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ABSTRACT

Food manufacturing and processing is an important link between agricultural producers and 
consumers in the agricultural supply chain. The food manufacturing sector in the United States is 
both increasingly mechanized and increasingly concentrated. Consequently, labor risks in food 
manufacturing have changed over time with changes in industry structure. Labor risks were 
highlighted by the COVID-19 pandemic - particularly in the animal slaughtering and processing 
industry - where labor-driven disruptions resulted in temporary plant closures. We use county-
level data on employment in food manufacturing and dynamic panel models estimated via 
generalized method of moments to examine employment and wage dynamics in the food 
manufacturing sector and animal processing industry. We then compare forecasts from the 
estimated models with changes in food manufacturing and animal processing employment and 
wages during the onset of the COVID-19 pandemic. Our results provide insight into the role of 
operational and disruption risks in food manufacturing. We find significant delays in adjustment 
to employment and quicker adjustment in wages. Although there is an unanticipated drop in 
employment in food manufacturing and animal processing in April of 2020, employment returned 
to predicted levels within two to three months. The response of wages and employment to the 
COVID-19 pandemic suggest a degree of resilience in food supply chains.
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Introduction

Agricultural supply chains link agricultural producers to consumers and end-users. The nature

and organization of the agricultural supply chain has changed drastically over time with

increased vertical integration, increased prevalence of contract farming, and specialization in

different supply activities (Adjemian, Brorsen, Hahn, Saitone, & Sexton, 2016; Boehlje, 1999).

Firms strategically design supply chains in response to new innovations and technologies

(Zilberman, Lu, & Reardon, 2019). In designing and adopting different organizational

structures or technologies, firm owners and managers in the supply chain act in entrepeneurial

capacities by reacting to disequilibria in their environment (Schultz, 1975). Disequilibria are

uncertain in both frequency and magnitude, resulting in a variety of risks for supply chain

participants.

Just as supply chains have changed over time, supply chain risk has also evolved. Many

organizational structures and technologies introduced into food supply chains have been aimed

at reducing risks faced by participants (Antle, 1996; Knoeber & Thurman, 1995; McCluskey

& O’Rourke, 2000). Supply chain risks can be broadly characterized as either operational

risks or disruption risks. Tang (2006) defines operational risk as risks that are inherent to

the business, such as uncertain market conditions. In contrast, disruption risks arise from

natural disasters or other extreme events. Operational and disruption risks can be closely

linked as the same elements of the supply chain that are subject to inherent uncertainty -

consumer demand, for example - can serve as transmission mechanisms for disruptive events.

A major risk in agricultural supply chains arises from the diverse skills required of workers

in the agriculture and food industry labor forces. These risks are compounded by consolidation

and increased concentration in food manufacturing and processing, including meatpacking,

which has resulted in increased plant size (MacDonald, 2014; MacDonald, Ollinger, Nelson,

& Handy, 2000; Wohlgenant, 2013). Although varying in significance by industry within

the food manufacturing sector, labor is a critical input to most manufacturing operations.

Huang (2003) shows that changes in labor inputs to food manufacturing are heterogeneous
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across industries; meat products and miscellaneous foods saw increased employment between

1975 and 1997, while other food industries saw decreased employment of production workers.

The meatpacking industry employs the most production workers of all food manufacturing

industries. Given heterogeneity in the types and uses of labor in food manufacturing, firms

face an array of operational and disruption risks related to their labor inputs.

Operational risks can be characterized by empirically modeling industry operation and

assessing the flexibility of supply chain participants in responding to changes in the operating

environment. For instance, if meatpacking labor is more specialized and harder to acquire than

labor in other areas of food manufacturing, we might expect employment in the meatpacking

sector to respond more slowly to changes in demand or other factors. There may be significant

temporal relationships that affect the ability of firms to adjust to changing market conditions.

Accurate assessment of labor and wage flexibility is necessary for characterizing labor-related

operational risks faced by firms.

In contrast to operational risks, disruption risk arises from events that may entail a

sudden and complete break in the supply chain or firm operations. Probabilities of loss and

magnitudes of loss are difficult to assess for disruption risk as disruptive incidents usually

occur with low probability and potentially large losses. These characteristics of disruption risk

make it difficult for firms to perform cost-benefit analyses or other studies for risk management

as the results of such studies can be highly dependent on a small number of disruptive events

(Tang, 2006). Firm management may view the probability of such events to be so low that

they are not worthy of incorporation in risk management strategies (Kunreuther & Useem,

2018). Despite difficulties in modeling disruptive events, such events often lead to calls for

public policy actions to improve resilience of a system.

