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1 Introduction.

Many of us are persuaded that fluctuations in demand are a key driver of business cycles.

Production of automobiles and construction of new homes appear to fall in a recession not

because the items become more difficult to build, but instead because fewer people seem

willing to buy them. Evidence supporting this conclusion comes from Mian and Sufi (2014),

Michaillat and Saez (2015), and Auerbach, Gorodnichenko, and Murphy (2020), among many

others.

A common understanding of the mechanism whereby a decrease in demand leads to lower

output is based on a failure of prices to adjust sufficiently quickly to the change in demand.

This paper contributes to an alternative literature that maintains that demand shocks can

cause real fluctuations even when prices are perfectly flexible. Examples include Hamilton

(1988), Murphy (2017), Angeletos (2018), Angeletos and Lian (2020), Auerbach, Gorod-

nichenko, and Murphy (2020), and Ilut and Saijo (2021). This paper is most closely related

to the models in Murphy (2017) and Auerbach, Gorodnichenko, and Murphy (2020) who em-

phasize the role of excess capacity and near-zero marginal production costs. In their models,

capacity is exogenous, whereas here, capacity and marginal cost are endogenously determined

in a general equilibrium growth model.

The basic technological friction in this model that replaces the nominal friction in Key-

nesian models is the requirement that resources must be committed in advance in order to

produce certain goods. In this paper, labor is the only factor of production, and production

of some goods is only possible if a dedicated team of workers is assembled and trained in

advance to make that particular good. Training a new team is costly, but if it is successful,

the unit has a monopoly in producing the good, and chooses quantity and price to maximize

profits subject to a maximum capacity that the team is capable of producing. If demand falls

below capacity, profit-maximization calls for lowering both quantity and price. Prices do not

fall more than this because it would mean lower profits. Since marginal production costs are

zero, there is no market force to bid costs down further. And although the triggering event

was a change in relative demand, there is no offsetting gain from higher relative demand for

other goods. The reason is that the underutilized specialized workers cannot costlessly shift

to producing something else.

A key state variable in this model is n1t, which is the fraction of the population without

a high-skill, high-paying job. The value of n1t is determined endogenously as individuals

evaluate the costs and benefits of trying to develop a new skill, but it is predetermined at date

t as a result of the training requirement. A sufficiently large drop in demand for good j may

induce team j to disband and try to develop a new skill, increasing n1,t+1. But n1,t+1 is also a

factor in the demand for all goods, since unskilled workers have lower income on average than

skilled workers. There is thus an effect reminiscent of a Keynesian spending multiplier in this
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model; lower demand for some goods can have a feedback effect that lowers demand for all

goods.

The model is consistent with a number of observed features of business cycles. The first is

an asymmetry: a decrease in demand can have a bigger effect on output than an increase of

the same magnitude. Empirical evidence of such asymmetry was provided by Weise (1999) and

Lo and Piger (2005), with Tobin (1972) and Ball and Mankiw (1994) attributing asymmetry

to the mechanics of partial price adjustment. Here the asymmetry arises even with perfectly

flexible prices. When demand falls below capacity, the profit-maximizing response is to lower

both output and price, whereas an increase in demand above capacity leads only to a price

increase. Second, the response of output to a demand shock is often found to be humped-

shaped, with the maximum effect observed many months after the initial shock. Empirical

support and alternative explanations for this finding were provided by Christiano, Eichen-

baum and Evans (2005), Hamilton (2008), and Auclert, Rognlie and Straub (2020). In the

model here, a humped shape can result when a reduction in demand slows the rate of hiring

of new skilled workers. As the number of unskilled increases over time, the demand pressures

get amplified, and output will remain below the steady-state level even after the initial shock

is completely gone. A third striking observation in the data is that the unemployment rate

has been remarkably stable despite a century of economic growth and technological innova-

tions. Martellini and Menzio (2020) noted the challenges in explaining this using standard

search and matching models and proposed an alternative explanation. In this model, a stable

unemployment rate in the face of long-term economic growth is an equilibrium implication of

the fact that the opportunity cost and potential benefits of being unemployed along with the

tax base that finances compensation paid to the unemployed all grow with the overall level of

productivity.

The paper makes a number of contributions to the literature. It develops a unified model of

growth and fluctuations in which demand and other variables contribute to short-run fluctua-

tions while long-run growth is determined solely by increases in population and productivity.

It shows how monopoly power can be sustained in a growing economy even as new goods are

introduced and some old goods are discontinued every period. It develops a new characteriza-

tion of inequality as arising from successful gambles to create new goods. The costs associated

with trying to create new goods determine steady-state income differentials and unemploy-

ment as well as the speed with which the economy recovers from shocks. The model allows

for considerable heterogeneity, yet both individual and aggregate outcomes can be calculated

using only a handful of equations.

2 Demand for goods.

At time t the population consists of a continuum of individuals of measure Nt who each

consume a discrete set j ∈ Jt of different goods. Goods are nonstorable, and there are no
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capital or financial markets, so that the budget constraint for individual i is

�

j∈Jt

Pjtqijt ≤ yit (1)

where Pjt is the nominal price of good j, qijt is the quantity of good j consumed by individual

i, and yit the individual’s nominal income.

Individual preferences. The objective of consumer i is to maximize

Uit =
�

j∈Jt

−γijt
2

(q̄ijt − qijt)
2 (2)

subject to (1). Quadratic preferences have some advantages and some disadvantages relative

to the more common assumption of isoelastic preferences. As emphasized by Murphy (2017),

quadratic preferences imply that the elasticity of demand changes as we move along the

demand curve, which is important for understanding how decisions of monopolist producers

respond to changing conditions. A disadvantage of quadratic preferences is that q̄ijt is a

bliss point, a level of consumption that consumer i would never want to exceed. This would

not be sensible in an economy in which qijt is growing but q̄ijt is constant. Our approach

is to model the preference parameters γijt and q̄ijt as changing along a steady-state growth

path. We motivate this in terms of a second-order approximation to log preferences at point

{q0ijt, j ∈ Jt} along a steady-state growth path,

�

j∈Jt

αjt log qijt ≃
�

j∈Jt

αjt

�

log q0ijt +
1

q0ijt
(qijt − q

0
ijt)−

1

2
�
q0ijt
�2 (qijt − q

0
ijt)

2

�

(3)

=
�

j∈Jt

�
δ0ijt −

γijt
2

(q̄ijt − qijt)
2
�

with
�

j∈Jt
αjt = 1 and

q̄ijt = 2q0ijt (4)

γijt =
αjt�
q0ijt
�2 . (5)

See the top panel of Figure 1.

The advantage of taking (2) rather than the left side of (3) to be the specification of

preferences is that (2) allows the possibility that producers of j could be driven out of business

if productivity or demand is too low. If the price Pjt becomes too high, a consumer with

preferences (2) will choose qijt = 0, whereas the left side of (3) would imply that consumers

always buy every good in equilibrium, willing to pay Pjt → ∞ as qijt −→ 0. Allowing q̄ijt

and γ−1ijt to grow along the steady-state growth path as specified in (4)-(5) allows us to adapt

the quadratic preferences in (2) into a growth economy that shares some of the convenient
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long-run properties that would be implied by log preferences.

Individual demand curves. The first-order conditions for an interior solution are

γijt(q̄ijt − qijt) = λitPjt j ∈ Jt (6)

for λit the marginal utility of income. The individual demand curve (6) is plotted in the

bottom panel of Figure 1. Demand is zero at a price above γijtq̄ijt/λit. If we ignore the

implications of a change in the individual price Pjt on λit, the elasticity of demand is

εijt =

				
∂qijt
∂Pjt

γijt(q̄ijt − qijt)/λit
qijt

				 =
q̄ijt − qijt
qijt

. (7)

The elasticity equals 1 if qijt = q̄ijt/2. It is greater than 1 if qijt < q̄ijt/2 and less than 1 if

qijt > q̄ijt/2. This is unlike log utility, for which elasticity would always equal 1.

Market-wide demand curves. Summing across all consumers i gives the market demand

curve shown in the top panel of Figure 2: Pjt = Ajt − BjtQjt. Note we will be following the

notational convention of using lower-case letters like qijt to refer to magnitudes for individual

consumers i and upper case like Qjt to refer to magnitudes for individual goods j. Here

Ajt = Q̄jt/Λjt, Bjt = 1/Λjt, Λjt =

 Nt
0

(λit/γijt)di and

Q̄jt =

� Nt

0

q̄ijtdi. (8)

The marginal revenue for producers of good j is MRjt = Ajt − 2BjtQjt. The good-level

elasticity has the same properties as the demand curves for individual consumers.

Expenditure shares. If the preference parameters are characterized by expressions (4)-(5)

and q0ijt is the quantity of good j that individual i would consume along the steady-state

growth path, then the magnitude αjt in (5) turns out to be the expenditure share along the

steady-state growth path, as shown in the following proposition.

Proposition 1. Suppose that there is a set consisting of Rkt different individuals at date

t (denoted Mkt) who are all on the same steady-state income path: q0ijt = q0kjt for i ∈ Mkt,

j ∈ Jt. Suppose that in period t the average quantity of good j purchased by members of the

group is equal to this common steady-state value:



i∈Mkt

qijtdi

Rkt
= q0kjt j ∈ Jt. (9)

Then in period t the group as a whole spends a fraction ajt of its income on good j:

�

i∈Mkt

Pjtqijtdi = αjt

�

i∈Mkt

yitdi. (10)
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3 Production of specialized goods.

Good j = 1 can be produced by anyone without any training or coordination with others. By

contrast, goods j > 1 are specialized in the sense that their production requires a dedicated

team who work together to produce the good. Once the workers who form a team are as-

sembled, they enjoy a monopoly in producing good j and base their production and pricing

decisions on that monopoly power. Team j consists of a measure of Njt workers and has total

production capacity XjtNjt where productivity per worker Xjt for the team evolves according

to an exogenous process. At the time that its production and pricing decisions for period

t are made, unit j takes Xjt and Njt as given and chooses Pjt and Qjt to maximize total

profits PjtQjt subject to Pjt = Ajt − BjtQjt, Pjt ∈ [0, Ajt], and Qjt ≤ XjtNjt. The number

of specialized goods is sufficiently large that unit j ignores the effect of its decisions on the

price and output of other units, so that maximizing nominal profits is the same decision as

maximizing real profits. The team’s profit-maximizing strategy is to produce up to the point

where marginal revenue equals zero if there is sufficient production capacity and to produce

at production capacity if not:

Qjt =

�
Q̄jt/2 if XjtNjt ≥ Q̄jt/2 [demand constrained]

XjtNjt if XjtNjt < Q̄jt/2 [supply constrained]
. (11)

We will describe production of good j as demand constrained in the first instance and supply

constrained in the second.

New hiring. In period t, unit j takes its total capacity NjtXjt as given. We assume that

the hiring decision for Nj,t+1 is based on the goal of maximizing expected revenue of the unit.

This is not the same as maximizing expected revenue per current worker. We think of an

observed firm as a collection of a large number of separate producing units, and the objective

of the firm is to maximize total profit subject to the constraint that individuals are available to

do the work at the offered terms. If instead we took the objective to be to maximize expected

income of existing team members, that would add an additional friction to hiring in the model.

Let N∗
j,t+1 denote the level of employment that maximizes expected revenue:

N∗
j,t+1Et(Xj,t+1) = Et(Q̄j,t+1/2). (12)

We assume that the technology does not allow the team to be productive if any current member

leaves, so workers are not laid off even if N∗
j,t+1 < Njt. The number of positions offered to new

employees who would begin working in t+ 1 is thus Ojt = max{N∗
j,t+1 −Njt, 0}.
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4 Unskilled workers.

We will refer to an individual who is not part of a specialized team at time t as “unskilled.”

Unskilled workers can choose between 3 options.

Option 1: seek to join an existing specialized unit. To pursue this option, an individual

trains and applies in period t for a position to produce good j beginning in period t+1. With

probability πjt the individual will be successful. Each individual takes πjt as given, though

in equilibrium πjt will be determined by the number of people applying for the job and the

number of openings available. An individual who pursues this option will receive nominal

compensation Ct while unemployed, financed through a proportional tax levied on the income

of specialized workers during period t.

Option 2: seek to create a new good. An individual who is trying to join a team that

creates a new good also receives unemployment compensation Ct during period t and has a

probability kπ of being successful. There is also a utility cost kU of making an effort to create

a new good. The parameters kπ and kU are exogenously fixed parameters that summarize the

importance of frictions in creating new goods. If kπ → 1 and kU → 0, the monopoly power of

specialized teams would not be sustained along the steady-state growth path.

Option 3: produce good 1. Good 1 is assumed to be produced in a nonspecialized sector in

which anyone could work with no training or coordination with others. If individual i works in

sector 1, s/he could produce xit units of good 1. The productivity parameter xit is distributed

independently across workers and across time. A favorable productivity xit for individual i

at time t has no implications for that same individual’s productivity at t + 1. The nominal

income of individual i during period t is given by

yit =

�
P1txit if produces good 1

Ct if looks for a job
.

Objective of unskilled workers. Unskilled workers choose between the above three options,

seeking to maximize

vit = Et

∞�

s=1

βs log yi,t+s (13)

where Et denotes an expectation conditional on information available at date t and 0 < β < 1

is a discount rate1.

1This objective function can be movitated as follows. Maximization of a pure log utility function (the
left-hand side of (3)) subject to the budget constraint (1) has the solution Pjtqijt = αjtyit which results in a
level of utility given by

�

j∈Jt

αjt log



αjtyit
Pjt

�
= log yit +

�

j∈Jt

αjt logαjt −
�

j∈Jt

αjt logPjt.
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Let Yjt be the after-tax nominal income of each individual who is part of specialized team

j at date t,

Yjt = (1− τ )PjtQjt/Njt,

for τ the tax rate. Let Vjt denote the value of (13) for such an individual:

Vjt = log Yjt + β(1− kjt)EtVj,t+1 + βkjtEtV1,t+1. (14)

Here kjt is the probability that unit j will discontinue production in t + 1. If the good is

discontinued, next period those individuals will be unskilled. Since productivity xit is drawn

independently over time, the expected lifetime utility in the event that the team is disbanded

is EtV1,t+1, the same for all individuals.

If an unskilled individual successfully creates a new good, the expected lifetime utility is

EtV
♯
t+1, whose value will be described below. Thus the value of (13) for an unskilled individual

at time t is

vit =






log(P1txit) + βEtV1,t+1 if produces good 1

logCt + βπjtEtVj,t+1 + β(1− πjt)EtV1,t+1 if applies to join existing unit j

logCt − kU + βkπEtV
♯
t+1 + β(1− kπ)EtV1,t+1 if tries to create a new good

.

(15)

Decisions of unskilled workers. Individual i chooses the most favorable of the options

in (15). The optimal decision is characterized by a productivity threshold X∗
1t such that

individual i chooses to produce good 1 if xit ≥ X
∗
1t and looks for something better otherwise.

If some individuals choose to produce good 1 and others try to create new goods, then X∗
1t

would be the level of productivity at which the marginal unskilled individual is indifferent

between working or trying to create a new good:

log(P1tX
∗
1t) + βEtV1,t+1 = logCt − kU + βkπEtV

♯
t+1 + β(1− kπ)EtV1,t+1. (16)

Expression (16) can equivalently be written

log(P1tX
∗
1t)− logCt = −kU + βkπEtṼ

♯
t+1 (17)

where Ṽ ♯t = V ♯t −V1t is the expected lifetime advantage of specializing in a newly created good

relative to being nonspecialized. Alternatively, when there is an incentive to try to specialize

in continuing good j, (15) would require

log(P1tX
∗
1t) + βEtV1,t+1 = logCt + βπjtEtVj,t+1 + β(1− πjt)EtV1,t+1 (18)

log(P1tX
∗
1t)− logCt = βπjtEtṼj,t+1 (19)
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for Ṽjt = Vjt − V1t the lifetime advantage of specializing in j. In a typical equilibrium in

which some individuals try to create a new good while others seek to join existing unit j, both

conditions (17) and (19) hold, requiring that in equilibrium πjt must satisfy

βπjtEtṼj,t+1 = −kU + βkπEtṼ
♯
t+1. (20)

It follows from equations (15), (16), and (16) that the lifetime income of nonspecialized

individual i is characterized by

vit =

�
log(P1txit) + βEtV1,t+1 if xit ≥ X

∗
1t

log(P1tX
∗
1t) + βEtV1,t+1 if xit < X

∗
1t

. (21)

The expression EtV1,t+1 is the expected value for vi,t+1 across individuals i. Since xit is dis-

tributed independently across time, we can find the date t value of V1t by taking the expected

value of (21) across all unskilled individuals i at time t:

V1t = log(P1tX̃1t) + βEtV1,t+1 (22)

log X̃1t = P (xit ≥ X
∗
1t)E[log(xit)|xit ≥ X

∗
1t] + P (xit < X

∗
1t) logX

∗
1t. (23)

Another object of interest is X̂1t, the average output of unskilled individuals:

X̂1t = E (xit|xit ≥ X
∗
1t)P (xit ≥ X

∗
1t). (24)

Note that this definition of X̂1t means that if N1t denotes the total number of unskilled

individuals (including both those working and those unemployed), the total amount of good

1 that is produced is given by

Q1t = N1tX̂1t. (25)

Distribution of productivity across unskilled workers. We will be using a parametric dis-

tribution for xit for which simple closed-form expressions for the key magnitudes are easily

obtained. The assumption is that log xit ∼ U(Rt, St) where the bounds (Rt, St) on the uni-

form distribution will grow over time at the same rate as productivity of specialized goods.

