do not increase their borrowings. We find the above partial equilibrium results barely change
in general equilibrium. The main reason is that the equilibrium interest rate does not change much
as the second injection policy does not affect aggregate savings and investment much. Moreover,
the equilibrium capital stock barely changes and hence the wage rate does not change much. As a
result, the equilibrium price feedback effect is muted.

5 Understanding Exponential versus Power Tails

The previous quantitative results highlight that capital return jump risk is important to generate a
realistic wealth distribution as in the data, given a realistic square-root earning process. To under-
stand the intuition, it is critical to study the tail behavior of the wealth distribution. In this section
we establish an important result that both the earnings and wealth distributions in our model have
an exponential (right) tail instead of a power tail and the wealth tail decays more slowly than the
earnings tail.

5.1 Definition of Tail Thickness

We first use the moment generating function to define tail thickness of random variables (Stachurski
and Toda (2019)).

Definition 1. Let X be a random variable and h (α) = E [exp (αX)] denote its moment generating

function. If h (α) = ∞ for all α > 0, then X is (right) heavy-tailed. If h (α) is finite for some

α = α0 > 0, then X is light-tailed.15 If h (α) is finite for all α ∈ [0, α0] for some α0 > 0 and

h (α) = ∞ for all α > α0, then X has an exponential tail. The exponential decay rate of X is

defined as

α ≡ sup {α ≥ 0 : h (α) <∞} .

If there is a positive exponent λ called the tail index such that

lim
x→+∞

Pr (X > x) ∼ x−λ, λ > 0,

15It can be shown that h (α) is finite for all α ∈ [0, α0] .
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then X is (right) fat-tailed or Pareto-tailed, where ∼ means same up to a constant. If X has finite

moments of all orders, i.e., the tail index λ =∞, then X is thin-tailed.

We define the tail behavior of a random variable synonymously with that of its distribution. It
can be shown that the tail probability Pr (X > x) of a light-tailed random variable X is bounded
above by an exponential function (e.g., Lemma 2 of Stachurski and Toda (2019)). Then Stachurski
and Toda (2019) show that

lim sup
x→∞

1

x
ln Pr (X > x) = −α.

This equation gives the intuitive meaning of the exponential decay rate α, which characterizes the
decay speed of the tail probability. For light-tailed distributions whose tails decay faster than any
exponential distribution, we have α =∞.

A heavy-tailed distribution has a tail that decays more slowly than that of any exponential distri-
bution because

lim
x→∞

exp (αx) Pr (X > x) =∞ for all α > 0.

Then its exponential decay rate α = 0. Fat-tailed distributions are a subclass of heavy-tailed distribu-
tions. Their tails follow a power law or Pareto distribution. By Definition 1, the normal distribution
is both light- and thin-tailed. The Pareto distribution is both heavy- and fat-tailed. The log-normal
distribution is heavy-tailed, but not fat-tailed. It has moments of all orders. A distribution with tail
index λ has finite moments of all orders up to the largest integer below λ.

5.2 Pareto Tail

To study the income and wealth distributions using BHA-type incomplete markets models, one often
specifies some exogenous state processes that drive the labor income or capital return fluctuations
and then individuals make consumption/saving choices. In general equilibrium, competitive markets
determine the interest rate, the wage rate, and the wealth distribution. It turns out that such models
are notoriously difficult to match the wealth distribution in the data, especially the wealth shares of
the very top percentiles.

To understand our model mechanism and its connection to the literature in a simple unified way,
we suppose that there is an exogenous scalar state process zt satisfying

dzt = µz (zt) dt+ σz (zt) dW
z
t + dJzt ,

where W z
t is a standard Brownian motion and Jzt is a jump process.

Let the wealth process follow the dynamics

dxt = Rx
t xtdt+ ytdt− ctdt, (43)
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where Rx
t denotes the rate of wealth return and yt denotes labor income that is driven by the state zt.

In the standard BHA model, capital assets and bonds are perfect substitutes and both earn a constant
return r and thus Rx

t = r. For either CRRA or CARA utility, optimal consumption typically takes
the following form

ct = ϑxt + Φt,

where Φt depends on labor income yt and ϑ denotes the MPC, which may be different from (15)
depending on model setup. In this case (43) becomes

dxt = (r − ϑ)xtdt+ (yt − Φt) dt. (44)

If r < β in equilibrium, we typically have r < ϑ so that xt has a stationary distribution. Because
randomness of xt comes from labor income yt only, the right tail of the wealth distribution is de-
termined by (yt − Φt) . Using the results of Grey (1994), Benhabib and Bisin (2018) and Benhabib,
Bisin, and Zhu (2017) show that under some standard BHA assumptions, the wealth distribution
inherits the tail behavior of the labor income process (e.g., light-tailedness or the Pareto exponent).
Stachurski and Toda (2019) also prove a very related result in discrete time.

In order to generate a wealth distribution that is fatter or heavier and more skewed than the labor
income distribution and that even has a fat (Pareto) tail, the literature typically adopts the following
two approaches.