The COVID-19 pandemic illustrates the impact of a major disruption in the food manu-

facturing sector. Impacts occurred at all stages of the supply chain with effects across both

demand and supply sides of markets. In particular, labor inputs to food manufacturing

were disrupted due to the nature of work in manufacturing facilities. Work routines in food
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manufacturing plants make workers particularly susceptible to infection by respiratory viruses

such as SARS-CoV-2. Disruption was most evident in the animal slaughtering and processing

sector. On April 12, 2020 Smithfield Foods announced that it would temporarily suspend

operations at a plant in Sioux Falls, Idaho in response to a surge in the number of infected

workers. At the time, the plant was one of the largest sources of COVID-19 infection in the

United States (Bunge, 2020a, 2020b). Many other plants experienced similar local outbreaks

of COVID-19 resulting in temporary closures. Plants that remained open and operated at

increased speed were associated with higher rates of infection in the counties in which they

were located (Taylor, Boulos, & Almond, 2020).

The supply chain implications of COVID-19 in agriculture have received significant

attention. Hobbs (2020) discussed the potential for supply-side disruption due to labor

shortages in downstream food processing and transportation. She notes that the nature of the

COVID-19 pandemic afforded manufacturing facilities a period of time to make adjustments

to manufacturing processes and working environments. Labor issues up and down the supply

chain are discussed in Larue (2020). Within food manufacturing, he notes that firms have the

ability to reallocate capacity and an industry-wide shutdown would be the most difficult to

manage. However, complete shutdowns are extreme measures - likely to be only temporary -

and he suggests the sector will switch to operation below capacity to implement mitigation

measures.

Temporary plant closures and changes in capacity utilization have the potential to result

in stockouts and shortages of food at retail. Stockouts were observed in retail establishments

for specific products as consumers stockpiled in the early days of the pandemic. However,

widespread shortages of food, whether meat, vegetables, processed items, or other items,

did not occur (Hobbs, 2021). Many manufacturing plants were operating near capacity by

the middle of 2020. While COVID-19 did create a major and unprecedented disruption for

food manufacturers and meat processors, rapid response on the part of market participants

indicates a degree of resilience.
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Using the COVID-19 pandemic as an example of a major disruptive event related to

manufacturing labor (and other market conditions), we investigate labor dynamics in food

manufacturing and animal processing and slaughtering using county-level data from the

Current Employment Survey compiled by the Bureau of Labor Statistics. We model employ-

ment and wage dynamics using dynamic panel models estimated using generalized method of

moments (GMM). We then compare employment and wages under the estimated dynamic

models with employment and wages during the onset of the COVID-19 pandemic in early

2020.

The dynamic labor demand and wage models allow for interdependencies across space

and time to be taken into account when evaluating the impacts of economic shocks. The

response of market participants to changes in wages and other relevant economic variables

can be assessed. Dynamics in the estimated models are useful in evaluating operational risk;

they highlight factors resulting in employment and wage changes as well as capturing the

speed of adjustment to changes in these factors. Therefore, the combination of the dynamic

models with a COVID-19 event study provides assessment of both operational and disruption

risks in food manufacturing and the agricultural supply chain.

Labor and the Food Manufacturing Link in Agricultural

Supply Chains

In spite of increased mechanization in manufacturing, labor remains a major input for food

manufacturers and animal processors. The food manufacturing sector defined by the North

American Industry Classification System (NAICS) consists of nine constituent industries of

which animal slaughtering and processing is one. While farm labor has received extensive

treatment in the literature, labor in food manufacturing has garnered less attention (Hertz

& Zahniser, 2013; Richards, 2018). However, labor disruption as a result of the COVID-19

pandemic has brought new focus to employment in food manufacturing.
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Among several studies investigating historical changes in the structure of food manufac-

turing, Goodwin and Brester (1995) showed that demand elasticities for labor decreased and

that the degree of substitutability between inputs increased over much of the second half of

the twenty-first century. Their findings with respect to labor were in line with an earlier study

of factor demand in food manufacturing conducted by Huang (1991). Contemporary statistics

compiled by the Bureau of Labor Statistics show that both total output and employment in

food manufacturing have increased over the past thirty years as shown in figure 1. While

employment in food manufacturing fell in the early 2000s, a sharp increase in employment

occurred from 2010. Also shown in figure 1, sector labor productivity grew until 2005, but

has since experienced a modest decline.