Implications of the uniform distribution are summarized in the following proposition.

Proposition 2. Suppose that the log of potential productivity for producing good 1 is

distributed independently across individuals as log xit ∼ U(Rt, St) and let logX∗
1t ∈ [Rt, St] be

the threshold level of productivity above which unskilled individuals choose to produce good 1

(that is, X∗
1t satisfies (16) or (18)). Then:

(a) the fraction of unskilled individuals who are employed is

h1t = P (xit ≥ X
∗
1t) =

St − logX∗
1t

St −Rt
; (26)
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(b) the expected flow-equivalent productivity of unskilled individuals (value of (23)) is

log X̃1t =
S2t − 2Rt logX

∗
1t + (logX∗

1t)
2

2(St −Rt)
(27)

which is monotonically increasing in X∗
1t;

(c) the average output of unskilled individuals (expression (24)) is

X̂1t =
exp(St)−X

∗
1t

St −Rt
. (28)

Moreover, if Rt+1 = Rt + g, St+1 = St + g, and logX∗
1,t+1 = logX∗

1t + g, then:

(d) h1,t+1 = h1t;

(e) log X̃1,t+1 = log X̃1t + g;

(f) log X̂1,t+1 = log X̂1t + g.

Results (d)-(f) of Proposition 2 will be helpful in establishing that the equilibrium unemploy-

ment rate is constant along the steady-state growth path.

5 Entry and exit of specialized goods.

The set of goods produced Jt is potentially different for each date t. In this section we first

specify how the preference parameters adapt to these changes, and then provide further details

on what happens upon entry or exit of a particular good.

Preferences in a changing world. Preferences over goods are determined by the parameters

γijt and q̄ijt in the utility function (2). We specify following equation (4) that q̄ijt = 2χjtq
0
ijt

where q0ijt is the consumption of good j along the steady-state growth path for individual i

and χjt is a potential additional factor influencing demand for good j at time t, with χjt = 1

along the steady-state growth path and χjt > 1 capturing stronger than normal demand for

good j. We likewise from (5) specify γijt = ξjtαjt/(q
0
ijt)

2 where ξjt is a slope-demand shock

with ξjt = 1 along the steady-state path. The first question we discuss is how to treat the

share parameter αjt when new goods are being created and others are discontinued.

We want to maintain the interpretation of αjt as a share parameter by imposing the

normalization that
�

j∈Jt
αjt = 1 for all t. We focus on an economy for which the share

parameter for the nonspecialized good is constant over time: α1t = α1, so that in the absence

of demand shifts, the share of income spent on specialized goods 1−α1 will be constant along

the steady-state growth path. We accomplish this by specifying that when new specialized

goods are created, they carve out some of the demand share that had gone to earlier specialized

goods, leaving α1 unchanged. We now describe the details of how this works.

Demand for newly created goods. Let J ♯
2t denote the set of goods that were produced for

the first time in period t and α♯t =
�

j∈J ♯
2t
αjt denote their combined demand share. Let J

♮
2t

denote the set of specialized goods that were produced in both t−1 and t and α♮t =
�

j∈J
♮
2t
αjt

9



their cumulative demand share. We require

α♮t + α
♯
t = 1− α1 (29)

to be constant for all t. Let n♯t =
�

j∈J
♯
2t
njt denote the fraction of the population at date t

who are producing newly created goods and n♮t =
�

j∈J ♮
2t
njt the fraction producing continuing

specialized goods. Our assumption is that the more people n♯t involved in the process of

creating new goods, the more success they have in creating products that consumers want:

α♯t =

�
n♯t

n♯t + n
♮
t

�

(1− α1) (30)

Assumptions (29) and (30) imply that some of the success in creating new goods comes at the

expense of demand for continuing goods,

α♮t =

�
n♮t

n♯t + n
♮
t

�

(1− α1). (31)

If n♯t is higher than normal, continuing goods will see a lower demand share.

Discontinued goods. A good will be discontinued if the expected benefit to workers from

retaining that specialization is less than they could anticipate by returning to the pool of

unskilled workers:

if EtVj,t+1 < EtV1,t+1, then j ∈ J
♭
2t. (32)

Let kXt denote the fraction of goods in t that are discontinued in t+1. If J2t =
�

j∈J2t
1 is

the total number of specialized goods at time t, the fraction that continue into t+ 1 is given

by J−12t
�

j∈J ♮
2,t+

1 = (1−kXt). Along the steady-state growth path, kXt = kX will be constant.

A parametric example. It is sometimes useful also to follow the market for individual

goods. For this purpose the following parametric example allows some simple closed-form

expressions. Suppose that goods are one of kJ different types in terms of their expenditure

share, where the fraction of n♯t who succeed in creating type ℓ is determined by the parameter

aℓ with a1 + · · ·+ akJ = 1:

njt = aℓjn
♯
t for j ∈ J ♯

2t and ℓj ∈ {1, ..., kJ}.

There are kJ different new goods created at each date, one of each type ℓj, which acquire

demand shares

αjt = aℓjα
♯
t =



njt

1− n1t

�
(1− α1) for j ∈ J ♯

2t (33)

where 1−n1t = n♯t+n
♮
t is the fraction of the population who are skilled. The same adjustment
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to the share parameter for continuing goods,

αjt =



njt

1− n1t

�
(1− α1) for j ∈ J ♮

2t, (34)

turns out to ensure the aggregate adjustment required by (31). To see this, sum (34) over all

j ∈ J ♮
2t,

α♮t =
�

j∈J ♮
2t

αjt =



1− α1
1− n1t

��
j∈J ♮

2t

njt =



1− α1
1− n1t

�
n♮t

as required by (31).

The parameter kJ determines the total number of specialized goods produced in any given

period along the steady-state growth path. Along the steady-state path, kXJ2t goods are

discontinued and kJ new goods are created each period. The number discontinued will equal

the number created if

kXJ2t = kJ (35)

and the constant number of specialized goods along the steady-state growth path is given by

J02 = kJ/kX .

6 Equilibrium unemployment and the creation of new goods.

Here we describe unemployment dynamics in the case when some workers create new goods

while others apply for existing positions, so that (17) and (20) both hold. For a given value

of n1t (the fraction of the population who are unskilled), this involves finding 1 − h1t (the

fraction of unskilled workers who are unemployed), h0t (the fraction of unemployed who try

to create new goods), and hjt (the fraction of unemployed who apply for openings in j), with

h0t = 1−
�

j∈J2t
hjt.

An individual worker takes πjt as given. In equilibrium πjt is determined by the number

of people who apply for the positions ((1 − h1t)hjtn1tNt) relative to the number of openings

Ojt available. For 0 < Ojt < hjt(1− h1t)n1tNt,
2

πjt =
Ojt

(1− h1t)hjtn1tNt
. (36)

Given unemployment compensation Ct and the value of creating a new good EtṼ
♯
t+1, equation

(17) determines the productivity threshold X∗
1t, which from (26) tells us (1− h1t). From (20)

we also know πjt as a function of EtṼ
♯
t+1 and EtṼj,t+1. Figure 3 illustrates the equilibrium

value of πjt in the special case when EtṼ
♯
t+1 = EtṼj,t+1, a special case that in fact turns out

to characterize the steady-state growth path. When the advantage to specialization is a large

2This differs from typical search models of labor frictions such as Kaas and Kircher (2015) in that here
hiring units can post multiple vacancies at zero cost and the primary uncertainty facing applicants is whether
they can successfully complete the training.
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value like EtṼ
[1]
t+1, equation (20) requires πjt to be large which from (36) means hjt is small.

A higher advantage to specialization induces more workers to create new goods rather than

apply for existing positions.

A key determinant of the advantage to specialization is n1 (see equation (41) below) —

higher n1 means a bigger value of Ṽ . From Figure 3, higher Ṽ induces more workers to

become specialized by creating new goods, which would bring future n1 and Ṽ down. The

steady-state growth path is characterized by values of n1t, h1t, and Ṽt that are constant, and

thus a constant unemployment rate.

7 Steady-state growth path.

In this section we consider an economy in which productivity grows deterministically at rate

g and population grows at rate n. The key endogenous variables whose values we calculate

are X∗
1t, the level of productivity at which unskilled individuals decide to look for a better

job, h0t, the fraction of the unemployed who try to create new goods, and njt, the equilibrium

fraction of the population producing j.

Unemployment compensation. Along the steady-state growth path, a constant fraction of

spending goes to good 1: �
j∈J2t

PjtQjt

P1tQ1t
=

1− α1
α1

. (37)

The numerator on the left side of (37) is the tax base, and from (25), the denominator is

P1tN1tX̂1t. With a total of (1 − h1t)N1t individuals collecting unemployment compensation,

the compensation per individual is

Ct =
τ
�

j∈J2t
PjtQjt

(1− h1t)N1t
=

�
τ (1− α1)

α1(1− h1t)

�
P1tX̂1t. (38)

Advantage from specialization. Let Yst denote the average after-tax income per person of

skilled workers and n1t = N1t/Nt the fraction of the population that is unskilled. . Result

(37) establishes that

Yst =
(1− τ)

�
j∈J2t

PjtQjt

(1− n1t)Nt
=

�
(1− τ )(1− α1)

α1

��
P1tN1tX̂1t

(1− n1t)Nt

�

.

It turns out that along the steady-state growth path, all skilled workers earn the same income:

Yjt = Yst ∀j ∈ J2t. Let Ỹt be the ratio of Yst to P1tX̃1t, the flow-equivalent income of unskilled

in (23):

Ỹt =
Yst

P1tX̃1t

=

�
(1− τ )(1− α1)n1t

α1(1− n1t)

�
X̂1t

X̃1t

. (39)

Along the steady-state growth path, n1t and X̂1t/X̃1t are constant, meaning there is a constant

12



proportional income advantage to specialization.

Setting kjt = kX and Yjt = Yst in (14) and subtracting (22) from the result gives

Ṽt = log Ỹt + β(1− kX)EtṼt+1. (40)

Since Ỹt is constant along the steady-state growth path, the discounted life-time advantage is

given by

Ṽ =

�
1

1− β(1− kX)

��
log

�
(1− τ )(1− α1)n1t

α1(1− n1t)

�
+ log X̂1t − log X̃1t

�
(41)

which is also constant along the steady-state growth path.

Creation of new goods. Let hY t denote the log difference between the income that the

marginal unskilled individual could earn from producing good 1 and the income collected

from unemployment compensation:

hY t = log(P1tX
∗
1t)− logCt. (42)

From expression (38) this is

hY t = − log

�
τ(1− α1)

α1

�
+ log(1− h1t) + logX∗

1t − log X̂1t. (43)

We can write the equilibrium condition for creation of new goods (17) as

hY t = −kU + kπβṼ . (44)

Recall from Proposition 2 that h1t, X̃1t, and X̂1t are known functions of X
∗
1t. Substituting (43)

and (41) into (44) gives an expression in two endogenous variables, which are the fraction of

the population that is unskilled n1t and the value of X
∗
1t at which an unskilled individual would

be indifferent between producing good 1 and seeking to create a new good. We show in the

proof of Proposition 3 below that given any n1t ∈ (0, 1), there exists a unique logX∗
1t ∈ (Rt, St)

for which (44) holds.

New hiring. Along the steady-state growth path, condition (12) holds exactly and all

specialized goods will be on the knife edge between being supply- or demand-constrained:

Qjt = NjtXjt = Q̄jt/2 j ∈ J2t. (45)

In each period t, a fraction kX of producers learn of a change in demand parameters coming in

t+1 that leads the workers to return to the pool of unskilled in t+1. We will describe details

of such a change in Section 9. Surviving units add new workers at the population growth rate

13



n: Nj,t+1 −Njt = (en − 1)Njt for j ∈ J
♮
2,t+1. New openings with continuing units are thus

Ot = (1− kX)(e
n − 1)(1− n1t)Nt. (46)

Since each continuing unit offers the same lifetime advantage, the probability of successfully

applying for one of these positions is the same across all continuing goods. With (1−h1t)(1−

h0t)n1tNt individuals applying for these positions, this probability of success from (36) is

πt =
(1− kX)(e

n − 1)(1− n1t)

(1− h1t)(1− h0t)n1t
. (47)

Individuals are indifferent between applying for existing jobs and trying to create new goods

when (20) holds:

− kU + kπβṼ = πtβṼ . (48)

Since Ṽ and h1t are known functions of X
∗
1t and n1t, expression (48) gives another restriction

on the three endogenous variables X∗
1t, n1t, and h0t.

Changes in the number of skilled workers. Note that (1 − h1t)h0tkπn1tNt individuals will

join newly created units in t+1 which would be added to the (1−kX)(1−n1t)e
nNt workers at

continuing units. The total number of unskilled at t+1, which could be written as n1,t+1e
nNt,

would then consist of the total population at t + 1 (enNt) minus the total number of skilled

individuals:

n1,t+1e
nNt = enNt − (1− h1t)h0tkπn1tNt − (1− kX)(1− n1t)e

nNt

n1,t+1 = n1t + kX(1− n1t)− e
−nh0t(1− h1t)kπn1t. (49)

Thus the fraction of unskilled workers will be constant if

kX(1− n1t) = e−nh0tkπ(1− h1t)n1t. (50)

The steady-state growth path is characterized by a value of h0t, n1t, and X
∗
1t in which the

three equations (50), (48), and (44) all hold. The next proposition establishes that there is a

unique solution to these three equations.

Proposition 3. Let h1t, X̃1t, X̂1t, hY t, Ṽ be the functions of X∗
1t and n1t given in (26)-(28),

(43), and (41). If kπ, kX , α1, β, τ are all ∈ (0, 1) and n and kU are both positive, there exists

a unique value of (X∗0
1t , n

0
1t, h

0
0t) for which (50), (48) and (44) simultaneously hold. At this

solution, logX∗0
1t ∈ (Rt, St) and the values of hY t and Ṽ are positive.

The fact that Ṽ is positive means that individuals would prefer to be skilled if they could

acquire skills at no cost. The barriers to becoming specialized (a probability less than one of

being able to join an existing enterprise and a cost of trying to create a new one) require as

14



compensation that Ṽ be positive in equilibrium.

We are now in a position to characterize steady-state growth in this model.

Assumptions behind the steady-state growth path. Population grows at a fixed rate n start-

ing from a value Nt0 at an initial date t0. The initial productivity for producing good j can be

any positive value Xjt0 and the productivity parameters governing the uniform distribution

of productivity among unskilled workers are given by (Rt0 , St0). Let (X
∗0
1t0
, n01t0, h

0
0t0

) denote

the values described in Proposition 3 and let n01 and h
0
0 denote the latter two values, a no-

tation in anticipation of the fact that they turn out to be constant along the steady-state

growth path. In each period t = t0, t0 + 1, ... unskilled individuals maximize (15) resulting

in n1th1tNt individuals producing good 1, n1t(1 − h1t)h0tNt trying to create new goods, and

n1t(1− h1t)(1− h0t)Nt seeking positions with continuing units. Productivity grows at rate g,

so Rt+1 = g + Rt, St+1 = g + St for all t and logXj,t+1 = g + logXjt for j ∈ J
♮
2t, with log

productivities for any good newly created at date t drawn from a N(log X̃t0 + g(t − t0), σ
2)

distribution where log X̃t0 = J−12t0
�

j∈J2t0
logXjt0 is the average initial log productivity and

J2t0 =
�

j∈J2t0
1 is the initial number of specialized goods.

The following proposition characterizes the steady-state growth path for this economy.