1. Kesten process. Saporta and Yao (2005) study the following continuous-time counterpart of
Kesten (1973),

dxt = R (zt)xtdt+ σ (zt) dW
x
t ,

where zt is a Markov jump process. They show that if E [R (zt)] < 0 and Pr (R (zt) > 0) > 0,

then xt has a stationary distribution with a Pareto tail. If R (z) < 0 for all discrete states z,
then xt has a stationary distribution that has finite moments of all orders. In discrete time,
the Pareto tail is generated by stochastic discrete shocks to the return on wealth such that the
wealth return (net of the fraction of wealth consumed) can exceed 1 with positive probability.
Benhabib, Bisin, and Zhu (2011, 2015) apply the Kesten process in discrete time to generate
a wealth distribution with a Pareto right tail.

2. Random growth process. Gabaix (2009) and Gabaix et al. (2016) study the following process

d lnxt = µdt+ σdW x
t + dJxt ,

where W x
t is a standard Brownian motion and Jxt is a jump process. They discuss micro-

foundations of the random growth process and several ways to stabilize the process so that
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a stationary distribution exists. The mathematical logic of generating a Pareto tail is simi-
lar to that for the Kesten process. For the random growth process, the Brownian motion or
jumps drive the fluctuations of the growth rate (or change in logarithm) of xt, while the local
expected growth rate R (zt) itself is driven by Markov jumps zt for the Kesten process.

For both types of processes, we need the wealth return to be random. Since the equilibrium
interest rate is constant, it is important to separate illiquid capital assets from liquid bond assets and
then one can introduce randomness (jumps or Brownian motion) to capital returns. For tractability,
in this paper we adopt the AJD process introduced by Duffie, Pan, and Singleton (200) in the finance
literature. We introduce capital return jumps that appear in equation (26) in the form of disturbances
to the change of the wealth level, but not to the change of the log level or the growth rate. Wang
(2007) also applies AJD processes. Unlike us, he does not separate capital and bond assets so that
(44) still holds. By computing moments explicitly, he shows that the equilibrium wealth distribution
is counterfactually less skewed and thinner than the income distribution (also see our Proposition 5).

5.3 Exponential Tail

Given the HED (41) for the jump size q > 0, we deduce that Eν ln (1 + q) < ∞. It follows from
Jin, Kremer, and Rüdiger (2020)) that the joint process {xt, zt} has a stationary distribution and
its law converges to this distribution exponentially fast. As is well known, the square-root labor
income process zt has a stationary Gamma distribution, which has an exponential tail. To study the
tail property of the stationary distribution for wealth xt, we analyze the exponential moments of xt
as t → ∞, limt→∞ E [exp (αxt)] for α > 0, following Keller-Ressel and Mayerhofer (2014) and
Glasserman and Kim (2010). Notice that when a limiting stationary distribution exists, the limiting
exponential moment of xt does not depend on the initial value x0.

Proposition 7. Given the HED (41) for the jump size and 2ρ`L ≥ σ2
` , both the stationary wealth

and labor income distributions have an exponential tail.

The macroeconomics literature often uses the Pareto (power law) tail distribution to describe
the tail behavior of the wealth or income distribution. Heyde and Kou (2004) argue that it may be
very difficult to distinguish empirically the exponential-type tails from power-type tails, even for a
sample size of 5000 (corresponding to about 20 years of daily stock return data), although it is quite
easy to detect the differences between them and the tails of a normal density. Our quantitative results
in Section 4.2 show that our wealth process can match the data reasonably well even if it does not
have a Pareto tail.

Both wealth and labor income distributions have an exponential tail. The following proposition
characterizes the exponential decay rates of the stationary wealth and labor income distributions.
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Proposition 8. Suppose that the jump size follows the HED (41) and φ > 0 in a stationary equi-

librium. Let 2ρ`L ≥ σ2
` . Then both the stationary wealth and labor income distributions have

exponential tails with the exponential decay rates given by

αx ≡ min

{
g (0) ,min

j
{1/µj}

}
, αz ≡

2ρ`
σ2
`

,

respectively, where g is a function defined in the proof of this proposition in Appendix A.

Given our baseline calibration in Table 2, we find that αx = 1/µ3 = 0.004 and αz = 3.116. Thus
the wealth distribution has a much smaller exponential decay rate than the labor income distribution.
Intuitively, the exponential decay rate of the wealth distribution depends on that of the capital return
jump size distribution. If the capital return jump size is drawn from some exponential distribution
with a sufficiently large mean µj, then the exponential decay rate of the wealth distribution is given
by 1/µj, which can be much smaller than the exponential decay rate of the income distribution αz.
The larger is µj, the smaller is the exponential decay rate of the wealth distribution. Intuitively, the
top wealth share is essentially determined by those who receive large capital return jumps. With-
out investment risks, the wealth distribution would have a lighter tail than the income distribution
(Benhabib and Bisin (2018) and Stachurski and Toda (2019)).

6 Conclusion

In this paper we have provided a tractable heterogeneous-agent model with incomplete markets in
continuous time. Departing from the literature which relies on the Pareto-tailed wealth distribution to
explain wealth inequality in the data, our model generated wealth distribution has an exponential tail.
Because Pareto-tailed distributions and exponential-tailed distributions are almost indistinguishable
in data with finite sample, our calibrated model can match the wealth distribution in the data. Our key
story is that rich people can build wealth from rare capital return/income jumps through technology
innovations or R&D and the jump size is stochastic. The jump size distribution is important to
explain the wealth distribution in the extreme right tail.