[Figure 1 about here.]

Labor is the largest component of the marketing bill for food products. The marketing

bill is the difference between the farm value of food and what consumers actually pay for food.

In a review of food costs between 1950 and 1997, Elitzak (1999) found labor costs contributed

to 55% of rising marketing bills and that 38.5 cents of every food dollar in 1997 was spent

on labor associated with the food industry. Larger price spreads - between farm and retail

levels - are typically observed for highly processed foods. Figure 2 shows unit labor costs and

average hourly earnings in food manufacturing. Both average hourly earnings and unit labor

costs have risen over the past two decades. Unit labor costs increased by nearly 70 percent

between 1990 and 2020. Trends of increasing employment and labor costs suggest that labor

is an important input to food manufacturing and a potential source of supply chain risk.

[Figure 2 about here.]

Figues 3 and 4 show the distribution of employment and weekly wages in food manu-

facturing as a whole, and meat processing specifically, across the United States. The meat

processing sector is significantly more concentrated compared to food manufacturing. In
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contrast to the early 20th century, when meat processing was largely conducted in urban

areas, processing facilities are mostly in rural counties with close proximity to livestock inputs.

Rural labor pools may be relatively shallow, resulting in increased frictions in the adjustment

of employees and wages.

[Figure 3 about here.]

[Figure 4 about here.]

Figure 5 shows kernel density estimates of the 2019 wage and employment distributions

by county for both food manufacturing and animal slaughtering and processing. The

average weekly wage in food manufacturing was approximately $802 with standard deviation

of $292. In animal slaughtering and processing the average weekly wage was $779 with

standard deviation of $272.The mean number of employees per establishment was 52 in food

manufacturing versus 92 in animal slaughtering and processing. All of the distributions are

strongly right skewed. In general, animal slaughtering and processing facilities were larger

and employed more workers compared to the average food manufacturing operation in 2019.

[Figure 5 about here.]

Much of the risks associated with labor in food manufacturing are likely to be heterogeneous

across firms within an industry. McGuckin, Nguyen, and Reznek (1998) note significant

impacts of plant ownership changes in food manufacturing on increased productivity and

employment. More generally, variation in wages and frequency of job changes have been

shown to be greater within industries compared to across industries (S. Davis & Haltiwanger,

1992). Wage and employment dynamics are expected to differ between industries in food

manufacturing. For instance, animal processing has tended to make higher use of immigrant

and undocumented labor which could result in supply chain risk related to immigration policy.

Other industries make less use of this type of labor and are insulated from unanticipated

policy changes.

7



The labor demand created by food manufacturing plants can have large impacts on local

economic outcomes, especially when food manufacturing operations are located in rural

or otherwise sparsely populated counties. The meatpacking industry is a major source of

jobs for low-income and immigrant workers. Artz, Jackson, and Orazem (2010) find that

meat packing plants alter the demographics of communities in which they are located, being

associated with immigrant populations, as well as populations with limited English-speaking

ability. These changing demographics are reflected in local school systems and poverty rates.

However, they found little evidence of per capita increases in government spending as a result

of this demographic change. Their conclusive findings are similar to those of Artz, Orazem,

and Otto (2007).

Plant siting decisions and food manufacturing growth are also related to local labor market

conditions. Goetz (1997) shows that establishment growth is associated with lower labor costs,

higher educational attainment, higher unemployment rates, and a larger population. Similarly,

Among other factors, Henderson and McNamara (2000) found that food manufacturing

facilities were more likely to locate in counties with lower average wages. Lambert and

McNamara (2009) indicate that both labor availability and the skill level of labor are

important for attracting manufacturers. They argue that deeper and more diversified labor

pools increase the likelihood of being able to hire workers for all positions. Labor heterogeneity

is one of the most important factors attracting food manufacturing operations (D. E. Davis

& Schluter, 2005).

There are relatively few comprehensive studies of labor disruption in food manufacturing

which may reflect the low probability of widespread disruptive events. However, case studies

of labor disruption in specific firms have been mentioned in the literature. Artz et al. (2010)

described a 2008 Immigration and Customs Enforcement raid on an Iowa meatpacking facility

in which one-third of all employees were arrested. The operating firm subsequently filed

for bankruptcy and closed the plant down. Other notable food manufacturing supply chain

disruptions have occurred, but did not arise through labor disruption: for instance, the Tyson
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meatpacking fire of 2019.