Proposition 4. If at initial date t0 there are 1/kX specialized goods of each type ak (so

that the initial total number of goods is J2,t0 = kJ/kX), the initial share of unskilled workers

is n1t0 = n01, and the initial share of the population specialized in good j satisfies

njt0 =
αjt0(1− n

0
1)

1− α1
j ∈ J2t0, (51)

then for all t ≥ t0:

(a) the fraction of the population that is unskilled, the fraction of the unskilled who are

employed, and fraction of the unskilled who try to create new goods are constant over time,

n1t = n01 h1t = h01 h0t = h00

(implying a constant population unemployment rate of n01(1−h
0
1)) while the values X∗

1t, X̂1t, X̃1t

all grow at rate g:

logX∗
1,t+1 = g + logX∗

1t log X̂1,t+1 = g + log X̂1t log X̃1,t+1 = g + log X̃1t;

(b) the number of specialized goods in production is constant: J2t = kJ/kX ;

(c) the consumption of good j by every skilled worker at time t is given by

q0sjt =
(1− α1)(1− τ)

1− n01
njtXjt j ∈ Jt (52)

where X1t is defined to be X̂1t;
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(d) the average consumption of good j by unskilled workers at time t is given by

q0njt =
[α1 + τ (1− α1)]

n01
njtXjt j ∈ Jt; (53)

(e) the share of the population that produces good j and the demand share parameter αjt

remain constant as long as the good remains in production: njt = n0j , αjt = αj for j ∈ Jt and

the quantity of any good grows at rate n+ g for as long as it is produced:

logQj,t+1 = n+ g + logQjt j ∈ {{1} ∪ J ♮
2,t+1};

(f) the relative price of good j at time t is given by

Pjt
P1t

=
αjn

0
1X̂1t

α1n0jXjt

(54)

which is constant over time as long as the good continues to be produced;

(g) the total demand parameter for good j is given by

Q̄0jt
2

= [n01q
0
njt + (1− n01)q

0
sjt]Nt j ∈ Jt;

(h) at any date t, all skilled workers earn the same income as each other and the log

difference between their income and that of the average unskilled is a constant over time.

8 Dynamic adjustment.

In this section we consider dynamic adjustment in an economy in which the labor shares at

date t may not be the steady-state values (njt �= n0j) and in which the preference parameters

q̄ijt and γijt need not be the values associated with the steady-state path (denoted q
0
ijt and

γ0ijt). We specify q̄ijt = χjtq
0
ijt and γijt = ξjtγ

0
ijt where along the steady-state growth path

the demand-shift parameters equal one (χjt = ξjt = 1), and without loss of generality3 χ1t =

ξ1t = 1. And while productivity grows at the constant rate g along the steady-state path

(logX0
j,t+1 = g+logX0

jt), here we allow Xjt = ζjtX
0
jt with ζjt = 1 along the steady-state path.

Successfully introducing a new good means creating a demand (or recognizing a latent

demand) for good j that grows along the steady-state growth path according to

q0ijt =
[α1 + τ(1− α1)]

n01
n0jX

0
jt for i ∈Mnt, (55)

for nonspecialists and in an analogous expression for specialists. We assume that the parameter

n0j governing this steady-state demand is determined by the number of people involved in

3A lower demand for good 1 could equivalently be expressed as ξjt > 1∀j ∈ J2t.
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initially creating the new good: n0j = njt if j ∈ J
♯
2t. Equation (34) then implies that the

demand share αjt = γijt/(q
0
ijt)

2 eventually converges to

α0j = n0j(1− α1)/(1− n
0
1), (56)

which need not equal the value in (33) for αjt = n0j(1− α1)/(1− n1t) for the date t at which

the good was first created. In the examples below, after a good is created, the value of njt

may subsequently deviate from the initial n0j , but if the good survives long enough, eventually

the labor share and demand share will return to n0j and α
0
j .

Proposition 5. At any point off the steady-state growth path:

(a)

Q̄jt/2 = χjtHtn
0
jX

0
jtNt for j ∈ Jt (57)

Ht = 1 + λH(n1t − n
0
1) (58)

λH =
α1 + τ (1− α1)− n

0
1

n01(1− n
0
1)

(59)

with λH < 0 for typical parameter values;

(b) the quantity of good j that is produced at date t is

Qjt =

�
n1tNtX̂1t for j = 1

min{Q̄jt/2, njtNtζjtX
0
jt} for j ∈ J2t

;

(c) the relative price of good j at date t is

Pjt
P1t

=



P 0j
P 01

�2

α1
α0j

�

αjt
α0j

�
ξjt

�
Q̄jt −Qjt
Q̄1t −Q1t

�
for j ∈ J2t; (60)

(d) the share parameter for good j is characterized by

αjt =
njt(1− n

0
1)

n0j(1− n1t)
α0j for j ∈ J2t; (61)

(e) if good j continues into t + 1, the number of individuals specializing in j at t + 1 is

given by

Nj,t+1 = max

�
Q̄j,t+1
2Xj,t+1

, Njt

�
for j ∈ J ♮

2,t+1 (62)

n♮t+1 =
�

j∈J
♮
2,t+1

Nj,t+1/Nt+1

and if Nj,t+1 = Q̄j,t+1/(2Xj,t+1) then

Nj,t+1
N0
j,t+1

=
χj,t+1Ht+1

ζj,t+1
; (63)
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(f) after-tax income per individual specialized in good j (Yjt = (1− τ )PjtQjt/Njt) is char-

acterized by
Yjt
P1t

=
Y 0t ξjt(1− n

0
1)Qjt(Q̄jt −Qjt)Q

0
1t

(1− n1t)(Q0jt)
2(Q̄1t −Q1t)

for j ∈ J2t (64)

which along the steady-state growth path is the same for all skilled workers :

Y 0t =
(1− τ)(1− α1)n

0
1

α1(1− n01)
X̂0
1t; (65)

(g) compensation per unemployed individual is

Ct =
τ
�

j∈J2t
njtYjt

n1t(1− h1t)
; (66)

(h) the lifetime advantage of being skilled in good j relative to being unskilled is

Ṽjt = log Yjt − log(P1tX̃1t) + β(1− kX)Ṽj,t+1 for j ∈ J2t (67)

with good j endogenously discontinued after period t ( j ∈ J ♭
t ) if Ṽj,t+1 < 0;

(i) if some individuals spend period t trying to create a new good , then

log(P1tX
∗
1t)− logCt = −kU + kπβṼj,t+1 for j ∈ J ♯

2,t+1; (68)

(j) if a positive fraction hjt of unemployed workers seek to specialize in continuing good j,

the fraction πjt who are successful is characterized by

πjt =
Nj,t+1 −Njt

(1− h1t)hjtn1tNt

log(P1tX
∗
1t)− logCt = πjtβṼj,t+1 (69)

for j ∈ J ♮
2,t+1 and h0t = 1−

�
j∈J ♮

2,t+1
hjt the fraction seeking to create new goods;

(k) the fraction of the population in t+ 1 producing newly created goods is

n♯t+1 = e−n(1− h1t)h0tn1tkπ (70)

and the fraction of the population that is unskilled is given by

n1,t+1 = 1− n♯t+1 − n
♮
t+1. (71)

(l) Define real GDP to be the ratio of current production evaluated at steady-state prices
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to steady-state production evaluated at steady-state prices:

Qt =

�
j∈Jt

P 0jtQjt�
j∈Jt

P 0jtQ
0
jt

. (72)

This can equivalently be written as

Qt =
�

j∈Jt
α0j(Qjt/Q

0
jt) =



1− α1
1− n01

��
j∈J2t



Qjt
NtX0

jt

�
+



α1
n01

��
X̂1t

X̂0
1t

�

n1t. (73)

In the special case when all goods are demand-constrained and χjt = ζjt = 1 ∀j, this becomes

Qt =
Ht(1− α1)

1− n01

�
j∈J2t

n0j +



α1
n01

��
X̂1t

X̂0
1t

�

n1t. (74)

Discussion of Proposition 5. Result (a) establishes that an increase in n1t results in lower

total demand provided that α1+τ (1−α1) < n
0
1. In interpreting this inequality, note that α1 is

the steady-state fraction of income that goes to unskilled individuals as a result of production

of good 1 and τ (1 − α1) is the fraction collected as unemployment compensation. If the

sum of these is less than than n01, the fraction of the population that is unskilled, then the

average after-tax income of an unskilled individual along the steady-state path is less than

that of someone who is skilled. This is all that is needed to conclude that λH < 0. This

condition is almost guaranteed by Proposition 3, which established that Ṽ 0 > 0, meaning

that the log income of skilled workers exceeds the expected log income of unskilled along the

steady-state growth path. However, because of Jensen’s Inequality, this is not quite enough

to conclude that skilled income exceeds the expected income of the unskilled, which is the

condition required by α1 + τ(1 − α1) < n01. For most parameter values, Jensen’s Inequality

is not big enough to reverse the typical outcome. Appendix C provides sufficient conditions

under which λH is necessarily negative. When this is the case, Q̄jt is lower when the fraction

of unskilled individuals is higher.

Note that we defined real GDP in (72) as the ratio of current to steady-state output. Thus

Qt > 1 means a value of real GDP higher than steady state and Qt < 1 means a value lower

than steady state. As an example of using this result, consider the special case when there

are no demand or productivity shocks (χjt = ζjt = 1), all goods are demand constrained

(Qjt = Q̄jt/2), and the population share of each good is the steady-state value (njt = n0j). In

this case (74) becomes

Qt = Ht



1− α1
1− n01

�
(1− n1t) +



α1
n01

��
X̂1t

X̂0
1t

�

n1t (75)

Note that (1 − α1)/(1 − n
0
1), is greater than 1 and (α1/n

0
1) is less than 1. Thus when Ht =
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(X̂1t/X̂
0
1t) = 1,

∂Qt
∂n1t

=
α1
n01
−

1− α1
1− n01

< 0.

Thus even if Ht and (X̂1t/X̂1t0) were unity, a higher fraction of unskilled workers would mean

lower GDP because fewer of the goods that consumers value are being produced. When

n1t > n01, both (X̂1t/X̂
0
1t) < 1 because when more individuals are unskilled, a higher fraction

of them look for jobs,4 and also Ht < 1 due to lower demand. Both these are additional factors

pushing real GDP below 1 when n1t > n
0
1.

Deviations from steady state. We will linearize to approximate dynamics off the steady-

state growth path. Let w†t denote the deviation of the variable wt or its log from the value on

the steady-state growth path; specifically, w†t = logwt − logw0t for wt = Qjt, X
∗
1t, χjt, ξjt, ζjt,

w†t = wt − w
0 for wt = njt, Y

†
jt = log(Yjt/P1t)− log Y 0t , and P

†
jt = log(Pjt/P1t)− log(P 0jt/P

0
1t).

Appendix B shows that for any specialized good j,

Q†jt =






χ†jt + λHn
†
1t if Q̄jt/2 ≤ njtNtXjt

ζ†jt +
n†jt
n0j

if Q̄jt/2 > njtNtXjt

(76)

P †jt = ξ†jt + 2χ†jt +
n†jt
n0j

+
1

1− n01
n†1t −Q

†
jt +

n†1t
n01

+ λ5X
∗†
1t (77)

Y †jt = ξ†jt + 2χ†jt +
1

n01(1− n
0
1)
n†1t + λ5X

∗†
1t . (78)

A demand shock arising from χ†jt > 0 shifts both the demand and marginal revenue curves

out (see the bottom panel of Figure 2). If the good is demand constrained, the result is an

increase in both output and price. If the good is supply constrained, only the price increases.

By contrast, a slope demand shock ξ†jt > 0 tilts the demand curve without changing Q̄jt, and

only results in an increase in price regardless of the regime. A productivity shock ζ†jt has no

effect on income because it either has no effect on output and price or has offsetting effects

on output and price; see Section 10 for more discussion.

Result (78) means that if two different goods j and k both experience the same propor-

tionate demand shocks (χ†jt = χ†kt and ξ
†
jt = ξ†kt), producers of the two goods will receive the

identical income (Y †jt = Y †kt). This greatly simplifies analysis of the economy off the steady-

state growth path in the examples below.

Adjustment dynamics in the absence of demand and productivity shocks. The following

sections investigate economies in which demand or productivity shocks may influence the

values of variables over periods t0, t0 + 1, ..., t0 +M − 1, but all exogenous variables revert to

their steady-state values after t0+M . In every example, the initial conditions and subsequent

4If n1t > n
0
1, then X

∗
1t > X

∗0
1t and X̂1t < X̂

0
1t.
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sequence of shocks are all known with certainty from period t = t0 on and

χjt = ξjt = ζjt = 1 j ∈ J2t and t ≥ t0 +M.

In this subsection we characterize dynamics for these examples beginning in period t = t0+M .

Note from (78) that when ξjt = χjt = 1, real income differs from the steady-state value Y 0t
by the same multiple for every skilled worker. Let Yt denote this common level of income in

period t: Yt = Yjt/P1t for j ∈ J2t and t ≥ t0+M. Looking forward from t ≥ t0+M, all skilled

workers face the same stream of future income prospects and thus there is a single lifetime

benefit of specialization Ṽt that is common to all skilled workers at t. The two key dynamic

equations for t ≥ t0 +M are then (71) and the common value for (67),

n1,t+1 = 1− n♯t+1 − n
♮
t+1 (79)

Ṽt = log(Yt/P1t)− log X̃1t + β(1− kX)Ṽt+1 (80)

where n♯t+1 is the fraction of the population at t+ 1 producing newly created goods and n♮t+1
the fraction producing continuing specialized goods.

Another state variable that helps simplify calculations is n̄t, which is defined as the sum

of the steady-state employment shares n0j of all specialized goods that are produced at t:

n̄t =
�

j∈J2t
n0j . A fraction (1 − kX) of goods in t survive to t + 1, and the value of n0j for

these goods at t+1 is by definition is the same as in t. In addition, for newly produced goods

the steady-state population share is the value when they were first introduced: n0j = njt for

j ∈ J ♯
2t. Thus the equation of motion for n̄t is

n̄t+1 = (1− kX)n̄t + n
♯
t+1 t ≥ t0 +M. (81)

When χjt = 1, equation (57) implies that Q̄jt/2 = HtQ
0
jt. The examples below all have

the property that all goods have capacity to produce the profit-maximizing level Qjt = Q̄jt/2

after t ≥ t0+M . Recalling that Q1t = n1tNtX̂1t, the level of real income common to all skilled

workers is found from (64) to be

Yt/P1t =
Y 0t (1− n

0
1)H

2
tQ

0
1t

(1− n1t)(2HtQ01t − n1tNtX̂1t)
t ≥ t0 +M. (82)

Real unemployment compensation from (66) is

Ct/P1t =
τ (1− n1t)Yt/P1t
n1t(1− h1t)

t ≥ t0 +M. (83)

The productivity threshold X∗
1t at which unskilled workers choose to produce good 1 is deter-
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mined by (68):

logX∗
1t − log(Ct/P1t) = −kU + βkπṼt+1 t ≥ t0 +M. (84)

Since each specialization offers the same income, in equilibrium there is a common probability

πt of succeeding in specializing in a continuing good, which from (69) is characterized by

logX∗
1t − log(Ct/P1t) = βπtṼt+1. (85)

The number of openings with continuing goods is given by

Ot = n♮t+1e
nNt − (1− kX)(1− n1t)Nt. (86)

With (1− h1t)(1− h0t)n1tNt applicants for these positions, the probability of success is

πt =
n♮t+1e

n − (1− kX)(1− n1t)

(1− h1t)(1− h0t)n1t
t ≥ t0 +M. (87)

We can solve this expression for h0t = 1− {[n♮t+1e
n − (1− kX)(1− n1t)]/[(1− h1t)n1tπt]} and

substitute the result into (70) to find the fraction of the population at t + 1 who are newly

skilled:

n♯t+1 = e−n(1− h1t)n1tkπ − [n♮t+1 − e
−n(1− kX)(1− n1t)]kπ/πt t ≥ t0 +M. (88)

In the examples below, any good that survives from t to t+1 will have the profit-maximizing

level of employment at t+1: nj,t+1 = Ht+1n
0
j for j ∈ J

♮
2,t+1. Summing over j gives the fraction

of the population at t+ 1 producing continuing goods:

n♮t+1 = Ht+1(1− kX)n̄t t ≥ t0 +M. (89)

Linearized dynamics in the absence of demand and supply shocks. Recall from Proposition

2 and Table 1 that log(1 − h1t), log X̃1t, and log X̂1t are simple functions of logX
∗
1t with

derivatives λ2, λ3, and λ5, respectively, and from (58) that Ht is a linear function of n1t.

