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1 Introduction

In modern economies, monetary policy (MP) operates through the provision of reserves and a cor-
ridor of policy rates.1 A popular view amongst academics is that these tools implement a desired
nominal interest rate and, ultimately, this is solely what matters for MP (Woodford, 1998). A view
held by practitioners has is that there is more to MP and that the central bank’s (CB) balance sheet is
important in and of itself, because the supply of reserves impacts real activity through its influence
on credit (Bernanke and Blinder, 1988, 1992). Indeed, the heads of the major central banks boldly
expanded their balance sheets during the last crises—see Figure 1—acting upon that view, but they
did so instinctively, without the backing of a theoretical framework. Today, central bankers debate
whether it desirable to permanently operate with large balance sheets (Bindseil, 2016).

Figure 1: Total Asset Holdings of Major Central Banks

Although the bank-centric view held by practitioners has ample empirical support (e.g., Kashyap
and Stein, 2000), its theoretical foundations are still a work in progress. Given the ongoing current
policy debates, building those theoretical foundations seems ever more important. This paper stud-
ies an economy where credit is intermediated by banks that face settlement frictions. By supplying
reserves and by setting policy rates, the central bank can lever on these frictions to influence multi-
ple interest rates. We study the effects of these instruments in the context of an incomplete-markets
economy with aggregate-demand externalities.

The paper has two goals. Our first goal is to conduct a positive analysis, namely, to articulate how

1A corridor of policy rates is defined by discount rate and an interest rate on reserves. The discount rate is the rate at
which a central bank lends reserves. The interest rate on reserves is the rate at which banks are remunerated for holding
reserve balances at the central bank. These two rates form a “corridor” that typically contains the interbank market rate
in the middle.
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the supply of reserves and the choice of policy rates affect credit, interest rates, inflation, and eco-
nomic activity. In this economy, the rate on reserves sets a floor for all rates, and thus, grants the
CB direct control over inflation. Given the interest on reserves, the supply of reserves, which is
altered via open-market operations (OMO), grants control over a credit spread between borrowers
and savers. The control over inflation relates to well-traveled transmission channels—the interest-
rate and inflation-tax channels—whereas the control over spreads is a notion of a credit channel.2

MP operates in three possible regimes. The paper clarifies that the effects of the supply of reserves
and policy rates depend on the MP regime. In one regime, reserves are scarce for banks and the CB
balance sheet is lean. In this regime, the CB operates a corridor system with a positive credit spread.
Policy rates and OMO carry effects through both a standard interest-rate channel and through the
credit channel. In a second regime, reserves are abundant and the CB balance sheet is fat. In this
regime, MP operates a floor system, in which the spread is zero, OMO are neutral, and only the
interest-rate channel is operational. The third regime is activated when the interest on reserves (IOR)
is negative and reserves are so ample that the equilibrium deposit rate is zero, hitting a deposit-zero
lower bound (DZLB). At that point, OMO are irrelevant and reserves are transformed into currency,
a notion of a liquidity trap. In that liquidity trap regime, reductions in the IOR work backwards by
increasing the loans rate, an empirically verified phenomenon (Heider, Saidi and Schepens, 2019;
Eggertsson, Juelsrud, Summers and Wold, 2019). Thus, the expansionary power of MP reaches its
limit in a liquidity trap regime.

The second goal is to conduct a normative analysis, that is, to prescribe guidelines for an ideal MP.
A policy insight that emerges from the paper is that the CB should operate with a lean balance
sheet during booms, operating in a corridor system, but expand its balance sheet, operating in a
floor system, during busts. This recommendation results from a complex policy tradeoff: In a cor-
ridor system, limiting the supply of reserves induces a credit spread. A spread harms microeco-
nomic insurance—the insurance of idiosyncratic income risk. However, a wider spread tightens
the amount of credit which increases macro insurance—insurance against the impact of aggregate
shocks. Namely, with tighter credit, macroeconomic insurance increases because both the stabiliza-
tion power of MP is greater and aggregate demand is less responsive to an aggregate shock.

The policy trade-off we highlight is at the core of historical and recurrent debates on what an ideal
conduct of MP should look like—as early as Bagehot (1873) and as recently as (Stein, 2018). Through-
out history, during booms, it resonates that MP is sowing the seeds of crises, whereas during busts, that
MP is pushing on a string. This paper articulates these views. We contend that a permanent transition
to large CB balance sheets surrenders an important policy objective, macroeconomic insurance.