The COVID-19 pandemic caused widespread disruption in food manufacturing with news

reports concentrating on the meatpacking sector. These disruptions were the result of working

conditions that put workers at high risk of contracting COVID-19. However, Asher, Deb,

and Gangaram (2021) found COVID-19 cases and deaths to be heterogenously associated

with industries in food manufacturing. Meatpacking plants were associated with higher

cases and deaths, but so were seafood processing facilities and bakeries. In contrast, dairy

manufacturing facilities were associated with less cases. Asher et al. (2021) suggest that this

disparity is related to capital-labor ratios, which are low in meat processing and baking, and

much higher in dairy manufacturing.

Cho, Lee, and Winters (2020) report findings on the impacts of COVID-19 on the

employment status of food sector workers - including manufacturing workers - up through

April of 2020. COVID-19 infection rates locally were found to be associated with a decreased

likelihood of continuing to work in the same food industry and increased temporary absence

for food manufacturing workers. The percentage of previously employed food and beverage

workers who were unemployed increased from March of 2020 to April of 2020. Their findings

imply that the impact of COVID-19 on labor in food manufacturing arose not only through

plant shutdowns, but also through the individual actions of workers to protect themselves

from possible exposure.

The COVID-19 pandemic has prompted calls for increased regulation of meatpacking

facilities, and potentially other food manufacturers, due to plant shutdowns. Increasing price

spreads between farm and retail levels were observed at the start of the pandemic. However,

increased marketing margins can result from a competitive market environment (Lusk, Tonsor,

& Schulz, 2021). Any potential policy actions will need to consider issues of operational and

disruption risks in food manufacturing and resilience to shocks. The question is, how flexible

are firms during normal operation in terms of adjusting employment, wages, and output, and

was their adjustment to the pandemic faster or slower? Both of these elements of labor risk
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in food manufacturing are addressed in the empirical analysis that follows.

Methodology

We estimate a panel dynamic model of the framework of Holtz-Eakin, Newey, and Rosen

(1988), Arellano and Bond (1991), and Blundell and Bond (1998). The general formulation is

given by

yit =
L∑

j=1

φjyi, t−j +
K∑
k=1

xitkβk + µi + εit (1)

where yit is an m× 1 vector of endogenous variables for the ith unit of observation in time

t. Then yi,t−j are lagged endogenous variables and xitk is a matrix of exogenous variables.

The errors εit are assumed to be independent from xit. The fixed effect µi is correlated with

lagged values of y which induces endogeneity in the lagged values.

As noted above, the data in this case are large in cross-section but the time dimension is

relatively small. Estimating a dynamic panel model via ordinary least squares would result in

biased estimators as noted in Nickell (1981). If one differences equation 1, then the differenced

endogenous variable is correlated with the differenced error term. However, several authors

have addressed estimation problems in dynamic panel settings with generalized method of

moments (GMM) estimators. These include Holtz-Eakin et al. (1988), Arellano and Bond

(1991), Blundell and Bond (1998), and Binder, Hsiao, and Pesaran (2005).

Consider the case of equation 1 where both L and K are equal to one. The basic problem

is that the moment condition,

E[∆yit−1νit] = 0 (2)

where νit is the differenced error term, is violated. Instruments that are relevant for ∆yi,t−1 and

satisfy the moment condition can be used to correct for endogeneity bias. As shown in Arellano

and Bond (1991), an intuitive set of instruments is given by all other previous realizations of

yi. The lagged endogenous variables will not be correlated with the contemporaneous error
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term and are relevant for the contemporaneous value of the dependent variable because the

model is autoregressive.

The differenced model for individual i is given by

ydi = Xd
i γ + νdi (3)

where

ydi =



∆yi3

∆yi4
...

∆yiT


Xd

i =



∆yi2 ∆xi3

∆yi3 ∆xi4
...

...

∆yi,T−1 ∆xiT


γ =

 φ

β

 νd
i =



νi3

νi4
...

νiT


with the matrix of instruments given by

Zd
i =



yi1 0 0 0 0 0 · · · 0 0 0

0 yi1 yi2 0 0 0 · · · 0 0 0

0 0 0 yi1 yi2 yi3 0 · · · 0 0

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 0 yi1 · · · yi, T−2


Blundell and Bond (1998) implement a system GMM estimator that makes use of additional

moment conditions. The gains from the additional moment conditions are typically larger

when there is a high degree of autocorrelation in the dependent variable (φ is large). The set

of equations in equation 3 are augmented by level equations where

y`i = X`
i + `

i
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and

y`i =



yi2

yi3
...

yiT


X`

i =



yi1 xi2

yi2 xi3
...