Thus equations (79)-(85), (88), and (89) comprise a system of 9 dynamic equations in the 9

variables (n1t, Ṽt, n̄t, Yt/P1t, Ct/P1t,X
∗
1t, πt, n

♯
t+1, n

♮
t+1). Let z

†
it denote the deviation at t of the

ith of these variables from its value along the steady-state growth path.5 The behavior of the

system can be approximated by the following 9 linear equations (see Appendix B for details):

n†1,t+1 = −n
♯†
t+1 − n

♮†
t+1 (90)

5Specifically, z†it = zit − z
0
i for zit = n1t, Ṽt, n̄t, πt, h0t, n

♯
t+1, n

♮
t+1, Y

†
t = log(Yt/P1t) − log(Y

0
t ), C

†
t =

log(Ct/P1t)− log(C
0
t ), and X

∗†
1t = log(X

∗
1t)− log(X

∗0
1t ).
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Ṽ †t = Y †t − λ3X
∗†
1t + β(1− kX)Ṽ

†
t+1 (91)

n̄†t+1 = (1− kX)n̄
†
t + n

♯†
t+1 (92)

Y †t =
1

n01(1− n
0
1)
n†1t + λ5X

∗†
1t (93)

C†t = Y †t −
1

n01(1− n
0
1)
n†1t − λ2X

∗†
1t (94)

X∗†
1t − C

†
t = βkπṼ

†
t+1 (95)

X∗†
1t − C

†
t = βπ0Ṽ †t+1 + βṼ

0π†t (96)

n♯†t+1 = e−nkπ

�
1− h01 −

1− kX
π0

�
n†1t + e

−n(1− h01)n
0
1kπλ2X

∗†
1t (97)

+
[n♮0 − e−n(1− kX)(1− n

0
1)]kπ

(π0)2
π†t −

kπ
π0
n♮†t+1

n♮†t+1 = (1− kX)(1− n
0
1)λHn

†
1,t+1 + (1− kX)n̄

†
t . (98)

Solution algorithm. Define z†t = (z†
′

1t, z
†′

2t)
′ for z†

′

1t = (n†1t, Ṽ
†
t , n̄

†
t) and z

†′

2t = (Y †t , C
†
t ,X

∗†
1t , π

†
t ,

n♯†t+1, n
♮†
t+1). Equations (90)-(98) comprise a system of the form

Az†1,t+1 = Bz†t . (99)

This is a system in which the dependence between z†t and z
†
t+1 is captured entirely by the three

state variables z†1,t+1. With linear operations we can eliminate z
†
2t from the right side of (99)

to arrive at a system of the form

z†1,t+1 = Φz†1t; (100)

again see Appendix B for details. One of the eigenvalues of the (3 × 3) matrix Φ is greater

than 1 and the other two are less than 1 in absolute value. The values of n†1t and n̄t are

predetermined, and the forward-looking variable Ṽt is the value that causes z
†
1t to be a linear

combination of the two eigenvectors of Φ associated with the stable eigenvalues.

In the examples below, the initial periods t0, t0+1, ..., t0+M−1may be governed by different

dynamics from those in (90)-(98) as a result of demand or productivity shocks. However, in all

the examples it is assumed that exogenous variables return to their steady-state values after

a finite number of periods, and it can be shown that in each of these examples, all specialized

goods will have exactly the capacity needed to meet demand after M periods. In this case

(76) becomes

Q†jt = λHn
†
1t j ∈ J2,t, t ≥ t0 +M (101)

and (99) turns out to govern dynamics after t0 +M.
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The dynamics over the first M periods are characterized by

Ȧtż
†
1,t+1 = Ḃtż

†
t + ċt (102)

ż†1,t+1 = Φ̇tż
†
1t + ėt. (103)

The initial state vector ż†1t includes n
†
1t, Ṽt, and possibly other variables whose values at date

t0 are determined by initial conditions. These initial conditions along with the specified

initial value n†1t0 and a conjectured value for Ṽt0 imply a particular value ż
†
1t0
and thus from

(103) a particular value for ż†1,t0+M from which z
†
1,t0+M

can also be calculated. The rational-

expectations solution for Ṽ †t0 is the value that causes z
†
1,t0+M

to be a linear combination of the

stable eigenvectors of Φ. Since z†1,t0+M is an affine function of ż
†
1t0
, this pins down Ṽ †t0 , the

unknown element of ż†1t0. Now knowing ż
†
1t0 , we can use (103) for calculate ż

†
1,t0+1, ..., ż

†
1,t0+M−1

and use (100) to calculate z†1,t0+M , z
†
1,t0+M+1

, ... From these we can find the remaining elements

of ż†t0+1, ..., ż
†
t0+M−1

from (102) and z†t0+M , z
†
t0+M+1

from (99). With these we can calculate any

other variable of interest. For example, for t ≥ t0 +M, n†jt = λHn
†
1t and the relative price of

any specialized good can be found by substituting (101) into (77):

P †jt =

�
1

n01(1− n
0
1)

�
n†1t + λ5X

∗†
1t j ∈ J2,t, t ≥ t0 +M. (104)

From (74), real GDP is given by

Qt =
Ht(1− α1)

1− n01
n̄t +



α1
n01

��
X̂1t

X̂0
1t

�

n1t (105)

Q†t =

�
α1
n01

+ (1− α1)λH

�
n†1t + α1λ5X

∗†
1t +

1− α1
1− n01

n̄†t . (106)

9 Demand shocks.

In this section we consider an economy in which all exogenous and predetermined variables at

t0 are equal to their steady-state values, so njt = n0j ∀j ∈ J2t0 with the single exception that

the demand parameter χjt = χ �= 1 for a fraction κ of the specialized goods produced at t0.

From (78) we see that the income of anyone producing a nonimpacted specialized good at t is

still given by Yt in (93) whereas anyone producing an impacted good has income Y
χ
t :

Y χ†t = 2(χ− 1) + Y †t . (107)

Let nχt denote the fraction of the population at t specializing in goods for which χjt = χ and

nct the fraction specializing in goods for which χjt = 1. Then unemployment compensation is
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given by

Ct =
τ (nctYt + n

χ
t Y

χ
t )

n1t(1− h1t)
. (108)

Baseline parameter values. Our baseline examples use the parameter values in Table 2.

We assume that a period corresponds to one quarter, with n implying an annual population

growth rate of 1% and β an annual discount rate of 2%. Note that taxes in this model are used

solely to finance unemployment compensation, motivating a relatively low value (τ = 0.02)

for the marginal tax rate.6 Productivity for all workers grows at some fixed rate g (which

does not affect any of the numbers reported here), and the proportional gap between the

most productive and least productive unskilled individual (St −Rt) is constant at 1 for all t.

There are huge gross flows out of and into employment in a typical month in the U.S. Davis,

Faberman, and Haltiwanger (2006, Table 1) found that 10% of workers lose or quit their

jobs each quarter, and the estimates in Ahn and Hamilton (forthcoming) imply that 12% of

employed individuals will be unemployed or out of the labor force 3 months later. Our value

of kX = 0.02 assumes that involuntary separations account for less than 1/5 of these observed

gross flows. When the probability of successfully creating a new good is kπ = 0.25, the baseline

parameters imply a steady-state unemployment rate of u0 = 5.1%. The discounted lifetime

log income advantage of being skilled is Ṽ 0 = 4.80, which translates into a per-period flow

advantage of [1− β(1− kX)]Ṽ
0 = 0.12, or 12% higher after-tax incomes for skilled workers.

9.1 A transient drop in demand.

In our first example, the number of people producing each good starts out in period t0 at the

steady-state values (n†jt0 = 0 for all j ∈ Jt0). In period t0, one-quarter of the specialized goods

(κ = 0.25) experience a 10% drop in demand in t0 (χ = 0.9) that lasts for only a single period

with χjt for all goods j returning to unity for t ≥ t0 + 1. From (76), the demand-impacted

goods lower their output by 10% (Qχ†t0 = χ − 1). From (77), if there were no change in the

fraction of unskilled workers who are unemployed, impacted goods would also lower their price

by 10% in period t0 (P
χ†
t0 = χ− 1 + λ5X

∗†
1t0), with n

†
1t0 = n†jt0 = 0 for this example. The 10%

drop in both price and quantity account for the 20% drop in income described in (107). Since

the shock lasts for only one period, the lifetime advantage at t = t0 of one of the impacted

specialists Ṽ χt0 differs from that of nonimpacted specialists Ṽt0 by Ṽ
χ†
t0 = Ṽ †t0 + 2(χ − 1). The

decision of impacted units to continue is determined solely by Ṽ χt0+1 = Ṽt0+1, so no impacted

unit has an incentive to discontinue. The decision of how many workers to add in t0 + 1 is

based on (62), which again from (57) is the same for all j. If (93) and (91) are understood

to characterize the values for producers of goods that are not impacted by the demand shock,

equations (90)-(98) thus all hold for t > t0 and almost all hold for t = t0 as well with the single

6At this rate, steady-state unemployment compensation is equal to about one-quarter of the average wage
of unskilled workers: (P 01tX̂

0
1t)/(n

0
1h
0
1) = [h

0
1τ(1− α1)]/[α1(1− h

0
1)] = 0.23.
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exception that (94) for t = t0 is replaced by a linearization of (109):

C†t0 = 2(χ− 1)κ+ Y †t0 − λ2X
∗†
1t0
−

1

n01(1− n
0
1)
n†1t0 . (109)

Expression (109) reflects the fact that the lower income of demand-impacted specialists (2(χ−

1) = −0.2) reduces unemployment compensation by −0.2κ in equilibrium. Appendix B shows

that real GDP in the initial period is

Q†t0 = (1− α1)κ(χ− 1) + α1λ5X
∗†
1t0
. (110)

Output of the impacted goods falls by χ, and nonimpacted goods have no ability and no

incentive to increase production. Equations (90)-(98), (104) and (106) all hold as written

for all t > t0, so for this example M = 1 and expression (109) is the only way in which the

dynamic equations for the first date differ from the usual adjustment dynamics. In terms of the

notation in expression (102), for this example Ȧt0 = A, Ḃt0 = B, and ċt0 = (0, 0, 0, 0,−2(χ−

1)κ, 0, 0, 0, 0)′.

The solid green curves in Figure 5 plot the time paths of key variables. Real GDP (Panel E)

falls by 1.4% in t0 but almost completely recovers by t0+1. The reason that real GDP does not

quite completely return to the steady-state growth path in t0+ 1 is that lower taxes collected

from specialized workers in t0 mean lower unemployment compensation, which induces slightly

more unskilled workers to produce good 1 in t0 (Panel C). Because fewer unskilled workers

spent t0 trying to develop a skill, the number of unskilled workers in t0 + 1 is very slightly

above steady state (Panel A). However, these persistent effects are quite small in size, and to

a first approximation the effects of the demand shock are limited to the single initial period

in which χjt0 �= 1, in which GDP essentially falls by the size of the drop in demand.

9.2 A transient increase in demand.

Consider next the case in which a fraction κ = 0.25 of specialized goods experience a 10%

increase in demand (χ = 1.1) in period t0 with demand returning to normal in t0+1. Because

these goods would be producing at capacity in t0 if χ = 1, they do not increase production but

instead increase price by about 20%. Equations (76) and (77) in this case imply Qχ†t0 = 0 and

Pχ†t0 = 2(χ−1)+λ5X
∗†
1t0
. If X∗

1t0
did not change, there would be a 20% increase in the incomes

of workers specialized in the now-favored good. There is no direct boost to GDP from the

demand shock, and (110) for this case becomes Q†t0 = α1λ5X
∗†
1t0
. Unemployment compensation

is still given by (109). In this example, unemployment compensation rises in t0 because of

the higher tax revenues from some of the skilled workers. The dynamic effects of the shock

are described by the dashed blue lines in Figure 5. The higher unemployment compensation

induces an increased fraction of the unskilled to try to develop a specialty (Panel C). This

means less production of good 1, and with no added production of any specialized good, GDP
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actually falls in t0. Some of these individuals succeed in producing new goods, leading to

values of n1,t0+1 and Ṽt0+1 very slightly below the steady state. The latter means less incentive

to specialize, and the economy eventually returns to steady state. As in Example 9.1, the

changes resulting from unemployment compensation are quite small. To a first approximation,

a transitory increase in demand has no real effects.

9.3 A large persistent but isolated drop in demand.

Next consider the case of a 50% drop in demand that affects only 5% of specialized goods

(χ = 0.5, κ = 0.05). Note that the total size of the shock to demand is the same as in

Example 9.1 (κ(χ− 1) = 0.025 in both examples), but in Example 9.3 the drop in demand is

concentrated on a relatively small number of goods. If the low demand lasted only for a single

period, the results would be identical to those in Example 9.1. Here however we consider a

shock that lasts for D = 8 periods. We take the shock to be isolated in the sense that new

goods created beginning in t0+1 all enjoy the steady-state demand level χjt = 1. From (107)

the period t log income for workers specializing in the impacted good would differ from that

of other specialized workers by 2(χ− 1) for each t = t0, ..., t0 +D − 1. From (91) this means

that the lifetime advantage as of date t from being specialized in an impacted good differs

from the steady-state advantage Ṽ 0 by

Ṽ χ†t = Ṽ †t + βXt0+D−t2(χ− 1) (111)

βXt0+D−t =

� �t0+D−t−1
s=0 [β(1− kX)]

s t = t0, ..., t0 +D − 1

0 t ≥ t0 +D
. (112)

The value of Ṽ χ+t for this numerical example is plotted in black in Panel D of Figure 5, with

the horizontal black dashed line drawn at Ṽ 0 + Ṽ χ†t = 0, the level at which producers of

the impacted good would be indifferent between waiting out the period of low demand and

abandoning their specialty. For this numerical example, Ṽ 0+ Ṽ χ†t0+1 < 0, meaning that workers

who had specialized in the impacted good in period t0 would be better off joining the pool of

unskilled beginning in period t0 + 1 rather than wait for demand for their good to pick up.

These workers will produce their specialized good in t0 and then join the pool of unskilled

beginning in t0 + 1. This means that only a fraction (1− kX)(1− κ) of the specialized goods

that were produced in t0 survive to t0+1. Expressions (81) and (89) for t = t0 in this example

become

n̄t0+1 = (1− kX)(1− κ)n̄t0 + n
♯
t0+1

n♮t0+1 = Ht0+1(1− kX)(1− κ)n̄t0 .

The number of openings (86) in t0 is

Ot0 = n♮t0+1e
nNt0 − (1− kX)(1− κ)(1− n1t0)Nt0
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leading (88) to be replaced by

n♯t0+1 = e−n(1− h1t0)n1t0kπ − [n♮t0+1 − e
−n(1− kX)(1− κ)(1− n1t0)]kπ/πt0 .

After linearization this results in adding the following terms to the right sides of equations

(92), (97), and (98), respectively:

−κ(1− kX)(1− n
0
1)

−
κe−n(1− kX)(1− n

0
1)kπ

π0
+
κe−n(1− kX)kπ

π0
n†1t0 +

κe−n(1− kX)(1− n
0
1)kπ

(π0)2
π†t0

−κ(1− kX)(1− n
0
1)− κ(1− kX)(1− n

0
1)λHn

†
1,t0+1

− κ(1− kX)n̄
†
t0 .

Also as in equation (109) we add 2(χ− 1)κ to the right side of (94).

Beginning in t = t0 + 1, all the impacted goods are gone and newly created goods face

steady-state demand parameters, so that the dynamic equations for the economy for t =

t0 + 1, t0 + 2, ... are exactly the same as in (90)-(98). Hence this is another example in which

dynamics revert to the time-invariant system (90)-(98) after M = 1 period.7 However, the

effects of the shock at t0 have not gone away, because the extra inflow of workers into the pool

of unskilled causes n1,t0+1 to be higher than the steady-state value n
0
1, shown in Panel A of

figure 4. This causes real GDP in (106) (Panel E) to be lower in t0 + 1 both because fewer

people are producing high-value goods and because lower-skilled workers have lower overall

demand for goods. Panel F shows the relative price that would maximize profits for impacted

units if they were to continue in operation beyond t0. However, because Ṽ
χ
t0+1 < 0, they have

all dropped out and these goods are no longer produced after t0. Thus the same-sized shock

to demand (Examples 9.1 and 9.3) can have a bigger effect if it results in significant numbers

of skilled workers losing their jobs, as in this example.