As an application of our model, we study a fiscal policy by taxing the capital income jump of the
super rich. When tax revenues are transferred to all households evenly, such a policy raises wealth
inequality. But when tax revenues are used to supply credit to borrowers, such a policy reduces
wealth inequality.
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A Proofs

Proof of Proposition 1: Let the value function Vt satisfy

dVt = µtdt+ σWt dW
l
t + σJt dNt,

where Nt is a Poisson process with intensity λt = λkkt. By Appendix B, the HJB equation is given
by

βf (Vt) = max
ct,kt

f (ct) + f ′ (Vt)

[
µt +

1

2

u′′ (Vt)

u′ (Vt)
σWt
(
σWt
)′

+ λt
Eν
(
u
(
Vt + σJt

)
− u (Vt)

)
u′ (Vt)

]
, (45)

Conjecture that the value function takes the form:

Vt = V (xt, `t) = θ (xt + ξ``t + ξ0) , (46)

where θ, ξ`, and ξ0 are constants to be determined. By Ito’s Lemma, it follows from (66) and (67)
that

µt = θrxt + θ
(
Rk − r

)
kt −

θη

2
k2t − θct + θw`t + θξ`ρ` (L− `t) , (47)

σWt = θξ`σ`
√
`t, σ

J
t = θqt. (48)

Plugging the above equations into (45) and taking first-order conditions, we have

f ′ (ct) = θf ′ (Vt) , (49)

θ
(
Rk − r

)
− θηkt +

λkEν
(
u
(
Vt + σJt

)
− u (Vt)

)
u′ (Vt)

= 0. (50)

By (2) and (46), we have

ct = θ−ψVt = θ1−ψ (xt + ξ``t + ξ0) , (51)

kt =
Rk − r
η

+
λkEν [1− exp (−γθq)]

ηγθ
. (52)

We then obtain (6) and (7).
We now verify the conjecture (46) and derive coefficients. Using (2) and (51), we can divide the

two sides of (45) by f ′ (Vt) and derive

βVt
1− 1/ψ

=
θ1−ψVt

1− 1/ψ
+ µt −

γ

2
σWt
(
σWt
)′ − λt

γ
Eν [exp (−γθq)− 1] .
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Plugging (47), (48), (46), and (51) into the preceding equation, we obtain(
β − θ1−ψ

)
1− 1/ψ

θ (xt + ξ``t + ξ0)

= θrxt + θ
(
Rk − r

)
kt −

θη

2
k2t + θw`t + θξ`ρ` (L− `t)

−θθ1−ψ (xt + ξ``t + ξ0)

−γ
2

(θξ`σ`)
2 `t −

λkkt
γ

Eν [exp (−γθq)− 1] .

Matching coefficients yields (
β − θ1−ψ

)
1− 1/ψ

= r − θ1−ψ, (53)(
β − θ1−ψ

)
1− 1/ψ

ξ` = w −
[
ρ` + θ1−ψ

]
ξ` −

γ

2
θ (ξ`σ`)

2 , (54)

(
β − θ1−ψ

)
1− 1/ψ

ξ0 =
(
Rk − r

)
kt −

η

2
k2t − θ1−ψξ0 (55)

+ξ`ρ`L−
λt
γθ

Eν [exp (−γθq)− 1] .

Equation (53) gives (9). Simplifying equation (54) gives a quadratic equation

γθ

2
(ξ`σ`)

2 + (r + ρ`) ξ` − w = 0.

The unique positive root gives (10). Equation (55) gives (11). Q.E.D.

Proof of Proposition 2: Optimal wealth xt satisfies (26). Solving this equation yields

xt = x0e
−ρxt + µx

1− e−ρxt

ρx
+

∫ t

0

e−ρx(t−s)dJs +

∫ t

0

e−ρx(t−s)φw`sds.

Given the square-root process (4) and 2ρ`L ≥ σ2
` , we have `t > 0 for all t. Since Jt only jumps

upward, we have
∫ t
0
e−ρx(t−s)dJs > 0. We deduce that the support of the long-run stationary distri-

bution of xt is (µx/ρx,+∞). Thus the result follows from (6). Q.E.D.

Proof of Proposition 3: By assumption Eν ln (1 + q) < ∞, it follows from Jin, Kremer, and
Rüdiger (2020) that the joint process {xt, zt} has a stationary distribution. Let Dt (m,n) denote the
drift of the process x̃mt z̃

n
t . The other part of x̃mt z̃

n
t is martingale terms. Applying Ito’s Lemma, we
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can derive

Dt (m,n) = mz̃nt x̃
m−1
t [−ρxx̃t + φz̃t − (λkK)Eν (q)]

−ρ`nz̃nt x̃mt +
1

2
n (n− 1) x̃mt z̃

n−2
t (z̃t + Z)σ2

z + (λkK) z̃nt Eν [(x̃t + q)m − x̃m] .