...

yi,T−1 xiT


`
i =



νi + εi2

νi + εi3
...

νi + εiT


The instrument matrix for the full system is given by

Zi =

 Zd
i 0 Di

0 Z`
i 0


The general formulation is easily extended to settings where both L and K are greater than

one.

Robust two-step estimators of the finite sample variance in this setting are biased.

Windmeijer (2005) notes the potential for severe downward bias in small samples and

proposes a corrected estimator. The proposed corrected estimator is found to perform well

in approximating the finite sample variance in simulation, thus resulting in more accurate

inference. The Windmeijer (2005) correction essentially involves the use of an additional

correction term in estimation of the variance with the correction term disappearing as the

sample size grows larger. Although the sample size in the following empirical analysis is

relatively large, we utilize the bias-corrected estimator of the variance in estimating the

employment and wage equations (as well as a single-equation dynamic model of industry

output).

Using dynamic employment and wage models estimated via GMM, we then project

employment and wages in each county through 2020 and compare the projections to actual

employment and wages in an event study framework (Campbell, Lo, & MacKinlay, 2012;

Kothari & Warner, 2007). It is important to note that this approach does not constitute a

natural experiment because we do not observe a counterfactual. Any results only describe

changes in employment and wages under COVID-19 and any other conditions prevailing in
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the market in 2020.

In spite of our inability to isolate labor effects of the COVID-19 pandemic, the event

study provides potentially useful evidence about food manufacturing and animal processing

resilience in the face of a disruptive event. Firms take equilibrating actions given constraints

in the face of disruption. If these actions return employment and wage levels to those implied

by the model, and do so quickly, then the food manufacturing and animal processing sectors

are by definition resilient. By using county-level data, the event study also permits us to

examine if the initial impacts of COVID-19 and the degree of resilience is heterogeneous

across counties, which we might expect by virtue of different rates of infection and industry

structures.

Empirical Results

Our empirical application utilizes data collected from the U.S. Bureau of Labor Statistics

(BLS) and the U.S. Bureau of Economic Analysis (BEA). A county-level consumer price

index (CPI) deflator was constructed using the metropolitan statistical area (MSA) implicit

price deflators. MSA and regional data were translated to the county level using the National

Bureau of Economic Research (NBER) MSA to County crosswalk data tool. For those

counties that were not covered by a BLS-defined MSA or regional area, the state-level

non-urban household CPI was used. Price data are taken from the BLS CPI database. We

consider four classes of commodities – food, pork, poultry, and beef. All price, income, and

wage data were deflated using the county-specific CPI.

County level wages and employment were taken from the BLS Quarterly Census of

Employment and Wages. These data include annual and monthly employment statistics

for 3- and 4-digit NAICS industry classifications. Two specific industries are of interest

in this analysis – food manufacturing and processing (NAICS 311) and animal slaughter

and processing (NAICS 3116). As noted previously, the data for food manufacturing and
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processing include animal slaughter and processing as a constituent industry. The data

provide a rich assessment of employment and wage patterns at the county level. However,

the data do suffer from one shortcoming – wage and employment data are not reported when

such reporting would disclose proprietary details of individual firms.

We only consider the subset of counties for which wages and employment are reported.1

This likely omits those counties with a small number of workers or employees in the relevant

sectors. We also consider county-level data taken from the BEA’s Regional Economic

Information System (REIS). This data source reports county-level income, population, and

a range of potentially relevant economic variables. Our data are observed annually at the

county level. However, the BLS reported wages for the first three quarters of 2020. Monthly

employment was also available for the associated nine months of 2020. These data allow

an evaluation of COVID-19 pandemic effects on wages and employment levels in these two

specific industries in 2020.

The goal of our empirical analysis is to evaluate the factors associated with the level of

wages and numbers of employees in the food manufacturing sector and animal slaughter and

processing industry. These sectors were impacted significantly by the COVID-19 pandemic

suffering widespread disruptions. The drop in capital utilization and industry output was

especially acute in these two sectors. This is demonstrated in figure 6, where a significant

decline in output and plant capacity utilization is apparent in 2020. However, capacity

utilization and output recovered within the first three quarters of 2020 and exceeded levels

observed at the end of 2019 by the end of the year.

[Figure 6 about here.]