We build this case by exhibiting a model with the following features: Households face undiversified
idiosyncratic employment risk, as in Huggett (1993). This is the source of micro insurance. In turn,
wage rigidity is the source of an aggregate demand externality. The novelty of the environment is the

2A narrative description of different transmission channels of MP is found in Bernanke and Gertler (1995).
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introduction of intermediation and money, an aspect that enables MP to control the credit spread. In
particular, credit is intermediated by a fringe of competitive banks that issue deposits, make loans,
and hold reserves. The power to influence spreads stems from an institutional feature: Whereas
loans are permanently held by the issuer bank, deposits circulate. Reserves are used to settle deposit
transfers. A potential shortage of reserves by some banks opens the door for interbank credit that
operates with frictions (á la Ashcraft and Duffie, 2007; Afonso and Lagos, 2015). As a result, not
all reserves deficits can be tapped with interbank credit and some deficits are borrowed at a penalty
rate. That cost translates into the credit spread. A greater volume of reserves eases the settlement
frictions, which translates into a reduction in spreads. By letting the size of its balance sheet be part
of its toolkit, the CB can exploit these frictions to bring the control of spreads into a set of policy
targets.

The paper delves into the details of implementation: First, the paper presents closed-form expres-
sions for nominal deposits and loan interest rates. The interest on reserves acts as a floor for both
deposits and loan rates, which carry different liquidity premia relative to the IOR. The spread is the
difference between these liquidity premia. Thus, the spread is expressed as a function of the CB
balance sheet size, relative to the volume of private sector credit.3

After detailing the implementation, the paper conducts the positive analysis. Equilibrium in the
goods and asset markets is summarized by a single market-clearing condition for real credit that
pins down a real interest rate. An important feature is that that clearing condition is affected by the
spread, which is ultimately under the control of the CB.

MP has effects both in the short run and in the long run. In the long run, holding a spread as
fixed, changes in nominal rates are neutral. However, through the size of its balance sheet, the CB
influences spreads and, thus, MP can influence the long-run real interest rate. Along a transition, MP
works differently. The dynamics of unemployment and wage rigidity follow a modern incarnation
of Barro and Grossman (1971). Due to this nominal rigidity, the real rate is pinned down by the IOR.
The variable that adjusts to clear goods market is the unemployment rate. Hence, in the short run,
reductions in policy rates operate through the standard interest-rate channel and are expansionary
unless MP enters a liquidity trap. Two properties are worth noting. First, the effects of the interest-
rate channel are enhanced through the credit channel. Second, the greater the initial spread, i.e., the
smaller the CB balance sheet, the greater the power of MP. The intuition behind both properties is
that borrowers are less interest rate sensitive than lenders. Hence, when credit is limited by wider
spreads, the representative household is more sensitive to changes in interest rates and spreads,
rendering both the interest rate and credit channels more powerful.

The final section turns to the normative analysis. We claim that the optimal CB balance sheet size is

3A similar implementation appears in Bianchi and Bigio (2020), and in related models (Piazzesi and Schneider, 2018;
De Fiore, Hoerova and Uhlig, 2018; Chen, Ren and Zha, 2018; Drechsler, Savov and Schnabl, 2017). Here, bank decisions
are simplified, and the pass-through from MP to a target is immediate. Instead, the emphasis is on the responses outside
the banking sector.
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Figure 2: Flow Diagram of Forces in the Model.

governed by a trade-off between greater macro insurance and worse micro insurance, a notion that,
although it is costly in terms of financial efficiency, MP should spare “gunpowder” for the future. To
showcase this trade-off, the paper studies the problem of an egalitarian CB that expects the economy
to suffer an aggregate credit crunch. Upon a credit crunch, MP should lower the IOR and expand the
CB balance sheet, up to the point where it triggers a liquidity trap. Prior to the credit crunch, the CB
should induce a positive spread by limiting the supply of reserves. Limiting the supply of reserves
enhances the stabilization power of MP and mitigates the impact of the credit crunch. However, MP
should balance this benefit against the micro-insurance cost. We present a welfare decomposition
that clarifies the sources of this trade off.