This example offers one possible explanation for why goods are always being discontinued

along the steady-state growth path. Suppose that along the steady-state growth path, each

period t a fraction kX of specialized producers learn that demand for their particular product is

going to experience a decrease of the magnitude considered here beginning in t+1. Producers

of those goods would have an incentive to abandon their specialty after producing in t, and

choose to return to the pool of unskilled workers. Thus a shock of the kind considered in

Example 9.3 could be viewed as occurring all the time in this model. Everyone takes into

account the likelihood that it will eventually happen to them through the parameter kX that

7For this example, the time dependence is captured by the t = t0 values of Ȧt0 , Ḃt0 , ċt0 . Although expression
(111) exhibits time-dependence up until t = t0+D1−1, this equation is only relevant for the decision impacted
workers make in period t0. For the parameter values in this example, workers abandon their specialty and
these goods are no longer produced after period t0, so the only economically relevant equations after t > t0 all
take the form of (90)-(98).
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enters every decision. Example 9.3 could be viewed as exploring what happens when these

regular demand shocks affect a larger fraction of goods than usual and catch the producers of

these goods by surprise in t0.

9.4 The role of technological frictions.

How long the adjustment process requires depends on how hard it is to create new goods.

Consider an economy in which the probability of successfully creating a new specialized good

is 0.60 rather than 0.25 in our baseline parameterization. With lower technological frictions

to developing new goods, there is a lower equilibrium unemployment rate (u0 = 2.4% ver-

sus 5.1% for the baseline parameters) and a lower equilibrium advantage to being skilled

(Ṽ 0 = 0.7 versus 4.8 for the baseline case). In an economy with more modest technological

frictions, workers would be much quicker to abandon their skill under adverse conditions (see

the horizontal dashed red line in Figure 5D). Although the surge in unskilled workers in t0+1

is the same as in Example 9.3, the economy recovers more quickly; the largest stable eigen-

value of Φ is 0.89 for the baseline parameters but only 0.79 when kπ = 0.6. Thus technological

frictions are the key determinant of the Keynesian multiplier effect.

9.5 A persistent drop in demand for new and existing goods.

The assumption in Examples 9.3 and 9.4 was that newly created goods were immune from

the lower demand that hit existing goods, with the result that a surge in new good creation

was a key factor mitigating the economic downturn. In reality, starting a new business may

be harder than usual when the economy is weak. To study this possibility, we now consider a

demand shock that affects both new and existing goods. As in Example 9.1, we suppose that

25% of existing goods at t0 experience a 10% drop in demand (κ = 0.25, χ = 0.9). Unlike

that example, here we assume that the drop lasts for D = 5 periods and also affects any goods

that are newly created in t0, ..., t0 + D − 1. In this case, the returns to creating a new good

will be determined not by Ṽt+1 but by Ṽ
χ
t+1. For the first D − 1 periods the condition for new

good creation (95) becomes

X∗†
1t − C

†
t = βkπṼ

†
t+1 + β

X
t0+D−t−1

2(χ− 1) t = t0, ..., t0 +D − 2

for βXj given by (112). The attractiveness of specializing in a nonimpacted good is still Ṽt+1,

so that the equilibrium probability πt of obtaining one of those positions is still determined by

(85). As in the baseline model, we assume that successfully creating a new good provides the

new good with a steady-state demand based on the number of people who initially created

it, represented by n0j = njt. No demand-impacted good, whether continuing or newly created,

will have an incentive to hire new workers during the first D − 1 periods. Assuming that

all goods continue to face the steady-state probability kX of being forced to discontinue, the
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fraction of the population that produces demand-impacted goods thus evolves according to

nχt+1 = e−n(1− kX)n
χ
t + n

♯
t+1 t = t0, ..., t0 +D − 2

starting from nχt0 = κ(1 − n01). Nonimpacted goods hire a fraction of the population n
c
t+1 =

Ht+1(1 − kX)n̄
c
t where n̄

c
t = (1 − kX)

t−t0(1 − κ)(1 − n01), leading to a total number of skilled

workers given by 1 − n1,t+1 = nχt+1 + nct+1. After period t0 + D, the dynamics revert to the

system (79)-(89). For details see Appendix B.

The cyan curves in Figure 5 show adjustment dynamics for this example. The drop in

production of impacted specialized goods in t0 by itself would lower GDP by 1.5%, just as in

Examples 9.1 and 9.3-9.4. However, in this case unskilled workers recognize at t0 the lower

probability of successfully specializing in an existing good and limited returns from producing

a new impacted good. More of them respond by choosing to produce good 1 rather than

try to develop a skill, with only 1 − h1t0 = 6.1% of them unemployed in t0 compared to the

steady-state value of 11.5%. This results in an increased production of good 1 in period t0 that

turns out to completely offset the lost production of specialized goods, so that real GDP at t0

is about the same as the steady-state value. The lower-than-normal rate of skill accumulation

results in a buildup in the fraction of unskilled over time, and this eventually brings GDP to

2.3% below steady-state by t0 + 4. The buildup in n1t also increases the incentive to try to

specialize, and by t0+4 a higher fraction than normal of the unskilled are searching for work.

The demand shock is gone for all goods beginning in t0 + 5, resulting in a sharp rebound in

real GDP. However, GDP is still 0.9% below normal in t0 + 5 and only gradually returns to

the steady-state growth path as the surplus of unemployed eventually develop skills.

9.6 Shocks to ξjt.

Up to this point we have been discussing shocks to the preference parameter χjt, which results

in a vertical shift of the demand curve for good j and changes the profit-maximizing level

of output Q̄jt/2 (see Figure 2). Consider now a shock to the parameter ξjt, which changes

the vertical intercept of the demand curve but leaves the horizontal intercept and the profit-

maximizing level of output unchanged. From equation (76), this has no direct effect on output

regardless of whether the good is demand- or supply-constrained. Instead, from (77) and (78),

a 10% increase in ξjt leads to a 10% increase in price and income for good j. A 10% decrease

in ξjt leads to 10% decreases in Pjt and Yjt, again regardless of the regime. The changes in

income will result in a change in tax receipts and unemployment compensation which would

have general-equilibrium effects on h1t and n1t, but these would be secondary contributions of

the size noted in Example 9.1.

It is possible that if a drop in ξjt is large enough and lasts long enough, the drop in

income for producers of the good would be sufficiently large to persuade them to discontinue

production. Note that the coefficient on χjt in the income equation (78) is twice as big as the
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coefficient on ξjt, so it would take roughly twice as big a shock to ξjt to cause the good to

be discontinued. For shocks of moderate size, a change in ξjt would affect relative prices but

have negligible effects on any real quantities.

10 Productivity shocks.

In this section we consider an economy that begins period t0 with all exogenous and prede-

termined variables equal to their steady-state values with the exception that the productivity

parameter ζjt = ζ �= 1 for a fraction κ of the specialized goods in production in date t0.

10.1 A transient drop in productivity.

Consider first a 10% drop in productivity that affects 25% of the goods in t0 (ζ = 0.9, κ = 0.25)

with productivity returning to normal in t0 + 1. Impacted goods are supply-constrained in

t0 and from (76) each lower their output by 10% (Q
ζ†
t0 = ζ − 1). From (77) this means they

raise their price by 10% (P ζ†t0 = −(ζ − 1) + λ5X
∗†
1t0

) which from (78) means no change in

income (Y ζ+t0 = Y †t0). The last equation also means that there is no change in unemployment

compensation for t0, and the elements of z
†
t are determined by equations (90)-(98) for all t.

With reduced production of the impacted goods and no increase in the production of any

other goods, real GDP in t0 falls by Q
†
t0 = (1 − α1)κ(ζ − 1) + α1λ5X

∗†
1t0 with X

∗†
1t0 = 0, and

then returns exactly to the steady-state growth path in t0 + 1.

The time paths of key variables are shown in the solid green curves in Figure 6. Apart from

lacking the modest effects on n1,t0+1 arising from the lower unemployment compensation in t0

in Example 9.1, the effects of a productivity shock in Figure 6 are essentially the same as those

of a demand shock in Figure 5. Note in particular we could not use measured productivity

as a way to distinguish between demand and supply shocks. In Example 9.1, productivity

of impacted goods falls by Q†jt0 − N
†
jt0

= (χ − 1), whereas in Example 10.1, productivity of

impacted goods falls by Q†jt0 −N
†
jt0

= (ζ − 1). One could not tell by looking at the behavior

of output, employment, or productivity whether output fell because it is harder to produce

the good or because fewer people want to buy it. The one variable that could be used to

distinguish these two shocks is the relative price in Panel F of Figures 5 and 6. A demand

shock results in lower output and lower price, whereas a supply shock results in lower output

and higher price.

10.2 A transient increase in productivity.

Consider next the case in which a fraction κ = 0.25 of the goods in production at t0 experience

a 10% increase in productivity (ζ = 1.1), with conditions again returning to normal beginning

in t0 + 1. Although more goods could be produced in t0, no one has an incentive to do so,

since Q̄jt0/2 is still the profit-maximizing level of production. There is no incentive to change

prices, and no incentive to make any changes for the future since conditions at t0 + 1 will be
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back to steady state. Thus in this example, the increase in productivity has no effect on any

real or nominal variable at any date.

10.3 A persistent decrease in productivity.

Even if a drop in productivity is persistent, according to equation (78) it would not lead to a

change in the relative income received by producers of the impacted goods. This is because

(78) is derived from a linearization around the steady-state growth path. Along the steady-

state growth path, the elasticity of demand is unity meaning that the decrease in output equals

the increase in price. As the productivity shock becomes larger, the elasticity of demand is

pushed above unity, and the linearization becomes less accurate. If we wanted to examine the

effects of a very large shock to productivity, we should use the exact expression for income

(64) instead of the linearization (78). Apart from general-equilibrium feedback arising from

changes in n1t or Q1t, the direct effects of either demand shocks χjt or supply shocks ζjt on

income Yjt in (64) come through their implications for Qjt or Q̄jt: Yjt ∝ Qjt(Q̄jt − Qjt). In

the case of a demand shock hitting a demand-constrained good, Qjt = Q̄jt/2 = χjtHtn
0
jX

0
1tNt.

When n1t = n01, this means Yjt ∝ χ2jt and ∆ log Yjt = 2∆ logχjt. Hence the coefficient on χ
†
jt

in the linearization (78) is in fact the same as the coefficient in an exact representation, since

log Yjt is an exact linear function of logχjt in the demand-constrained case.

By contrast, in the case of a productivity shock hitting a supply-constrained good, Qjt =

njtNtζjtX
0
jt and Q̄jt = 2Htn

0
jX

0
jtNt. Thus when njt = n0j and n1t = n01, we have Yjt ∝ ζjt(2−ζjt)

and

∆ log Yjt = log[ζjt(2− ζjt)]. (113)

For the 10% productivity drop in Example 10.1, ∆ log Yjt = log[(0.9)(1.1)] = −0.01, a little

below the value of zero assumed in the linearization.

To examine the effects of larger productivity drops, we can use (113) instead of the linear

approximation ∆ log Yjt ≃ 0. In this case we would describe unemployment compensation in

t0 by

C†t0 = κ log[ζ(2− ζ)] + Y †t0 − λ2X
∗†
1t0 −

1

n01(1− n
0
1)
n†1t0.

If the productivity shock persists for D periods, the relative income and lifetime advantage of

impacted relative to nonimpacted goods

Y ζ†t = log[ζ(2− ζ)] + Y †t

Ṽ ζ†t = Ṽ †t + βXt0+D−t log[ζ(2− ζ)]

for βXt given by (112) and t = t0, ..., t0 + D − 1. For ζ = 0.5, log[ζ(2 − ζ)] = −0.29 and a

productivity shock of this size that persisted for D = 8 periods would not be sufficiently big to

persuade workers to surrender their specialty. However, an 80% drop in productivity (ζ = 0.2)
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that lasted for 8 periods would induce production of impacted goods to be discontinued. This

is indicated by the solid black curves in Figure 6. Note that in order to scale this example so

that the period t0 shock to GDP is the same as in the other examples, we assume that the

fraction of goods experiencing the 80% drop in productivity is κ = 0.03. Although the overall

patterns are similar to those in the persistent demand Example 9.3, the effects for t > t0 are

smaller because a smaller fraction of specialized workers are displaced.

11 Discussion.

In order to focus as clearly as possible on the role of specialization in determining the level of

economic activity, this paper abstracted from many details that play a key role in economic

fluctuations. Here labor was the only input, with specialization taking the form of training

and assembling a dedicated team of workers. Specialized capital is an even more important

commitment for most businesses (Ramey and Shapiro, 1998 and 2001). Production moreover

typically depends on inputs purchased from other firms that themselves specialize to be able to

provide those goods or services, amplifying the forces studied here through network connections

(Baqaee, 2018 and Baqaee and Farhi, 2019). This paper completely ignored financial frictions,

even though they appear to be a key factor in many economic downturns. And although

nominal frictions played no role in this model, they could well be an additional factor in

amplifying economic downturns.

By focusing on just a single source of specialization and a single technological friction, the

hope was to shed light on the interaction between specialization and demand as a fundamental

short-run determinant of the level of GDP.
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Table 1. Ranges and derivatives of key variables.

Variable Value at Value at Sign of Steady-state
Zt logX∗

1t = Rt logX∗

1t = St ∂Zt/∂ logX
∗

1t derivative
(1) logX∗

1t Rt St > 0
(2) log(1− h1t) −∞ 0 > 0 λ2 =

1
logX∗0

1t
−Rt

(3) log X̃1t
St+Rt
2 St > 0 λ3 =

logX∗0

1t
−Rt

St−Rt

(4) X̂1t
exp(St)−exp(Rt)

St−Rt
0 < 0

(5) log X̂1t > St+Rt
2 −∞ < 0 λ5 =

−X∗0

1t

X̂0

1t
(St−Rt)

(6) hY t −∞ ∞ > 0

(7) Ṽt finite −∞ < 0

Table 2. Parameter values used in baseline calculations.

Exogenous parameters

parameter meaning

α1 = 0.4 steady-state expenditure share of good 1
τ = 0.02 marginal tax rate
β = 0.995 discount rate
kU = 0.2 utility cost of trying to create new good
kπ = 0.25 probability of successfully creating new good
kX = 0.02 fraction of goods discontinued each period in steady state
n = 0.0025 population growth rate
Rt0 = 1 initial lowest log productivity of unskilled workers
St0 = 2 initial highest log productivity of unskilled workers

Derived parameters

parameter meaning

λ2 = 8.668 elasticity of unskilled unemployment (1− h1t) with respect to threshold X∗

1t

λ3 = 0.1154 elasticity of flow-value of unskilled X̃1t with respect to threshold X∗

1t

λ5 = −0.7032 elasticity of productivity of unemployed X̂1t with respect to threshold X∗

1t

λH = −0.1281 semi-elasticity of demand parameter Q̄jt with respect to fraction of unskilled n1t

Steady-state values of endogenous variables

variable meaning

n01 = 0.4436 fraction of population without skills
logX∗0

1t0 = 1.1154 initial productivity threshold for unskilled workers to produce good 1
1− h01 = 0.1154 fraction of unskilled workers who are unemployed
u0 = 0.0512 fraction of population who are unemployed
π0 = 0.2082 probability of successfully becoming specialized in an existing good

Ṽ 0 = 4.8032 discounted lifetime log income differential between skilled and unskilled
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Figure 1. Individual utility and demand curves. 

Notes to Figure 1.  Top panel: logarithmic preferences and quadratic approximation.  Bottom panel: 
demand curve associated with quadratic preferences. 

Figure 2. Market demand curves. 

Notes to Figure 2.  Top panel: market demand and marginal revenue.  Bottom panel: effects of shifts in 
��� and ���. 
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Figure 3. Benefit of creating new good versus specializing in existing good. 

 

Notes to Figure 3.  Horizontal axis: expected advantage of specialization (������	).  Vertical axis: benefit 
to trying to create new good (solid black) and of specializing in existing good for two different values of 
��� (dashed red and dotted blue). 

Figure 4. Value of specialization solved in terms of ℎ
� and �	�
∗ (ℎ
�). 

 

Notes to Figure 4.  Each value of ℎ
� implies a steady-state fraction of unskilled labor and thus particular 
values of �	�

∗ (ℎ
�) and �� (ℎ
�, �	�
∗ (ℎ
�)).  Each point on the horizontal axis corresponds to a particular 

value of ℎ
� and its implied �	�
∗ (ℎ
�) and �� (ℎ
�, �	�

∗ (ℎ
�)) with that value of ��  plotted on the horizontal 
axis.  Thus ℎ
� is decreasing and �	�

∗  increasing as we move to the right along the horizontal axis.  The 
vertical axis plots the value of trying to create a new good (in black) or seeking to specialize in an existing 
good (in dashed red) as a function of that �� (ℎ
�, �	�

∗ (ℎ
�)).  The two panels correspond to different 

parameter configurations depending on whether �� (1, �	�
∗ (1)) is positive (top panel) or nonpositive 

(bottom panel).  
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Figure 5. Effects of demand shocks. 