We jointly estimated wage and employment equations using the dynamic panel estimation

procedures described above for all food manufacturing and for animal slaughter and processing.

Summary statistics for the variables used to explain wage and employment levels are presented

1The number of establishments is reported for all counties in the United States. A valuable future research
direction would address possible specification biases that may result from nondisclosure data reporting
considerations.
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in table 1. Food manufacturing as a whole tends to have higher wages and levels of employment

over the entirety of the sample. Wages and employment also tend to be less historically

variable in food manufacturing as shown by the historical coefficient of variation (CV) for

wages and employees in the two industries. Per capita wage income is slightly higher in the

counties with meat processing facilities,

We assume that employment and wages are jointly endogenous and are influenced by

adjustment lags, which are represented using lagged employment and wages. These adjustment

lags may represent labor and wage contracts and agreements or other factors causing frictions

in the adjustment process. Preliminary results indicated a faster adjustment for wages, where

only a single lagged value was significant. Employment is slower to adjust and required two

lags.

[Table 1 about here.]

We estimated the following specifications for the employment and wage equations. In the

food manufacturing sector, the employment equation is given by

employeesit =µi + employeesit−1 + employeesit−2 + establishmentsit + foodcpiit

+ wageit + wagecvit + employeescvit + pcwageincomeit + εit

(4)

while the wage equation is given by

wageit =µi + wageit−1 + establishmentsit + foodcpiit

+ employeesit + wagecvit + employeescvit + pcwageincomeit + εit

(5)
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For the animal slaughter and processing industry, the employment equation is given by

employeesit =µi + +employeesit−1 + employeesit−2 + establishmentsit + porkcpiit

+ poultrycpiit + beefcpiit + wageit + wagecvit + employeescvit + pcwageincomeit + εit

(6)

and the wage equation is given by

wageit =µi + wageit−1 + establishmentsit + porkcpiit + poultrycpiit + beefcpiit

+ employeesit + wagecvit + employeescvit + pcwageincomeit + εit

(7)

where counties are indexed by i and time is indexed by t. Employment and wages are

affected by lagged values, contemporary values of employment and wages, the number of

establishments in a county, prices of food and/or meat, historical variation in employment

and wages, and per capita wage income in a county.

Parameter estimates and related statistics for the dynamic models for food manufacturing

are presented in table 2. The results indicate that average weekly wages in the food processing

sector are positively associated with the price of output, as represented by the food CPI.

Historical volatility in wages, which is represented using the wage CV, tends to increase real

wages. This likely represents a risk premium to workers in counties and years that had volatile

wages. In contrast, greater volatility in the number of employees tends to be associated with

lower wages. Greater volatility in the availability of labor would be expected to result in

lower real wages. Finally, counties and years that realized a higher average wage per person

also tended to have higher wages in the food manufacturing sector.

[Table 2 about here.]

Strong lagged effects are apparent for the number of employees in the food manufacturing

sector. The first-order autoregressive coefficient is 0.90, which represents a very slow adjust-

ment over time. This is consistent with expectations in that, although wages may be more
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easily adjusted in response to economic conditions, the actual number of employees is much

slower to adjust. This requires hiring and firing of workers and therefore is more likely to

involve significant frictions that impair adjustment. Long-term employment agreements are

one factor that is likely to slow adjustments in the number of workers.

A scale effect on the number of workers is reflected in the number of establishments. More

manufacturing plants would be expected to require a greater number of workers. The real

price of food tends to lower the number of workers employed in the food manufacturing

sector. This is counter to expectations but may reflect the cost of other unobservable inputs.

The endogenous weekly wage does not have a significant effect on the number of workers. A

higher historical volatility of wages tends to lower employment. A greater degree of wage

volatility may suggest a higher level of risk to both workers and plant managers, thereby

leading to a lower level of employment.

We also considered a single-equation dynamic panel model of the value of total output

from the food industry. This was represented using the industry-specific total personal income

for food, beverage, and tobacco manufacturing. A strong lagged effect with a near unitary

autoregressive parameter was found for total output. The number of plants in a county

and year is associated with lower total output. However, a higher value for the output, as

represented by the food CPI, was associated with greater output. The number of employees

was associated with greater output. Higher average wages for workers lower the value of

output. Greater volatility of average wages is associated with higher output. However,

volatility in the number of workers tends to lower the value of output. This suggests that

volatility in the availability of workers tends to have a negative effect on the supply chain

and reduces the value of output.

[Table 3 about here.]