Simplifying yields

Dt (m,n) = −κm,n (x̃mt z̃
n
t ) +

1

2
σ2
zn (n− 1)

(
x̃mt z̃

n−1
t

)
+

1

2
σ2
zn (n− 1)Z

(
x̃mt z̃

n−2
t

)
+φm

(
x̃m−1t z̃n+1

t

)
−mz̃nt x̃m−1t (λkK)Eν (q) + (λkK) z̃nt Eν [(x̃t + q)m − x̃mt ] ,

where
κm,n ≡ ρxm+ ρ`n > 0, ρx = ϑ− r = ψ (β − r) > 0.

By the Binomial expansion formula

(x̃t + q)m =
m∑
j=0

(
m

j

)
x̃m−jt qj,

(
m

j

)
=

m!

j! (m− j)!
,

we have

(x̃t + q)m − x̃mt =
m∑
j=1

(
m

j

)
x̃m−jt qj.

Thus we can derive

Dt (m,n) = −κm,n (x̃mt z̃
n
t ) +

1

2
σ2
zn (n− 1)

(
x̃mt z̃

n−1
t

)
+

1

2
σ2
zn (n− 1)Z

(
x̃mt z̃

n−2
t

)
+φm

(
x̃m−1t z̃n+1

t

)
+

m∑
j=2

(λkK)

(
m

j

)
xm−jt z̃nt ζj,

where
ζj = Eν

[
qj
]
> 0 for q > 0.

Since x̃mt z̃
n
t is a jump-diffusion process with the drift Dt (m,n) , we can derive

E [x̃mt z̃
n
t ] = e−κm,ntE [x̃m0 z̃

n
0 ] +

∫ t

0

e−κm,n(t−s)Q (m,n) ds

= e−κm,ntE [x̃m0 z̃
n
0 ] +

1

κm,n

(
1− e−κm,nt

)
Q (m,n) , (56)
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where

Q (m,n) = P0 (n)E
[
x̃mt z̃

n−1
t

]
+ P0 (n)ZE

[
x̃mt z̃

n−2
t

]
+ P1 (m)E

[
x̃m−1t z̃n+1

t

]
+P2 (m)E

[
x̃m−2t z̃nt

]
+

m∑
j=3

Pj (m)E
[
x̃m−jt z̃nt

]
and

P0 (n) =
1

2
σ2
zn (n− 1) ,

P1 (m) = φm,

P2 (m) = (λkK)

(
m

2

)
ζ2,

Pj (m) = (λkK)

(
m

j

)
ζj, 3 ≤ j ≤ m.

Since κm,n > 0, taking limits in (56) as t→∞ yields

E [x̃mt z̃
n
t ] =

1

κm,n
Q (m,n) .

Then we obtain (32).
We can compute moments Mm,n recursively. First, we need to initialize the recursion. That is,

we need to specify the moments when either 0 ≤ m < 3 or 0 ≤ n < 2. We have the following
results:

M0,0 = 1, M1,0 = 0, M0,1 = 0,

M0,n =
1

κ0,n
[P0 (n)M0,n−1 + P0 (n)ZM0,n−2] for n ≥ 2,

M1,1 =
1

κ1,1
P1 (1)M0,2,

M1,n =
1

κ1,n
[P0 (n)M1,n−1 + P0 (n)ZM1,n−2 + P1 (1)M0,n+1] for n ≥ 2,

M2,0 =
1

κ2,0
[P1(2)M1,1 + P2(2)M0,0] ,

M2,1 =
1

κ2,1
[P0 (1)M2,0 + P1 (2)M1,2] ,

M2,n =
1

κ2,n
[P0 (n)M2,n−1 + P0 (n)ZM2,n−2 + P1 (2)M1,n+1 + P2 (2)M0,n] for n ≥ 2.

Mm,0 =
1

κm,0

[
P1(m)Mm−1,1 + P2(m)Mm−2,0 +

m∑
j=3

Pj (m)Mm−j,0

]
for m ≥ 3,
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Mm,1 =
1

κm,1

[
P1(m)Mm−1,2 + P2(m)Mm−2,1 +

m∑
j=3

Pj (m)Mm−j,1

]
for m ≥ 3.

Given these values, we can start the recursive iteration for all m ≤ j∗ if ζj = Eν [qj] exists for
1 ≤ j ≤ j∗. Whenever ζj = Eν [qj] does not exist for j = j∗ + 1, all moments Mm,n do not exist
for m > j∗. Q.E.D.

Proof of Propositions 4 and 5: The proof consists of the following four steps by repeatedly ap-
plying Proposition 3.

Step 1. We can easily derive the moments for the labor income process:

M0,2 =
σ2
zZ

2ρ`
, M0,3 =

σ2
z

ρ`
M0,2 =

σ4
zZ

2ρ2`
,

M0,4 =
3σ4

zZ

4ρ3`

(
ρ`Z + σ2

z

)
=

3σ6
zZ

4ρ3`
+ 3M2

0,2.

The labor income skewness and excess kurtosis are given by

Skew [z] =
M0,3

(M0,2)
3/2

=
σ2
z

ρ`
(M0,2)

−1/2 =

(
2σ2

z

ρ`Z

) 1
2

, Kurt [z] =
3σ2

z

ρ`Z
.