Notes to Figure 5.  Horizontal axis: number of periods since �
.  Vertical axis: difference of variable from 
value on the steady-state growth path.  Panel A: fraction of population without a high-skilled, high-paying 

job (�	�
�

). Panel B: lifetime advantage of specializing in goods that do not experience demand shock 

(���
�). Panel C: fraction of unskilled workers who are unemployed (−ℎ	�

�
). Panel D: lifetime advantage of 

specializing in goods that experience demand shock (���
��).  Horizontal lines in Panel D indicate levels at 

which goods cease production after �
 if �����	
��  is below that value. Panel E: log of real GDP (��

�
). A value 

of -0.015 on the vertical axis represents a 1.5% drop in real GDP.  Panel F: log of relative price that 

would maximize profits for goods that experience demand shocks (���
��

).  Solid green (Example 9.1): 

25% of specialized goods experience 10% drop in demand that only lasts for period �
.  Dashed blue 
(Example 9.2): 25% of specialized goods experience 10% increase in demand that only lasts for period �
.  
Solid black (Example 9.3): 5% of specialized goods experience 50% drop in demand that would last for 8 
periods if goods remained in production.  Dotted red (Example 9.4): same as Example 9.3 except with 
lower level of technological frictions (�� = 0.6).  Solid cyan (Example 9.5): 25% of specialized goods 
and all newly created goods experience a 10% drop in demand that lasts for 5 periods. 

. 

  



39 

 

Figure 6. Effects of productivity shocks. 

 

Notes to Figure 6.  Horizontal axis: number of periods since �
.  Vertical axis: difference of variable from 
value on the steady-state growth path.  Panel A: fraction of population without a high-skilled, high-paying 

job (�	�
�

). Panel B: lifetime advantage of specializing in goods that do not experience productivity shock 

(���
�). Panel C: fraction of unskilled workers who are unemployed (−ℎ	�

�
). Panel D: lifetime advantage of 

specializing in goods that experience productivity shock (���
��).  Horizontal lines in Panel D indicate 

levels at which goods cease production after �
 if �����	
��  is below that value. Panel E: log of real GDP 

(��
�

). Panel F: log of relative price that would maximize profits for goods that experience productivity 

shocks (���
��

).  Solid green (Example 10.1): 25% of specialized goods experience 10% drop in 

productivity that only lasts for period �
.  Dashed blue (Example 10.2): 25% of specialized goods 
experience 10% increase in productivity that only lasts for period �
.  Solid black (Example 10.3): 3% of 
specialized goods experience 80% drop in productivity that would last for 8 periods if goods remained in 
production. 



Appendix A. Proofs of propositions
Proof of Proposition 1.

Substituting expressions (4)-(5) into (6),

αjt
(q0kjt)

2
(2q0kjt − qijt) = λitPjt i ∈Mkt, j ∈ Jt.

Averaging across all individuals in Mkt and using (9) gives αjt/q
0
kjt = λktPjt for λkt =

�
i∈Mkt

λit/Rkt. Summing over j ∈ Jt and using
�

j∈Jt
αjt = 1 gives λkt =

��
j∈Jt

Pjtq
0
kjt

�−1
=

�
Rkt/

�
i∈Mkt

yit
�
establishing the claim.

Proof of Proposition 2.

Let z ∼ U(R, S): f(z) = (S −R)−1 for z ∈ [R,S]. Then:

(a)

P (z ≥ z∗) =

� S

z∗

1

S −R
dz =

z

S −R

����
S

z∗
=

S − z∗

S −R
;

(b)

z̃ = E(z|z ≥ z∗)P (z ≥ z∗) + z∗P (z < z∗)

=

� S

z∗

z

S −R
dz + z∗

� z∗

R

1

S −R
dz =

1

S −R

z2

2

����
S

z∗
+

z∗

S −R
z|z

∗

R

=
S2 − z∗2

2(S −R)
+
z∗(z∗ −R)

S −R
=

S2 − 2Rz∗ + z∗2

2(S −R)

dz̃

dz∗
=
2z∗ − 2R

2(S −R)
> 0 ∀z∗ > R;

(c) � S

z∗

exp(z)

S −R
dz =

exp(z)

S −R

����
S

z∗
=
exp(S)− exp(z∗)

S −R
;

(d)

h1,t+1 =
St+1 − logX

∗
1,t+1

St+1 −Rt+1
=

St + g − (logX∗
1t + g)

(St + g)− (Rt + g)
=

St − logX
∗
1t

St −Rt
= h1t;

(e)

log X̃1,t+1 =
(St + g)2 − 2(Rt + g)(logX∗

1t + g) + (logX∗
1t + g)2

2[(St + g)− (Rt + g)]

=
S2t − 2Rt logX

∗
1t + (logX

∗
1t)

2

2(St −Rt)
+
2Stg + g2 − 2g logX∗

1t − 2gRt − 2g
2 + 2g logX∗

1t + g2

2(St −Rt)

= log X̃1t +
g(2St − 2Rt)

2(St −Rt)
= log X̃1t + g;
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(f)

X̂1,t+1 =
exp(St + g)−X∗

1t exp(g)

(St + g)− (Rt + g)
= exp(g)

�
exp(St)−X∗

1t

St −Rt

�
= exp(g)X̂1t.

Proof of Proposition 3.

Write expression (50) as
1− n1t
n1t

=
kπ

kXen
(1− h1t)h0t (A1)

and substitute this result into (41):

Ṽ (h0t,X
∗
1t) =

�
1

1− β(1− kX)

�	
log

�
(1− τ )(1− α1)

α1

�

− log

�
kπ

kXen

�
− log(1− h1t)− log h0t + log X̂1t − log X̃1t



. (A2)

Condition (44) can be written

hY t(X
∗
1t) = −kU + kπβṼ (h0t,X

∗
1t) (A3)

where hY t(X
∗
1t) denotes the function of X∗

1t given in (43).

From rows (2) and (5) of Table 1, as logX∗
1t increases from Rt to St, the left side of (A3)

monotonically increases from −∞ to ∞. For fixed h0t > 0, the right side monotonically

decreases from∞ to −∞. Thus given any h0t ∈ (0, 1), there exists a unique logX
∗
1t ∈ (Rt, St)

at which condition (A3) holds, that is, for which conditions (50) and (44) simultaneously hold.

Denote this solution X∗
1t(h0t).

From (A2), a larger value of h0t lowers the right side of (A3) and thus is associated with

a lower value of X∗
1t: ∂X∗

1t(h0t)/∂h0t < 0. As h0t → 0, − log h0t → ∞ and log(X∗
1t(h0t)) is

driven to St. Since hY t(X
∗
1t) in (43) is monotonically increasing in X∗

1t and since X∗
1t(h0t) is

monotonically decreasing in h0t, it follows that hY t(X
∗
1t(h0t)) is a monotonically decreasing

function of h0t. By the definition of X∗
1t(h0t), we know that

hY t(X
∗
1t(h0t)) = −kU + kπβṼ (h0t,X

∗
1t(h0t)) (A4)

holds for all h0t. Monotonicity of the left side of (A4) as a function of h0t implies that the

right side is also a monotonically decreasing function of h0t.

Next consider the incentives for applying for a position with continuing enterprises. Sub-

stituting (A1) into (47),

πt(h0t) = max

	
(1− kX)(1− e−n)kπ

kX

h0t
(1− h0t)

, 1



, (A5)
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allowing us to write (48) as

− kU + βkπṼ (h0t, X
∗
1t(h0t)) = βπt(h0t)Ṽ (h0t, X

∗
1t(h0t)). (A6)

Recalling that Ṽ (h0t, X
∗
1t(h0t)) is a monotonically decreasing function of h0t, consider two

cases. Suppose first that Ṽ (h0t, X
∗
1t(h0t)) is positive at its lowest point (h0t = 1). Note from

(A5) that πt = 1 at this point. With Ṽ positive and πt = 1 > kπ, the right side of (A6)

must be larger than the left side at the lowest possible value for Ṽ , namely Ṽ (1, X∗
1t(1)).

As h0t decreases below 1, Ṽ monotonically increases and πt monotonically decreases, the

latter eventually reaching 0 as h0t → 0. Thus there exists a unique value h00t ∈ (0, 1) at

which (A6) holds; see the top panel of Figure 4. Call this value h̄0t. This value implies a

unique X∗
1t(h̄0t), a unique h1t(X

∗
1t(h̄0t) and thus a unique n1t(h̄0t) from (A1). By construction

(X∗
1t(h

0
0t, n1t(h

0
0t), h

0
0t) satisfy (49), (48) and (50).

Alternatively, suppose that Ṽ (1,X∗
1t(1)) is negative (see the bottom panel of Figure 4).

Since Ṽ is monotonically decreasing in h0t and goes to ∞ as h0t → 0, there exists a unique

h̄0t ∈ (0, 1) at which Ṽ (h̄0t, X
∗
1t(h̄0t)) = 0. At this point the right side of (A6) is zero and the

left side is negative. As h0t decreases below h̄0t, the value of Ṽ increases without bound while

the magnitude πt(h0t) eventually goes to 0. Thus there again exists a unique h00t for which

condition (A6) holds and for which (X∗
1t(h

0
0t, n1t(h

0
0t), h

0
0t) simultaneously satisfies (50), (48)

and (44).

Proof of Proposition 4.

(a) Let (X∗
1t0 , n

0
1, h

0
0) be the unique solution to (44), (48) and (50) for date t0. Then

(egX∗
1t0
, n01, h

0
0) solve these three equations for date t0 + 1, as can be verified as follows. From

proposition 2d-f, X∗
1,t0+1

= egX∗
1t0

would imply h1,t0+1 = h01, log X̂1,t0+1 = g + log X̂1t0 and

log X̃1,t0+1 = g+log X̃1t0 establishing from (43) that hY,t0+1 = hY t0 and from (41) that Ṽt0+1 =

Ṽt0 . Hence (44), (48) and (50) are all satisfied at date t0 + 1, confirming that (e
gX∗

1t0
, n01, h

0
0)

is the solution. By induction, (eg(t−t0)X∗
1t0 , n

0
1, h

0
0) is the solution for all t.

(b) Of the J2t0 = kJ/kX goods at initial date t0, kXJ2t0 = kJ will no longer be produced

beginning in t0 + 1. And since h0t0 > 0, kJ new goods (one of each type) will begin being

produced in t0 + 1. Thus J2,t0+1 = J2t0 and by induction J2t is constant for all t.

(c) Along the steady-state growth path, a fraction (1 − α1)(1 − τ) of total income Ȳt is

earned by skilled workers and the remaining [α1 + τ(1− α1)]Ȳt is received by unskilled. Each

of these groups on average spends a fraction αjt of their income on good j. Since njtNtXjt

units of good j get produced, (1 − α1)(1 − τ )njtNtXjt units of good j are consumed by the

skilled and the remaining [α1 + τ(1− α1)]njtNtXjt by unskilled. Dividing the first expression

by the total number of skilled workers (1 − n1t)Nt gives result (c). Result (i) below verifies

that this is in fact the same number for all skilled workers.

(d) Dividing unskilled total spending on j, [α1+τ (1−α1)]njtNtXjt, by the total number of
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unskilled n01Nt gives result (d). Since productivities xit are drawn independently over time, this

is the average unskilled spending and is the level of consumption q0njt along the steady-state

growth path.

(e) With njt = n0j , consumption of good j per individual in (52)-(53) grows at rate g so

that total consumption Qjt grows at g + n and equals total production in (45). Constant n0j
also implies constant αj in (34).

(f) The ratio of nominal spending on good j to that for good 1 is (PjtQjt)/(P1tQ1t) = αj/α1.

Since Qjt = n0jNtXjt, Pjt/P1t = (αjn1tX̂1t)/(α1n
0
jXjt). Since X̂1t and Xjt both grow at rate

g, the ratio X̂1t/Xjt is constant over time.

(g) This follows immediately from applying results (c) and (d) to expression (8).

(h) Total spending on good j is PjtQjt = αjYt, so the after-tax income per person producing

good j is
(1− τ )PjtQjt

njtNt
=

αjtYt(1− τ)

njtNt
. (A7)

Equation (51) establishes that at date t0 this magnitude is

(1− τ)Pjt0Qjt0

njt0Nt0

=
Yt0(1− τ )(1− α1)

(1− n01)Nt0

which is the same for all j ∈ J2t0 . Thus the stated initial conditions imply that all skilled

workers earn the same income at date t0. The income for a worker producing good j at date

t is PjtXjt, which from result (f) is eg(t−t0) times the income that individual received at date

t0, the same constant factor for each j.

For goods that are produced for the first time in period t, substituting condition (33) into

(A7) gives
(1− τ )PjtQjt

njtNt
=
(1− α1)Yt(1− τ)

(1− n01)Nt
j ∈ J ♯

2t,

which is the same for each j ∈ J ♯
2t and the same as the income received by those producing

continuing specialized goods.

Proof of Proposition 5.

(a) Note that

q̄ijt =

�
χjtq

0
sjt for i ∈ Mst

χjtq
0
njt for i ∈Mnt

where Mst andMnt denote the sets of skilled and unskilled workers, respectively. From (4),

q̄ijt = 2χjtq
0
ijt, (8), and Proposition 4c-e:

Q̄jt = 2χjt[n1tq
0
njt + (1− n1t)q

0
sjt]Nt = 2χjtHtn

0
jX

0
jtNt (A8)

Ht =
n1t[α1 + τ (1− α1)

n01
+
(1− n1t)(1− α1)(1− τ)

1− n01
= 1 + λH(n1t − n01).
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(b) This simply restates (25) and (11).

(c) For γijt = ξjtαjt/(q
0
ijt)

2 and q̄ijt = 2χjtq
0
ijt consumer i’s first-order condition (6) is

ξjtαjt
(q0ijt)

2
(2χjtq

0
ijt − qijt) = λitPjt. (A9)

From (52)-(54),
q0ijt
q0i1t

=
n0jX

0
jt

n01X̂
0
1t

=
α0jP

0
1

α1P 0
j

,

allowing (A9) to be written

ξjtαjt(2χjtq
0
ijt − qijt) = λitPjt

�
α0jP

0
1

α1P 0
j


2
(q0i1t)

2. (A10)

From (A8),
�
2χjtq

0
ijtdi = Q̄jt. Thus integrating (A10) over i gives

ξjtαjt(Q̄jt −Qjt) = ΛtPjt

�
α0jP

0
1

α1P 0j


2
(A11)

for Λt =
�
λit(q

0
i1t)

2di. Dividing (A11) by its value for j = 1,

ξjtαjt(Q̄jt −Qjt)

α1(Q̄1t −Q1t)
=

�
α0jP

0
1

α1P 0j


2�
Pjt
P1t



.

Rearranging gives (60).

As a special case of this expression, at a point on the steady-state path, ξjt = 1 and (Q̄jt−

Qjt) = n0jNtX
0
jt, for which (60) would become Pjt/P1t = (P

0
j /P

0
1 )
2(α1n

0
jNtX

0
jt)/(α

0
jn
0
1NtX̂

0
1t) =

P 0j /P
0
1 with the last equality following from (54).

(d) This is obtained by taking the ratio of (33) or (34) to the steady-state value.

(e) Expression (63) follows from (57):

Q̄j,t+1/2

Xj,t+1
=

χj,t+1Ht+1n
0
jX

0
j,t+1Nt+1

Xj,t+1
= χj,t+1Ht+1

�
X0
j,t+1

Xj,t+1



N0
j,t+1.

(f) From (60) and (61),

Yjt = (1− τ )P1t

�
P 0
j

P 0
1


2�
α1
α0j


�
njt(1− n01)

n0j(1− n1t)



ξjt

�
Q̄jt −Qjt

Q̄1t −Q1t

�
Qjt

njtNt
. (A12)

From (54) we know

P 0j
P 01

=
α0jn

0
1X̂

0
1t

α1n0jX
0
jt

=
α0jQ

0
1t

α1Q0
jt

(A13)
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allowing (A12) to be written

Yjt
P1t

= (1− τ)
Q0
1t

Q0
jt

P 0j
P 01

1− n01
1− n1t

ξjt

�
Q̄jt −Qjt

Q̄1t −Q1t

�
Qjt

n0jNt
. (A14)

Using (56) we can also conclude from (A13) that P 0
j /P

0
1 = [(1 − α1)n

0
1X̂

0
1t]/[α1(1 − n01)X

0
jt].