The wage and employment analysis was repeated for a much more finely defined industry

– animal slaughter and processing. COVID-19 had significant impacts on workers in the meat

processing sector, although as noted, there is emerging evidence of similar but apparently
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less newsworthy effects in other areas of food manufacturing (Asher et al., 2021). Employees

working on the animal slaughter and meat processing lines spent hours in close proximity

to one another and the spread of the virus among plant workers was felt across the beef,

pork, and poultry industries. Significant lags in adjustment are apparent for both wages

and the number of workers in the industry. A greater number of processing plants increased

the number of employees but had no statistically significant impact on wages. Wages were

negatively related to pork prices but beef and poultry prices had no impact on wages or

employment. A higher number of workers is associated with higher wages. Wages are

increased as the volatility of wages rises but are decreased as the volatility of the number of

workers increases.

[Table 4 about here.]

A central objective of our analysis is to assess the impacts of COVID-19 on wages and

employment in the food and animal processing sectors as a study of disruption risk in the

sector. To this end, we utilized BLS wage data for the first three quarters of 2020 and

monthly employment through September of 2020. We predicted wages and the number of

workers holding all other factors at their 2019 levels. Figure 7 illustrates the implied impact

on average wages in the food manufacturing sector across the first three quarters of 2020.

The predicted and realized values of wages are plotted alongside a 45o line. Observations

above the line indicate wages that are higher than expected while the converse is true for

observations below the line.

In general, wages appear to have been slightly higher than one might have expected,

conditional on other economic factors being held constant. The cross-sectional volatility of

wages appears to have fallen in the second quarter of 2020. Panel (b) of figure 7 shows a

much lower level of dispersion of wages. Higher wages may have been necessary to induce

employment in the plants during COVID-19. The lower cross-sectional volatility of wages in

the second quarter of 2020 may have been associated with a general slowdown in the entire

economy.
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[Figure 7 about here.]

Employment over the first nine months of 2020 is illustrated in Figure 8. Again, obser-

vations below the 45o line represent a case where the number of workers is lower than the

model predicts. A subtle pattern of declining employment in April and May is visible. Figure

9 illustrates the proportion of counties that had higher than predicted employment in the

food manufacturing sector across the first nine months of 2020. A fall in employment relative

to what would have been expected is apparent from March through June. This period was

characterized by worsening conditions due to the pandemic.

[Figure 8 about here.]

[Figure 9 about here.]

Predictions of wages and employment in the livestock slaughter and processing sector are

presented in Figures 10 and 11. Again, wages appear to have been higher during the first

three quarters of 2020 than the model predicted. A lower degree of cross-sectional volatility

of wages is again notable for the second quarter. Figure 11 again suggests subtle decreases in

employment relative to what was expected. Figure 12 repeats the analysis of the proportion

of counties that realized lower and higher levels of employment than were expected. Again, a

substantial drop in employment from March through May is apparent.

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

From the point of view of labor related risks in food manufacturing, several conclusions

are apparent from this analysis. First, in terms of operational risks, there are complicated

dynamics at play for wages and employment in these industries. While wages are relatively
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quick to adjust, employment is slower. This lag suggests that labor inflexibilities in food

manufacturing and animal processing may be a significant source of risk with implications

throughout the supply chain. Second, historical variation in wages and employment have

impacts on current wages and employment, possibly reflecting risk premia. In terms of

disruption risk, there are noticeable impacts of the COVID-19 pandemic on employment and

wages, particularly in March, April, and May of 2020. Employment is lower than predicted

and wages are higher for most (but not all) counties in the sample. These dynamics are

indicative of equilibrating actions on the part of firms and market forces at work.

Conclusion

We model employment and wages in the food manufacturing sector and animal slaughter

and processing industries using dynamic panel models and data at the county level. The

estimated models allow us to characterize labor dynamics in these industries and provide

insight into the operational risks faced by firms in this environment. We then compare

estimated employment and wages with these labor outcomes during a disruptive event. The

COVID-19 pandemic had large impacts on employment and wages in early 2020. However,

the food manufacturing industry recovered quickly returning to pre-pandemic levels. Taken

together, these assessments of operational and disruption risk in food manufacturing suggest

that labor risk is an important source of risk in the agricultural supply chain. However, the

food manufacturing sector as currently organized is relatively resilient, at least to the types

of labor shocks resulting from the pandemic.