Step 2. Applying Proposition 3, we can derive

V arx = M2,0 =
1

κ2,0
[P1(2)M1,1 + P2(2)M0,0]

=
1

2ρx

[
2φM1,1 + (Kσk)

2 + (λkK) ζ2
]
.

Since
M1,1 =

1

κ1,1
P1 (1)M0,2 =

φM0,2

ρx + ρ`
,

we have
V arx
V arz

=
M2,0

M0,2

=
φ2

ρx (ρx + ρ`)
+

(λkK) ζ2
2ρxM0,2

=
φ2

ρx (ρx + ρ`)
+$1, (57)

where
$1 =

(λkK) ζ2
2ρxM0,2

> 0.

The correlation between xt and zt is given by

M1,1√
V arx

√
V arz

=
φ

ρx + ρ`

√
V arz√
V arx

.
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Step 3. To compute the wealth skewness, we apply Proposition 3 to derive

M1,2 =
1

κ1,2
[P0 (2)M1,1 + P1 (1)M0,3] =

1

ρx + 2ρ`

[
σ2
zφM0,2

ρx + ρ`
+
φσ2

z

ρ`
M0,2

]
=

φM0,3

ρx + ρ`
,

M2,1 =
1

κ2,1
P1 (2)M1,2 =

2φM1,2

2ρx + ρ`
=

2φ2M0,3

(2κx + ρ`) (κ+ ρ`)
,

M3,0 =
1

κ3,0
[P1(3)M2,1 + P3 (3)M0,0] =

P1(3)M2,1 + λkKζ3
3ρx

=
2φ3M03

ρx (2 ρx + ρ`) (ρx + ρ`)
+
λkKζ3

3ρx
.

The wealth skewness is given by

Skew [x] =
M3,0

(M2,0)
3/2

=
2φ3M0,3 (M0,2)

3/2

ρx (2ρx + ρ`) (ρx + ρ`) (M0,2)
3/2 (M2,0)

3/2
+

λkKζ3

3κx (M2,0)
3/2

=
2φ3 (M0,2)

3/2

ρx (2κx + ρ`) (ρx + ρ`) (M2,0)
3/2
Sy +

λkKζ3

3κx (M2,0)
3/2

= Skew [z]
2
√
ρx (ρx + ρ`)

2ρx + ρ`

[
1 +

(λkKζ2) (ρx + ρ`)

2M0,2φ2

]−3/2
+

λkKζ3

3ρx (M2,0)
3/2
.

Step 4. We finally compute the wealth kurtosis. We use Proposition 3 to derive

M2,2 =
1

κ2,2
[P0 (2)M2,1 + P0 (2)ZM2,0 + P1 (2)M1,3 + P2 (2)M0,2]

=
1

2 (ρx + ρ`)

[
σ2
zM2,1 + σ2

zZM2,0 + 2φM1,3 + P2 (2)M0,2

]
,

M1,3 =
1

ρx + 3ρ`
[P0 (3)M1,2 + P0 (3)ZM1,1 + P1 (1)M0,4]

=
1

ρx + 3ρ`

[
3σ2

zM1,2 + 3σ2
zZM1,1 + φM0,4

]
=

1

ρx + 3ρ`

[
3σ2

zφM0,3

ρx + ρ`
+

3σ2
zZφM0,2

ρx + ρ`
+ φM0,4

]
=

φ

ρx + ρ`
M0,4.

Plugging the above expression for M1,3 into above equation for M2,2 and using Step 1 and (57), we
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can derive

M2,2 =
1

2 (ρx + ρ`)

[
2φ2σ2

zM0,3

(2ρx + ρ`) (ρx + ρ`)
+ σ2

zZM2,0 +
2φ2

ρx + ρ`
M0,4

]
+
P2 (2)M0,2

2 (ρx + ρ`)

=
1

2 (ρx + ρ`)

[
φ2σ6

zZ

ρ2` (2ρx + ρ`) (ρx + ρ`)
+ σ2

zZM2,0 +
2φ2

ρx + ρ`

(
3σ6

zZ

4ρ3`
+ 3M2

0,2

)]
+
P2 (2)M0,2

2 (ρx + ρ`)

=
1

2 (ρx + ρ`)

[
φ2σ6

zZ

ρ2` (2ρx + ρ`) (ρx + ρ`)
+ 2ρ`M0,2M2,0 +

2φ2

ρx + ρ`

(
3σ6

zZ

4ρ3`
+ 3M2

0,2

)]
+
σ2
zZ$1M0,2

2 (ρx + ρ`)

=
1

2 (ρx + ρ`)

[
φ2σ6

zZ (5ρ` + 6ρx)

2ρ3` (2ρx + ρ`) (ρx + ρ`)
+

2M2
2,0ρx (ρx + ρ`) (ρ` [ρx (ρx + ρ`)$1 + φ2] + 3φ2ρx)

[ρx (ρx + ρ`)$1 + φ2]2

]
+
σ2
zZ$1M0,2

2 (ρx + ρ`)
,

where we have used (57) to derived the last equality.
By Proposition 3, we can compute