Substituting this into (A14) and rearranging,

Yjt
P1t

= (1− τ )
(1− α1)n

0
1

α1(1− n01)

1− n01
1− n1t

ξjt
(Q̄jt −Qjt)/Q

0
jt

(Q̄1t −Q1t)/Q0
1t

Qjt

n0jNtX0
jt

X̂0
1t. (A15)

Along the steady-state growth path, n1t = n01, ξjt = 1, Q̄jt −Qjt = Q0
jt, Q̄1t −Q1t = Q0

1t, and

Q0
jt = n0jNtX

0
jt. Thus from (A15) the steady-state real income of skilled workers is given by

(65). Substituting (65) into (A15) gives (64).

Results (g)-(k) restate expressions from elsewhere in the paper.

(l) Notice from α0j = P 0
jtQ

0
jt/
�

j∈Jt
P 0jtQ

0
jt that

Qt =

�
j∈Jt

P 0
jtQ

0
jt(Qjt/Q

0
jt)�

j∈Jt
P 0jtQ

0
jt

=
�

j∈Jt
α0j(Qjt/Q

0
jt).

Recall also that for j ∈ J2t, Q
0
jt = n0jNtX

0
jt and from (56) that α0j/n

0
j = (1 − α1)/(1 − n01).

Using these results along with (25) we conclude that

�
j∈Jt

α0j(Qjt/Q
0
jt) =

�
j∈J2t

�
α0j
n0j


�
Qjt

NtX0
jt



+ α1

�
Q1t

Q0
1t




=

�
1− α1
1− n01


�
j∈J2t

�
Qjt

NtX0
jt



+

�
α1
n01


�
X̂1t

X̂0
1t

�

n1t.

Note that if χjt = ζjt = 1 and Qjt = Q̄jt/2, then Qjt = Htn
0
jNtX

0
jt so Qjt/(NtX

0
jt) = Htn

0
j

and (73) becomes (74).
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Appendix B. Details on adjustment dynamics (online)
Define w†t = logwt − logw

0
t for wt = Q̄jt, Qjt, X

∗
1t, Yjt, Ct, Xjt, Qt, χjt, ξjt, ζjt (recalling that

logQ0
t = logχ

0
jt = log ξ

0
jt = 0); w

†
t = wt − w0 for wt = αjt, njt, h0t, Ṽjt; P

†
jt = log(Pjt/P1t) −

log(P 0jt/P
0
1t); Ỹ

†
jt = log Yjt − log Y

0
jt − [log(P1tX

∗
1t) − log(P

0
1tX̃

0
1t)]; λ2, λ3, λ5 the derivatives in

Table 1, λH the derivative in Proposition 5a.

Linearized version of Proposition 5.

Evaluating derivatives of Proposition 5 along the steady-state growth path and taking

deviations from steady state results in

Q̄†
jt = χ†jt + λHn

†
1t j ∈ Jt (B1)

Q†
1t =

1

n01
n†1t + λ5X

∗†
1t (B2)

Q†
jt =






χ†jt + λHn
†
1t if j ∈ J2t and Q̄jt/2 ≤ njtNtXjt

n†jt
n0j
+ ζ†jt if j ∈ J2t and Q̄jt/2 > njtNtXjt

(B3)

P †jt =
α†jt
α0j
+ ξ†jt + 2χ

†
jt −Q†

jt +
n†1t
n01
+ λ5X

∗†
1t j ∈ J2t (B4)

α†jt
α0j

=
n†jt
n0j
+

1

1− n01
n†1t j ∈ J2t (B5)

n†j,t+1 =

�
n0jχ

†
j,t+1 + n0jλHn

†
1,t+1 − n0jζ

†
j,t+1 if j ∈ J ♮

2t and Q̄j,t+1/2 ≥ Xj,t+1Njt

n†jt − n if j ∈ J ♮
2t and Q̄j,t+1/2 < Xj,t+1Njt

(B6)

Y †
jt = ξ†jt +

1

n01(1− n01)
n†1t + 2χ

†
jt + λ5X

∗†
1t j ∈ J2t (B7)

Ṽ †
jt = Y †

jt − λ3X
∗†
1t + β(1− kX)Ṽ

†
j,t+1 j ∈ J2t. (B8)

To derive result (B4) we used the fact that for all j ∈ Jt, Q̄
0
jt = 2Q

0
jt establishing

log(Q̄jt −Qjt) ≃ logQ
0
jt +

1

Q0
jt

[(Q̄jt − Q̄0
jt)− (Qjt −Q0

jt)]

= logQ0
jt +

2

Q̄0
jt

(Q̄jt − Q̄0
jt)−

Qjt −Q0
jt

Q0
jt

= logQ0
jt + 2Q̄

†
jt −Q†

jt (B9)

P †jt =
α†jt
α0j
+ ξ†jt + 2Q̄

†
jt −Q†

jt − 2Q̄
†
1t +Q†

1t.

Result (B4) then follows from (B1) and (B2). Similarly to derive (B7) we used (B9) along
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with

Y †
jt = ξ†jt +

1

1− n01
n†1t +Q†

jt + 2Q̄
†
jt −Q†

jt − 2Q̄
†
1t +Q†

1t.

For Ỹjt = log Yjt − log(P1tX̃1t) and Ỹ †
jt = Y †

jt − X̃†
1t = Y †

jt − λ3X
∗†
1t it follows from (B7) that

Ỹ †
jt = ξ†jt + 2χ

†
jt +

1

n01(1− n01)
n†1t + (λ5 − λ3)X

∗†
1t j ∈ J2t. (B10)

Details for Examples 9.1-9.4.

Summary of linearized system. The equations represented by (99) are :

− n♯†t+1 − n♮†t+1 = n†1,t+1 (B11)

Ṽ †
t − Y †

t + λ3X
∗†
1t = β(1− kX)Ṽ

†
t+1 (B12)

(1− kX)n̄
†
t + n♯†t+1 = n̄†t+1 (B13)

1

n01(1− n01)
n†1t − Y †

t + λ5X
∗†
1t = 0 (B14)

1

n01(1− n01)
n†1t − Y †

t + C†
t + λ2X

∗†
1t = 0 (B15)

− C†
t +X∗†

1t = βkπṼ
†
t+1 (B16)

− C†
t +X∗†

1t − βṼ 0π†t = βπ0Ṽ †
t+1 (B17)

e−nkπ

�
1− h01 −

1− kX
π0

�
n†1t + e−n(1− h01)n

0
1kπλ2X

∗†
1t (B18)

+
[n♮0 − e−n(1− kX)(1− n01)]kπ

(π0)2
π†t − n♯†t+1 −

kπ
π0

n♮†t+1 = 0

− (1− kX)n̄
†
t + n♮†t+1 = (1− kX)(1− n01)λHn

†
1,t+1 (B19)

B =






0 0 0 0 0 0 0 −1 −1

0 1 0 −1 0 λ3 0 0 0

0 0 1− kX 0 0 0 0 1 0
1

n0
1
(1−n0

1
)
0 0 −1 0 λ5 0 0 0

1
n0
1
(1−n0

1
)
0 0 −1 1 λ2 0 0 0

0 0 0 0 −1 1 0 0 0

0 0 0 0 −1 1 −βṼ 0 0 0

b81 0 0 0 0 b86 b87 −1 −kπ/π
0

0 0 −(1− kX) 0 0 0 0 0 1






(B20)
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b81 = e−nkπ

�
1− h01 −

1− kX
π0

�
(B21)

b86 = e−n(1− h01)n
0
1kπλ2 (B22)

b87 =
[n♮0 − e−n(1− kX)(1− n01)]kπ

(π0)2
(B23)

A =






1 0 0

0 β(1− kX) 0

0 0 1

0 0 0

0 0 0

0 βkπ 0

0 βπ0 0

0 0 0

(1− kX)(1− n01)λH 0 0






. (B24)

For Examples 9.1-9.2, M = 1, ż†1t = z†1t, ż
†
2t = z†2t, Ḃt0 = B, Ȧt0 = A, ċt0 = (0, 0, 0, 0,−2(χ −

1)κ, 0, 0, 0, 0)′. Examples 9.3 and 9.4 are the same except

ċ3t0 = −κ(1− kX)(1− n01)

ċ5t0 = −2(χ− 1)κ

ċ8t0 =
−κ(1− kX)(1− n01)kπ

π0

ċ9t0 = κ(1− kX)(1− n01)

ḃ′8t0 = b′8t0 + (κe
−n(1− kX)kπ/π

0, 0, 0, 0, 0, 0, κe−n(1− kX)(1− n01)kπ/(π
0)2, 0, 0)

ḃ′9t0 = b′9t0 + (0, 0, κ(1− kX), 0, 0, 0, 0, 0, 0)

ȧ′9t0 = a9t0 + (−κ(1− kX)(1− n01)λH , 0, 0)

where for example ḃ′8t0 and b′8t0 denotes the 8th rows of Ḃt0 and Bt0 , respectively.

Details of solution algorithm. Expression (102) can be written in partitioned form as





Ȧ11,t
(3×3)

Ȧ21,t
(6×3)




 ż†1,t+1 =





Ḃ11,t
(3×3)

Ḃ12,t
(3×6)

Ḃ21,t
(6×3)

Ḃ22,t
(6×6)






�
ż†1t
ż†2t

�

+






ċ1t
(3×1)

ċ2t
(6×1)




 . (B25)
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Premultiplying by
�
I3 −Ḃ12,tḂ

−1
22,t

�
results in

Â11,t
(3×3)

ż†1,t+1
(3×1)

= B̂11,t
(3×3)

ż†1t
(3×1)

+ ĉ1t
(3×1)

(B26)

where B̂11,t = Ḃ11,t − Ḃ12,tḂ
−1
22,tḂ21,t, Â11,t = Ȧ11,t − Ḃ12,tḂ

−1
22,tȦ21,t, ĉ1t = ċ1t − Ḃ12,tḂ

−1
22,tċ2t.

Expression (B26) can in turn be written as (103) for Φ̇t = Â−111,tB̂11,t, ėt = Â−111,tĉ1t. Analogous

operations allow us to rewrite (99) in the form (100).

Expression (103) implies that

ż†1,t0+M = Λ̇M ż
†
1t0 + ġM . (B27)

Here Λ̇m and ġM are found by iterating on Λ̇ℓ = Φ̇t0+ℓ−1Λ̇ℓ−1 for ℓ = 1, ...,M starting from

Λ̇0 = I3 and ġℓ = ėt0+ℓ−1+Φ̇t0+ℓ−1ġℓ−1 starting from ġ0 = 0. Let v1 and v2 be the eigenvectors

of Φ in (100) associated with the eigenvalues below 1. The rational-expectations solution

requires z†1,t0+M = δ1v1 + δ2v2 for some scalars δ1 and δ2. Recall that for Examples 9.1-9.4,

ż†t = z†t and partition Λ̇M =
�
λ̇M1 λ̇M2 λ̇M3

�
. The rational-expectations solution thus

requires

λ̇M1n
†
1t0
+ λ̇M2Ṽ

†
t0 + λ̇M3n̄

†
t0 + ġM = δ1v1 + δ2v2

�
v1 v2 −λ̇M2

�





δ1

δ2

Ṽ †
t0




 = λ̇M1n

†
1t0
+ λ̇M3n̄

†
t0 + ġM






δ1

δ2

Ṽ †
t0




 =

�
v1 v2 −λ̇M2

�−1
(λ̇M1n

†
1t0 + λ̇M3n̄

†
t0 + ġM). (B28)

Given the specified initial values for n†1t0 and n̄
†
t0 , the third element of this vector is the rational-

expectations solution for Ṽ †
t0 . With this we now know z†1t0 = (n

†
1t0
, Ṽ †
t0, n̄

†
t0)

′, and can iterate

on z†1,t+1 = Φ̇tz
†
1t + ėt for t = t0, ..., t0 +M − 1 and on z†1,t+1 = Φz

†
1t for t ≥ t0 +M, thereby

finding the value of z†1t for every t.. From this solution we can then calculate

z†2t = Ḃ−1
22,t(−Ḃ21,tz

†
1t − ċ2t + Ȧ21,tz

†
1,t+1) t = t0, ..., t0 +M − 1

z†2t = B−1
22 (−B21z

†
1t +A21z

†
1,t+1) t = t0 +M, ....

One can verify numerically that the sequences that result from this algorithm generate the

forward-looking solution characterized by

Ṽ †
t = Ỹ †

t + β(1− kX)Ṽ
†
t+1 =

�S−1

s=0
[β(1− kX)]

sỸt+s + [β(1− kX)]
SṼt+s.
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Real GDP for Examples 9.1-9.5. Let J χ
2t denote the set of demand-impacted goods and

J c
2t non-impacted specialized goods. From (57),

Qjt

NtX0
jt

=

�
χHtn

0
j for j ∈ J χ

2t

Htn
0
j for j ∈ J c

2t

.

Thus using (73),

�
j∈J2t

Qjt

NtX0
jt

= Ht

�
χ
�

j∈J χ
2t

n0j +
�

j∈J c
2t

n0j

�
= Ht[χn̄

χ
t + n̄ct ]

Qt =
1− α1
1− n01

Ht[χn̄
χ
t + n̄ct ] +

α1
n01

X̂1t

X̂0
1t

n1t. (B29)

Define Qt(n1t, n̄
χ
t , X

∗
1t) to be the function in (B29), from which

Qt(n
0
1, n

χ
t0 ,X

∗0
1t )− 1 =

1− α1
1− n01

[χnχt0 + n̄ct − (1− n01)]

Q†
t =

1− α1
1− n01

[χnχt0 + n̄ct − (1− n01)] +

�
1− α1
1− n01

(χnχt0 + n̄ct)λH +
α1
n01

�
n†1t (B30)

+
1− α1
1− n01

χn̄χ†t + α1λ5X
∗†
1t .

For t = t0, n1t0 = n01, n
χ
t0 = κ(1 − n01), n̄

c
t0 = (1 − κ)(1 − n01), in which case (B30) becomes

(110) as a special case.

Details for Example 9.5.

Equations characterizing initial dynamics. In this example we need to keep track of the

fraction of the population specializing in impacted and nonimpacted goods (nχt and nct , re-

spectively) and what the fractions would be if each good employed its steady-state level n0j
(n̄χt =

�
j∈J χ

2t
n0j and n̄ct =

�
j∈J c

2t
n0j). The value of n̄ct evolves independently of all other

variables, since goods in Jc2t started out with njt0 = n0j and a fraction kX of these disappear

each period,

n̄ct+1 = (1− kX)n̄
c
t t = t0, ..., t0 +D − 2

starting from n̄ct0 = (1 − κ)(1 − n01). The other three magnitudes (nχt , n
c
t , n̄

χ
t ) influence and

respond to other variables during the initial periods as described below.

Equation (79) is replaced for the initial periods by

n1,t+1 = 1− nχt+1 − nct+1 t = t0, ..., t0 +D − 2. (B31)

B-5



Equation (80) continues to describe the lifetime advantage of nonimpacted goods,

Ṽt = log(Yt/P1t)− log X̃1t + β(1− kX)Ṽt+1 t = t0, t0 + 1, ..., (B32)

while equation (81) is replaced by two new state equations. All newly created goods in this

example enter with initial njt = n0j and impacted demand, and no impacted goods do any new

hiring while demand remains depressed:

n̄χt+1 = (1− kX)n̄
χ
t + n♯t+1 t = t0, ..., t0 +D − 2 (B33)

nχt+1 = e−n(1− kX)n
χ
t + n♯t+1 t = t0, ..., t0 +D − 2. (B34)

Expression (82) continues to describe the income of nonimpacted workers,

Yt/P1t =
Y 0
t (1− n01)H

2
tQ

0
1t

(1− n1t)(2HtQ0
1t − n1tNtX̂1t)

t = t0, t0 + 1, ... (B35)

with income of impacted workers given by

Y χ
t /P1t = χ2Yt/P1t t = t0, ..., t0 +D − 1. (B36)

Unemployment compensation is given by (108):

Ct/P1t =
τ [nct(Yt/P1t) + nχt (Y

χ
t /P1t)]

n1t(1− h1t)
t = t0, ..., t0 +D − 1. (B37)

The income earned from newly created goods for the first D periods is Y χ
t rather than Yt, so

(84) is replaced by

logX∗
1t − log(Ct/P1t) = −kU + βkπṼt+1 + βXt0+D−t−1[logχ

2 − 1] t = t0, ..., t0 +D − 2 (B38)

for βXj given by (112). By contrast, the advantage of specializing in an existing good is still

Ṽt so (85) still holds:

logX∗
1t − log(Ct/P1t) = βπtṼt+1 t = t0, t0 + 1, .... (B39)

Openings while demand is low come only from nonimpacted goods, so (86) becomes Ot =

nct+1e
nNt − (1− kX)n

c
tNt leading (88) to be replaced by

n♯t+1 = e−n(1− h1t)n1tkπ −
[nct+1 − e−n(1− kX)n

c
t ]kπ

πt
t = t0, ..., t0 +D − 2. (B40)

B-6



Equation (89) is replaced by the equation for hiring by nonimpacted goods:

nct+1 = Ht+1(1− kX)n̄
c
t t = t0, ..., t0 +D − 2. (B41)

Linearization of equations for first D−1 periods. Equations (B31)-(B41) comprise a system

of 11 equations in the 11 variables (n1t, Ṽt, n̄
χ
t , n

χ
t , Yt/P1t, Y

χ
t /P1t, Ct/P1t, X

∗
1t, πt, n

♯
t+1, n

c
t+1). To

approximate initial dynamics, we linearize these for t = t0, ..., t0+D− 2 around (n01, Ṽ
0, n̄χt0 =

κ(1 − n01), n
χ
t0 = κ(1 − n01), Y

0
t , Y

0
t , C

0
t ,X

∗0
1t , π

0, ñ♯0, nct0 = (1 − κ)(1 − n01)) for ñ
♯0 the value of

(B40) at the point of linearization:

ñ♯0 = e−n(1− h01)n
0
1kπ −

[1− e−n(1− kX)]n
c
t0kπ

π0
.