This analysis of labor dynamics and disruption in food manufacturing points to several

lines of research where the literature on agricultural supply chains might be advanced. First,

there are a number of interesting outstanding questions related to food manufacturing and

animal processing operations. While this analysis focuses on county-level employment, and

makes no distinction between regular and production employees, later work could focus on
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plant-level analysis. By distinguishing between different types of employees, it would be

possible to better understand intra-firm changes in the distribution of workers. Presumably

any risks associated with labor could also differ across worker types.

Second, richer datasets will enable the use of increasingly sophisticated methodologies

for the measurement and analysis of agricultural supply chains. Difficulties in empirically

modeling supply chains arise from the oftentimes limited availability of current data and

the spatially and temporally dynamic nature of supply chains. On one hand, deterministic

models of supply chains can be parameterized and used to examine counterfactual supply

chain makeup. On the other, purely empirical models can be developed. In either case,

computational and econometric methods will need to be increasingly flexible to account for

the complexities of global value chains. Such advances are already being incorporated in

supply chain research (Chor, 2019; Yu & Nagurney, 2013).

Lastly, the expanding literature on supply chain innovation and its relationship to supply

chain risk could be expanded to manufacturing labor and labor flexibility. Among the growing

literature in this area, Lu, Reardon, and Zilberman (2016), focus on machinery rental at the

farm level. Du, Lu, Reardon, and Zilberman (2016) considers a portfolio selection approach to

supply chain design using the example of a firm that requires feedstock processing. The focus

is on purchase of feedstock or production in-house. Few studies have explicitly considered

labor issues in food manufacturing and animal processing although unique labor markets

(such as heavy use of immigrant labor) characterize these sectors.

The COVID-19 pandemic presents an opportunity to understand how supply chains

respond to major - and potentially prolonged - disruption. At the current time, any measured

responses can only be considered short term. Important questions about firms’ long run

response to the pandemic, especially in the food sector, remain. Has disruption spurred

food manufacturers to make permanent adjustments to supply chains and manufacturing

operations? Anecdotal evidence suggests that animal processors have made increased use of

robotization in processing facilities. If widespread, increased mechanization could lower the
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the number of production workers required in processing with concomitant changes in supply

chain risk.
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Figure 1: Food Manufacturing Sector Output, Employment, and Labor Productivity

Output Index
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Figure 2: Food Manufacturing Sector Unit Labor Cost and Hourly Wages

Unit Labor Cost Index
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Figure 3: Food Manufacturing Sector Employees and Weekly Wage by County, 2019
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Figure 4: Animal Processing Sector Employees and Weekly Wage by County, 2019
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Figure 5: Wage and Employment Distributions for Food Manufacturing Sector and Animal
Processing Sector, 2019
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Figure 6: Food Manufacturing Sector Capacity Utilization and Output

(a) Food Manufacturing Capacity Utilization

(b) Food Manufacturing Output
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Figure 7: COVID-19 Related Changes in Average Weekly Wages in the Food Manufacturing
Sector

(a) 2020 Quarter 1 Predicted vs. Actual Wages
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Figure 9: Unanticipated Decreases in 2020 Food Manufacturing Employment
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Figure 10: COVID-19 Related Changes in Average Weekly Wages in the Animal Processing
Sector

(a) 2020 Quarter 1 Predicted vs. Actual Wages
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Figure 12: Unanticipated Decreases in 2020 Animal Processing Employment
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Table 2: Dynamic Panel Model of Food Manufacturing Sector Weekly Wages and Employment

Average Weekly Wages No. Employees

Parameter Standard t Parameter Standard t
Variable Estimate Error Ratio Estimate Error Ratio

Intercept -2.1271 0.5975 -3.56 1.2128 0.9462 1.28
Weekly Waget−1 0.7347 0.0418 17.58
No. Employeest−1 0.9009 0.0431 20.92
No. Employeest−2 -0.0495 0.0180 -2.75
No. Establishments 0.0048 0.0129 0.37 0.3890 0.0281 13.84
Food CPI 0.6334 0.1081 5.86 -0.3186 0.1807 -1.76
Weekly Wage 0.0797 0.0533 1.50
No. Employees 0.0288 0.0086 3.37
CV of Wages 0.0044 0.0005 8.90 -0.0013 0.0005 -2.62
CV of Employment -0.0041 0.0005 -8.27 0.0006 0.0005 1.17
Per-Capita Wage Income 0.0625 0.0288 2.17 -0.0133 0.0456 -0.29
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
R2 0.90 0.97
Number of Cross Sections 1378 1378
Time Series Length 12 12
Number of Instruments 92 71
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