M4,0 =
1

κ4,0
[P1(4)M3,1 + P2(4)M2,0 + P4 (4)]

=
1

4ρx
[4φM3,1 + P2(4)M2,0 + P4 (4)]

=
φ [3φM2,2 + P2 (3)M1,1]

ρx (3ρx + ρ`)
+

1

4ρx
[P2(4)M2,0 + P4 (4)]

=
3φ2

ρx (3ρx + ρ`)
M2,2 +$2,

where we define

$2 ≡
3φ2λkKM0,2ζ2

ρx (3ρx + ρ`) (ρx + ρ`)
+
λkK

4ρx
(6M2,0ζ2 + ζ4) > 0.
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Using the above equation for M2,2, we have

M4,0 =
3φ2

ρx (3ρx + ρ`)
M2,2 +$2

=
3φ2

ρx (3ρx + ρ`)

φ2σ6
zZ (5ρ` + 6ρx)

4ρ3` (2ρx + ρ`) (ρx + ρ`)
2

+3M2
2,0

φ2 (ρ` [ρx (ρx + ρ`)$1 + φ2] + 3φ2ρx)

(3ρx + ρ`) [ρx (ρx + ρ`)$1 + φ2]2

+
3φ2

ρx (3ρx + ρ`)

σ2
zZ$1M0,2

2 (ρx + ρ`)
+$2.

We can now compute the wealth excess kurtosis

Kurt [x] =
M4,0

M2
2,0

− 3 =
3φ2

ρx (3ρx + ρ`)

φ2σ6
zZ (5ρ` + 6ρx)

4ρ2` (2κx + ρ`) (ρx + ρ`)
2

1

M2
2,0

+3
φ2 (ρ` [ρx (ρx + ρ`)$1 + φ2] + 3φ2ρx)

(3ρx + ρ`) [ρx (ρx + ρ`)$1 + φ2]2
− 3

+

[
3φ2

ρx (3ρx + ρ`)

σ2
zZ$1M0,2

2 (ρx + ρ`)
+$2

]
1

M2
2,0

.

Using (57) , we have

Kurt [x] =

(
M0,2

φ2

ρx (ρx + ρ`)
+$1M0,2

)−2
3φ2

ρx (3ρx + ρ`)

φ2σ6
zZ (5ρ` + 6ρx)

4ρ3` (2ρx + ρ`) (ρx + ρ`)
2

+3
φ2 (ρ` [ρx (ρx + ρ`)$1 + φ2] + 3φ2ρx)

(3ρx + ρ`) [ρx (ρx + ρ`)$1 + φ2]2
− 3

+

[
3φ2

ρx (3ρx + ρ`)

σ2
zZM0,2

2 (ρx + ρ`)
$1 +$2

]
1

M2
2,0

.

By Step 1, we obtain the wealth excess kurtosis:

Kurt [x] = Kurt [z]
ρx (5ρ` + 6ρx)

(3ρx + ρ`) (2ρx + ρ`)

(
1 +

$1ρx (ρx + ρ`)

φ2

)−2
+3

φ2 (ρ` [ρx (ρx + ρ`)$1 + φ2] + 3φ2ρx)

(3ρx + ρ`) [ρx (ρx + ρ`)$1 + φ2]2
− 3

+

[
3φ2

ρx (3ρx + ρ`)

σ2
zZM0,2

2 (ρx + ρ`)
$1 +$2

]
1

M2
2,0

.

When $1 = $2 = 0, the results are reduced to those in Wang (2007).
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Proof of Lemma 1: The expression on the left-hand side of (37) decreases withK, goes to−χ−δ
as K → +∞, and goes to +∞ as K → 0. The expression on the right-hand side increases with K,
goes to +∞ as K → +∞, and goes to 0 as K → 0. By the intermediate value theorem, there is a
unique solution to equation (37). Figure 4 shows one numerical example solution.

Since θ increases with r and Eν [1− exp (−γθq)] /θ decreases with θ,we have Eν [1− exp (−γθq)] /θ
decreases with r. Thus the line, denoted by RHS in Figure 4, shifts up as r increases. Thus K (r)

decreases with r.

Figure 4: LHS and RHS of (37)
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We have θ → β1/(1−ψ) as r → β and θ → (ψβ)1/(1−ψ) as r → 0. In both cases, there exists a
finite positive solution for K denoted by K (β) and K (0) . Q.E.D.

Proof of Lemma 2: Plugging (20) into (38) yields

S = AKαL1−α + λkEν [q]K − ϑ (K + ahH + Γ)− η

2
K2 − χK

= RkK + wL+ δK + λkEν [q]K − ϑ (K + ahH + Γ)− η

2
K2 − χK

= (r + δ − ϑ)K +RkK − rK + wL+ λkEν [q]K − ϑ (ahH + Γ)− η

2
K2 − χK.
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Using equations (24) and (25), we can derive

S = (r + δ − ϑ)K + wL (1− ϑah/r)

+RkK − rK + λkEν [q]K − ϑηK
2

2r
− η

2
K2 − χK

= (r + δ − ϑ)K + wL (1− ϑah/r)

+λkK

(
Eν [q]− Eν [1− exp (−γθq)]

γθ

)
+

1

2
ηK2

(
1− ϑ

r

)
,

where the last equality follows from (7) and k = K.
Now we study the limits. As r → 0, ϑ → ψβ, K tends to a finite limit and hence w tends to a

finite limit. As a result, ah tends to a finite limit in (0, 1) . We deduce that S tends to −∞.
As r → β, we have K tends to a finite limit K (β), ϑ→ β, and (1− ϑah/r)→ 1−ah ∈ (0, 1) .