Defining ñ♯†t+1 = n♯t+1−ñ
♯0, nc†t = nct−n

c
t0
, nχ†t = nχt −n

χ
t0, n̄

χ†
t = n̄χt −n̄

χ
t0 , and other w

†
t variables

as deviations from their usual steady-state values, the linearized system for t = t0, ..., t0+D−2

is

n†1,t+1 = −n
χ†
t+1 − nc†t+1 (B42)

Ṽ †
t = Y †

t − λ3X
∗†
1t + β(1− kX)Ṽ

†
t+1 (B43)

n̄χ†t+1 = −kXn̄
χ
t0 + ñ♯0 + (1− kX)n̄

χ†
t + ñ♯†t+1 (B44)

nχ†t+1 = [e
−n(1− kX)− 1]n

χ
t0 + ñ♯0 + e−n(1− kX)n

χ†
t + ñ♯†t+1 (B45)

Y †
t =

1

n01(1− n01)
n†1t + λ5X

∗†
1t (B46)

Y χ†
t = Y †

t + 2(χ− 1) (B47)

C†
t = 2(χ− 1)κ−

1

n01(1− n01)
n†1t + Y †

t − λ2X
∗†
1t (B48)

X∗†
1t − C†

t = βkπṼ
†
t+1 + βXt0+D−t−12(χ− 1) (B49)

X∗†
1t − C†

t = βπ0Ṽ †
t+1 + βṼ 0π†t (B50)

ñ♯†t+1 = e−n(1− h01)kπn
†
1t + e−n(1− h01)n

0
1kπλ2X

∗†
1t +

[1− e−n(1− kX)]n
c
t0
kπ

(π0)2
π†t

−
kπ
π0

nc†t+1 +
e−n(1− kX)kπ

π0
nc†t

= e−n(1− h01)kπn
†
1t + e−n(1− h01)n

0
1kπλ2X

∗†
1t +

[1− e−n(1− kX)]n
c
t0
kπ

(π0)2
π†t

−
kπ
π0

nc†t+1 −
e−n(1− kX)kπ

π0
n†1t −

e−n(1− kX)kπ
π0

nχ†t (B51)

nc†t+1 = −n
c
t0
+ (1− kX)n̄

c
t + λH(1− kX)n̄

c
tn
†
1,t+1. (B52)
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To derive (B48) we used

log(Ct/P1t) = log τ + log[n
c
t(Yt/P1t) + nχt (Y

χ
t /P1t)]− log n1t − log(1− h1t)

∂ log(Ct/P1t)

∂nct

����
nct=n

c
t0
,nχt =n

χ
t0
,Yt/P1t=Y

χ
t /P1t=Y

0

t

=
Y 0
t

(nct0 + nχt0)Y
0
t

=
1

1− n01
=

∂ log(Ct/P1t)

∂nχt

����
...

∂ log(Ct/P1t)

∂(Y χ
t /P1t)

����
...

=
nχt0

(nct0 + nχt0)Y
0
t

=
κ

Y 0
t

C†
t =

1

1− n01
(nc†t + nχ†t ) + (1− κ)Y †

t + κY χ†
t −

1

n01
n†1t − λ2X

∗†
1t

= −
1

n01(1− n01)
n†1t + Y †

t + 2(χ− 1)κ− λ2X
∗†
1t

where the last line follows from (B42) and (B47). Note also that since the value of n̄ct is

known exactly for t = t0, ..., t0 +D − 1 and since Ht+1 exactly equals 1 + λH(n1,t+1 − n01), no

approximation was involved in arriving at (B52):

nct+1 = [1 + λH(n1,t+1 − n01)](1− kX)n̄
c
t

nct+1 − nct0 = −n
c
t0
+ (1− kX)n̄

c
t + λH(1− kX)n̄

c
t(n1,t+1 − n01).

Note that since we already substituted out Y χ†
t in writing equations (B48) and (B49),

equation (B47) is unnecessary, and equations (B42)-(B46) and (B48)-(B52) comprise a system

of 10 equations for t = t0, ..., t0 +D − 2 of the form of (102) for ż†′1t = (n
†
1t, Ṽ

†
t , n̄

χ†
t , n

χ†
t ) and

ż†′2t = (Y
†
t , C

†
t , X

∗†
1t , π

†
t , ñ

♯†
t+1, n

c†
t+1) with

Ḃt
(10×10)

=






0 0 0 0 0 0 0 0 0 −1

0 1 0 0 −1 0 λ3 0 0 0

0 0 1− kX 0 0 0 0 0 1 0

0 0 0 e−n(1− kX) 0 0 0 0 1 0
1

n0
1
(1−n0

1
)
0 0 0 −1 0 λ5 0 0 0

1
n0
1
(1−n0

1
)
0 0 0 −1 1 λ2 0 0 0

0 0 0 0 0 −1 1 0 0 0

0 0 0 0 0 −1 1 −βṼ 0 0 0

ḃ91 0 0 ḃ94 0 0 ḃ97 ḃ98 −1 −kπ/π
0

0 0 0 0 0 0 0 0 0 1






ḃ91 = e−nkπ

�
1− h01 −

(1− kX)

π0

�
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ḃ94 = −
e−n(1− kX)kπ

π0

ḃ97 = e−n(1− h01)n
0
1kπλ2

ḃ98 =
[1− e−n(1− kX)]kπn

c
t0

(π0)2

ċt
(10×1)

=






0

0

−kXn̄
χ
t0 + ñ♯0

[e−n(1− kX)− 1]n
χ
t0 + ñ♯0

0

−2(χ− 1)κ

−βXt0+D−t−12(χ− 1)

0

0

nct0 − (1− kX)n̄
c
t






Ȧt
(10×4)

=






1 0 0 1

0 β(1− kX) 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 βkπ 0 0

0 βπ0 0 0

0 0 0 0

λH(1− kX)n̄
c
t 0 0 0






.

Solution algorithm. Given the initial values n†1t0 = n̄χ†t0 = nχ†t0 = 0 and a conjectured

value of Ṽ †
t0, this system implies as in (B27) a value for ż†1,t0+D−1 = Λ̇D−1ż

†
1,t0 + ġD−1 as an

affine function of ż†1,t0 . In period t0 +D − 1, weak demand conditions persist so that C†
t0+D−1

continues to take the form of (B48). But the forward-looking variables anticipate that demand

shocks will be gone in t0+D and a 9-variable system similar to (99) characterizes the relation

between variables in dates t0+D− 1 and t0+D. This system is described by the three state

variables z†′1,t0+D−1 = (n†1,t0+D−1, Ṽ
†
t0+D−1

, n̄†t0+D−1). We know the first two of these from the

first two elements of ż†1,t0+D−1 and the third can be found from the fact that

n̄t0+D−1 = n̄χt0+D−1 + n̄ct0+D−1

n̄t0+D−1 − n̄0 = (n̄χt0 − n̄0) + (n̄χt0+D−1 − n̄χt0) + n̄ct0+D−1
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n̄†t0+D−1 = (n̄
χ
t0 − n̄0) + n̄χ†t0+D−1 + n̄ct0+D−1

= κ(1− n01)− (1− n01) + n̄χ†t0+D−1 + (1− kX)
D−1(1− κ)(1− n01)

= n̄·D−1 + n̄χ†t0+D−1 (B53)

for n̄·D−1 = −[1−(1−kX)
D−1](1−κ)(1−n01). Thus the third element of z

†
1,t0+D−1

is equal to the

third element of ż†1,t0+D−1 plus n̄
·
D−1. For z

†′
1t = (n

†
1t, Ṽ

†
t , n̄

†
t), z

†′
2t = (Y

†
t , C

†
t , X

∗′
1t, π

†
t , n

♯†
t+1, n

♮†
t+1),

and z†′t = (z
†′
1t, z

†′
2t) we then have

A
(9×3)

z†1,t0+D
(3×1)

= B
(9×9)

z†t0+D−1
(9×1)

+ ct0+D−1
(9×1)

(B54)

for A and B given by (B24) and (B20) and

c′t0+D−1 = (0, 0, 0, 0,−2(χ− 1)κ, 0, 0, 0, 0).

We then know z†1,t0+D = Φz
†
1,t0+D−1

+ et0+D where et0+D is calculated as described in (B26),

meaning

z†1,t0+D
(3×1)

= Λ̇D
(3×4)

ż†1,t0
(4×1)

+ ġD
(3×1)

Λ̇D
(3×4)

=
�
Φ

(3×3)
0

(3×1)

�
Λ̇D−1
(4×4)

ġD
(3×1)

= Λ̇D
(3×4)

(ġD−1
(4×1)

+ ṅD−1
(4×1)

) + et0+D
(3×1)

ṅD−1 = (0, 0, n̄
·
D−1, 0)

′.

This expresses z†1,t0+D as an affine function of ż†1,t0. We then choose Ṽ †
t0 to be the value that

causes z†1,t0+D to be a linear combination of the two eigenvectors of Φ associated with the

stable eigenvalues. Since for this example Ṽ †
t0 is the only nonzero element in ż†1,t0 , the solution

is found from the third element of the vector






δ1

δ2

Ṽ †
t0




 =

�
v1 v2 −λ̇D2

�−1
ġD

for λ̇D2 the second column of Λ̇D and v1 and v2 the stable eigenvectors of Φ.

Now knowing Ṽ †
t0, we can calculate ż†1,t0+1, ..., ż

†
t0+D−1

using (103), z†1,t0+D−1 using (B53),

and z†1,t0+D using (B54), and z†1,t0+D+1, z
†
t0+D+2

, ... using (100). Knowing now the full sequence

of state variables, we can calculate ż†t0, ..., ż
†
t0+D−1

using (102) and z†t0+D−1, z
†
t0+D

, ... using (B54)

and (99).

Details for Examples 10.1-10.3.
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Real GDP for Examples 10.1-10.3. Notice

Qjt0 =

�
ζnjt0Nt0X

0
jt0

for impacted goods

njt0Nt0X
0
jt0

for nonimpacted goods
.

Thus in this case (73) becomes

Qt0 =
1− α1
1− n01

[(1− κ) + κζ](1− n1t0) +

�
α1
n01


�
X̂1t0

X̂0
1t0

�

n1t0

= (1− α1)[(1− κ) + κζ] + α1

�
X̂1t0

X̂0
1t0

�

.

Linearized,

Q†
t0 = (1− α1)κ(ζ − 1) + α1λ5X

∗†
1t0
.
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Appendix C. Bounds on Jensen’s Inequality (online)
Proposition C1. Let

δt = log

�
exp(St)− exp(Rt)

St −Rt

�
−

�
St +Rt
2

�
(C1)

where δt = δ is constant along the steady-state growth path. If

[1− β(1− kX)]kU
βkπ

> δ, (C2)

then

α1 + τ (1− α1) < n01. (C3)

Proof of Proposition C1.

We first show that δt = δ is constant along the steady-state growth path:

δt+1 = log

�
[exp(St + g)− exp(Rt + g)]

St + g − (Rt + g)

�
−

�
St + g +Rt + g

2

�

= g + log

�
exp(St)− exp(Rt)

St −Rt

�
−

�
St +Rt
2

�
−
2g

2

= δt.

Let I0t =
�

j∈Jt
P 0
jtQ

0
jt/P

0
1t denote steady-state real national income. The skilled receive a

total share (1− α1)(1− τ ) and the unskilled α1 + τ (1− α1), and thus per capita receive

Y 0
t =

(1− α1)(1− τ)

1− n01
I0t

Ȳ 0
1t =

α1 + τ (1− α1)

n01
I0t

Y 0
t − Ȳ 0

1t =
n01 − [α1 + τ(1− α1)]

n01(1− n01)
I0t

so (C3) holds whenever Y 0
t > Ȳ 0

1t. Note that Ȳ
0
1t could alternatively be calculated as

Ȳ 0
1t =

� St

logX∗
1t

exp(z)dz

St −Rt
+

C0
t

P 0
1t

� logX∗
1t

Rt

dz

St −Rt
.

Expression (42) and Proposition 3 established that

h0Y = logX
∗0
1t − log(C

0
t /P

0
1t) > 0
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so

Ȳ 0
1t <

� St

logX∗
1t

exp(z)dz

St −Rt
+X∗

1t

� logX∗
1t

Rt

dz

St −Rt
= Ỹ 0

1t. (C4)

Thus if Y 0
t > Ỹ 0

1t, then also Y 0
t > Ȳ 0

1t. Thus the proof will be complete if we can show that

(C2) implies that Y 0
t > Ỹ 0

1t.

From (44) and (40),

h0Y = −kU + kπ

�
β

1− β(1− kX)

�
log Ỹ 0 (C5)

where from (39), log Ỹ 0 = log Y 0
t − log X̃

0
1t. Since h

0
Y > 0, (C5) implies

log Ỹ 0 >
[1− β(1− kX)]kU

βkπ
.

Condition (C2) then establishes that log Ỹ 0 > δ meaning log Y 0
t > log X̃0

1t + δ. Thus we will

have succeeded in showing that log Y 0
t > log Ỹ 0

1t if we show that log Ỹ 0
1t < log X̃0

1t + δ. From

(C4) and (23), this means establishing

log

�� St

logX∗
1t

exp(z)dz

St −Rt
+X∗

1t

� logX∗
1t

Rt

dz

St −Rt

�

<

� St

logX∗
1t

zdz

St −Rt
+ logX∗

1t

� logX∗
1t

Rt

dz

St −Rt
+ δ.

(C6)

For z∗ = logX∗
1t define the functions

k(z∗) =

� S

z∗

exp(z)dz

S −R
+ exp(z∗)

� z∗

R

dz

S −R

Q(z∗) = log[k(z∗)]−

� S

z∗

zdz

S −R
− z∗

� z∗

R

dz

S −R

whose derivatives are

dk(z∗)

dz∗
=
− exp(z∗)

S −R
+
exp(z∗)

S −R
+ exp(z∗)

� z∗

R

dz

S −R
= exp(z∗)

� z∗

R

dz

S −R

dQ(z∗)

dz∗
=
exp(z∗)

k(z∗)

� z∗

R

dz

S −R
+

z∗

S −R
−

z∗

S −R
−

� z∗

R

dz

S −R

=

�� z∗

R

dz

S −R

� �
exp(z∗)

k(z∗)
− 1

�
.

Since k(z∗) ≥ exp(z∗), this derivative is negative, meaning this function reaches its maximum
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at the lowest possible value of z∗, namely z∗ = R,

Q(z∗) ≤ Q(R) = log

�� S

R

exp(z)dz

S −R

�
−

� S

R

zdz

S −R
= log

�
exp(S)− exp(R)

S −R

�
−

�
S +R

2

�
= δ,

which is logE(xit)−E[log xit] when log xit ∼ U(R,S). From the definition of Q(logX∗0
1t ), this

means

log

�� S

logX∗0
1t

exp(z)dz

S −R
+ exp(logX∗0

1t )

� logX∗0
1t

R

dz

S −R

�

−

� S

logX∗0
1t

zdz

S −R
−logX∗0

1t

� logX∗0
1t

R

dz

S −R
< δ

establishing (C6).

Note that (C2) is a sufficient, but not a necessary, condition to guarantee (C3). Typically

(C3) also holds even when (C2) does not.
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