Since
Eν [q]− Eν [1− exp (−γθq)]

γθ
> 0,

we deduce that S tends to a finite limit, which is larger than δK (β) .

Proof of Proposition 6: By Lemmas 1 and 2 and the intermediate value theorem, there exists a
solution r ∈ (0, β) to equation (40). Q.E.D.

Proof of Proposition 7: We have the following affine jump-diffusion process

dxt = −ρxxtdt+ µxdt+ φztdt+ dJt, (58)

dzt = ρ` (Z − zt) dt+ σz
√
ztdW

`
t , (59)

where µx is given by (27).
We compute the exponential moment

E [exp (uxxt + uzzt) | (x0, z0) = (x, z)] = exp (A (t) +Bx (t)x+Bz (t) z) , (60)

with the boundary conditions Bx (0) = ux, Bz (0) = uz, and A (0) = 0, where ux > 0 and uz > 0.

Following Duffie, Pan, and Singleton (2000), we obtain a system of ODEs:

Ȧ (t) = Bx (t)µx + ρ`ZB
z (t) + λkkEν [exp (Bx (t) q)− 1] , (61)

Ḃx (t) = −ρxBx (t) , (62)

Ḃz (t) = −ρ`Bz (t) +Bx (t)φ+
1

2
(Bz (t)σz)

2 . (63)
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Then we have Bx (t) = ux exp (−ρxt) < ux. Given the HED specification for the jump size distri-
bution ν, we have

Eν exp (Bx (t) q) <∞,

for ux < minj {1/µj} .
There are two equilibrium points of the ODE system (62) and (63) for (Bz (t) , Bx (t)) : (0, 0)

and (2ρ`/σ
2
z , 0) (see Figure 5). The origin is stable, but the other equilibrium point is unstable. The

stability of this system can be analyzed by computing eigenvalues of the linearized system as in
Glasserman and Kim (2010). They show that there is a stable set that contains a neighborhood of
the origin. The intersection of this region and R+ × (−∞,minj {1/µj}) gives the stable set for the
system (61)-(63). By Keller–Ressell and Mayerhofer (2015), the set of (ux, uz) such that

lim
t→∞

E [exp (uxxt + uzzt) | (x0, z0) = (x, z)] <∞

is the same as the stable set of the system of ODEs (61), (62), and (63). Since this set contains a
neighborhood of the origin,

lim
t→∞

E [exp (α (uxxt + uzzt)) | (x0, z0) = (x, z)]

is finite in the set for all α > 0 sufficiently small, but it is infinite for α > 0 sufficiently large. Thus
we conclude that both the stationary distributions of xt and zt have an exponential tail to the right
by Definition 1. Q.E.D.

Proof of Proposition 8: We continue the analysis in the proof of Proposition 7 by characterizing
the stable set more explicitly. By assumption φ > 0 in a stationary equilibrium. We can easily
check that the equilibrium point (0, 0) is stable and the equilibrium point (2ρ`/σ

2
z , 0) is a saddle.

Moreover, there exists a unique saddle path that converges to the point (2ρ`/σ
2
z , 0) by inspecting the

phase diagram (see Figure 5). The points (Bz, Bx) satisfying 0 = −ρ`Bz +Bxφ+ 1
2

(Bzσz)
2 form

the nullcline for dBz/dt = 0. The nullcline for dBx/dt = 0 is the horizontal line Bx = 0.
Let Bx = g (Bz) denote the saddle path in Figure 5. Then for any Bz (0) = uz, there exists

a unique initial value Bx (0) = ux = g (uz) such that the ODE system (62) and (63) has a unique
saddle-path solution for Bz (t) and Bx (t) = g (Bz (t)) that converges to the equilibrium point
(2ρ`/σ

2
z , 0) .

The stable set S0 for the ODE system for (Bz (t) , Bx (t)) ∈ R2
+ is given by the region in

the figure, whose nonlinear boundary is the saddle path. Let S denote the intersection of S0

and R+ × (−∞,minj {1/µj}) . Note that for A (t) in (61) to converge, we must have Bx (0) =

ux < minj {1/µj} . Then S is the stable set for the ODE system (61), (62), and (63). For any
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Figure 5: Vector fields
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(Bz (0) , Bx (0)) in S, we have

lim
t→∞

Bx (t) = lim
t→∞

Bz (t) = 0.

Moreover,

lim
t→∞

A (t) =

∫ ∞
0

{Bx (t)µx + ρ`ZB
z (t) + λkkEν [exp (Bx (t) q)− 1]} dt

is finite by Keller–Ressell and Mayerhofer (2015). Then it follows from Keller–Ressell and Mayer-
hofer (2015) that

lim
t→∞

E [exp (α (uxxt + uzzt)) | (x0, z0) = (x, z)] <∞,

for any α (uz, ux) ∈ S and α > 0. In particular, we have

lim
t→∞

E [exp (αxt) | (x0, z0) = (x, z)]

for any α (0, 1) ∈ S and α > 0. Then we can compute the maximum α such that α (0, 1) ∈ S,

which gives the exponential decay rate for the stationary distribution of wealth xt. Since the vertical
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intercept of the saddle path is equal to g (0), we have

αx = min

{
g (0) ,min

j
{1/µj}

}
.

Now consider the labor income process zt. We have

lim
t→∞

E [exp (αzt) | (x0, z0) = (x, z)] <∞,

for α (1, 0) ∈ S and α > 0. We can compute the maximum α such that α (1, 0) ∈ S. It satisfies

−ρ`α +
1

2
(ασz)

2 = 0.

We then obtain the exponential decay rate for the stationary distribution of labor income zt,

αz =
2ρ`
σ2
z

.

Thus, if

min

{
g (0) , min

j
{1/µj}

}
<

2ρ`
σ2
z

,

we have αx < αz. Q.E.D.

B Continuous-Time Recursive Utility with Jump-Diffusion Risk

We proceed heuristically to derive recursive utility in continuous time by taking limits of a dis-
crete time model (Epstein and Zin (1989) and Duffie and Epstein (1992)). Let dt denote the time
increment. The continuation utility Ut at time t satisfies the following recursive equation:

Ut = f−1 [f (ct) dt+ exp (−βdt) f (Rt (Ut+dt))] , (64)

where f denotes a time aggregator andRt denotes the conditional certainty equivalent.
Suppose that the continuation utility Ut in continuous time satisfies the following backward

stochastic differential equation

dUt = µtdt+ σWt dWt + σJt dNt, (65)

where Wt is a multi-dimensional standard Brownian motion and Nt is a Poisson process with in-
tensity λt. The drift µt and volatility

(
σWt , σ

J
t

)
can be derived given a Markovian structure. For

example, if Ut depends on the state vector (xt, `t) as in our model, denoted by Ut = U (xt, `t) for a
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smooth function U, we can apply Ito’s Lemma to derive

µt = Ux (xt, `t)
[
rxt +

(
Rk − r

)
kt + w`t − ct

]
(66)

+
1

2
Uxx (xt, `t) (ktσk)

2 + U` (xt, `t) ρ` (L− `t) +
1

2
U`` (xt, `t)σ

2
` `t,

σWt = U` (xt, `t)σ`
√
`t, σ

J
t = U (xt + qt, `t)− U (xt, `t) . (67)

Given a small time increment dt, we heuristically write dUt = Ut+dt −Ut. Then we rewrite (65)
as

Ut+dt = Ut + µtdt+ σWt dWt + σJt dNt.

By Ito’s Lemma, we heuristically write

du (Ut) = u (Ut+dt)− u (Ut) = u′ (Ut)
(
µtdt+ σWt dWt

)
+

1

2
u′′ (Ut)σ

W
t

(
σWt
)′
dt+

(
u
(
Ut + σJt

)
− u (Ut)

)
dNt.

Taking conditional expectations yields

Etu (Ut+dt) = u (Ut) + u′ (Ut)µtdt+
1

2
u′′ (Ut)σ

W
t

(
σWt
)′
dt

+λtEν
(
u
(
Ut + σJt

)
− u (Ut)

)
dt,

where λt = λkkt.

Applying a first-order Taylor expansion with respect to dt around zero gives

Rt (Ut+dt) = u−1t Etu (Ut+dt) = Ut + µtdt+
1

2

u′′ (Ut)

u′ (Ut)
σWt
(
σWt
)′
dt

+λt
Eν
(
u
(
Ut + σJt

)
− u (Ut)

)
u′ (Ut)

dt.

Following the same procedure again gives

f (Rt (Ut+dt)) = f (Ut) + f ′ (Ut)

[
µt +

1

2

u′′ (Ut)

u′ (Ut)
σWt
(
σWt
)′

+ λt
Eν
(
u
(
Ut + σJt

)
− u (Ut)

)
u′ (Ut)

]
dt.

(68)
Up to a first-order approximation, we have

exp (−βdt) = 1− βdt. (69)
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Plugging (68) and (69) into (64), we can derive

f (Ut) = f (ct) dt+ f (Ut)− β (ct) f (Ut) dt

+f ′ (Ut)

[
µt +

1

2

u′′ (Ut)

u′ (Ut)
σWt
(
σWt
)′

+ λt
Eν
(
u
(
Ut + σJt

)
− u (Ut)

)
u′ (Ut)

]
dt.

Simplifying yields the continuous-time recursive utility under jump-diffusion uncertainty:

βf (Ut) = f (ct) + f ′ (Ut)

[
µt +

1

2

u′′ (Ut)

u′ (Ut)
σWt
(
σWt
)′

+ λt
Eν
(
u
(
Ut + σJt

)
− u (Ut)

)
u′ (Ut)

]
.
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