The message of the paper can be summarized through the flow chart in Figure 1. The CB balance
sheet policy has the ability to affect credit spreads—represented in the first flow. Credit spreads,
altered through OMO, have direct effects through the credit channel—the flow labeled OMO in the
figure. Also, by affecting credit, spreads can enhance the effects of the interest-rate channel, and
increase the stabilization power of MP—the flow labeled Power in the figure. As well, by tightening
credit, MP can mitigate shocks, a standalone macro-prudential effect. The stabilization power and
the macro-prudential benefits contribute to overall macro insurance. The tradeoff is that limiting
credit is linked to worse micro insurance.
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Connection with the Literature This paper’s title emphasizes a connection with the two most com-
mon frameworks for MP analysis.4 One approach emphasizes the relation between money and prices
and the other between interest and prices. In the money and prices approach, money plays a a role as
a means of payments (Lucas and Stokey, 1987; Lagos and Wright, 2005) and there is a tight connec-
tion between prices and the quantity of (outside) money. The real rate is fixed, so real effects follow
because inflation is a transaction tax. The second approach is the new-Keynesian approach where
the important connection is between interest and prices. Under that framework, MP controls real rates
directly because prices are rigid. Neither framework emphasizes the effect of MP on credit, at least
not directly. The model here establishes a meaningful connection between credit, money, interest and
prices. Because the credit channel here can be studied independently of the control of inflation, it
only complements the inflation-tax or interest-rate channels germane to these approaches.

Since 2008, there’s been an interest in how MP influences credit markets. That gap is being filled, and
incomplete market models are a natural starting point. In fact, a first generation of heterogeneous
agent models, Lucas (1980) and Bewley (1983) were all about MP, and not about heterogeneity per
se. However, neither model established how MP affects credit. Credit, of course, has a tradition in
heterogeneous agent models (see the early work of Huggett, 1993; Aiyagari, 1994), but the literature
evolved abstracting away from its initial interest in MP.

A recent generation of works has introduced nominal rigidities into Bewley-Lucas models. Guerrieri
and Lorenzoni (2017) studies the tightening of debt limits in such an economy.5 These models are
appealing because, as an artifact of incomplete markets, MP responses depend on the distribution
of wealth. Auclert (2019) decomposes the responses to policy into different forces in those models.
Kaplan, Moll and Violante (2018) introduce illiquid assets which produce high-income elasticities
among the wealthy, a feature that modifies the propagation mechanics. Werning (2015) and Bilbiie
(2020) provide conditions for aggregate demand amplification. In all these studies, MP operates
through the interest rate channel, as in the single agent new-Keynesian model. Here, MP operates in
tandem with the credit channel, and this matters for stabilization.6 Of lesser substance, a different
feature here is that we model unemployment and nominal rigidities following Barro and Grossman
(1971). The insights on how the distribution of wealth affects the power of MP follow from this body
of work. The contribution here is to connect the money supply to credit markets and explain why
that matters.

Another stream of recent work in the money and prices tradition introduces credit to models where

4The title of the paper is reminiscent of a sequence of titles. Don Patinkin added Money to the title “Interest and
Prices" to a classic book by Knut Wicksell. Michael Woodford took Money from Patinkin’s title, promoting the view
that MP can be studied without reference to the money supply. Like much of the work we survey below, we contend
that the money supply impacts credit markets and that this matters. Emmanuel Farhi taught us the connection with this
sequence of titles.

5Following up on that work, McKay, Nakamura and Steinsson (2016) compare the effects of forward-guidance poli-
cies.

6Partial equilibrium models, Greenwald (2018) and Wong (2019) study interest rate sensitivities to mortgage refinanc-
ing options. Our paper sees the interest on mortgages as a separate policy target from the savings rate.
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money plays a transactions role. When credit is an imperfect substitute for money, inflation can af-
fect the supply and terms of trade of credit (see for example Berentsen, Camera and Waller, 2007;
Williamson, 2012; Gu, Mattesini, Monnet and Wright, 2013; Gu, Mattesini and Wright, 2016; Ro-
cheteau, Wright and Zhang, 2018). Rocheteau, Wong and Weill (2016) bring insights from money-
search into an incomplete-market economy like the one here. Allowing for long-term debt, Gomes,
Jermann and Schmid (2016) model how MP has effects through debt deflation. Nuno and Thomas
(2020) import debt-deflation into an incomplete markets economy with nominal rigidities.

The credit channel here is not new. The MP implementation is inherited from Bianchi and Bigio
(2020). The focus of that paper is to introduce the transmission mechanism we employ here with a
focus on bank decisions. Here, the banking side is simplified, but the nonfinancial sector is much
richer, due to incomplete markets and price rigidity. Piazzesi and Schneider (2018) feature a simi-
lar implementation of MP, but their focus is on asset pricing. The model here also shares common
elements with Brunnermeier and Sannikov (2012) who study the value of reserves in a Bewley-like
economy with aggregate shocks.7 Benigno and Robatto (2019) study a model where intermediaries
issue debt and risky equity in a new Keynesian model. Another close paper is Piazzesi, Rogers and
Schneider (2019) which discusses the role of floor and corridor regimes in a New-Keynesian environ-
ment. The main distinction is our focus on how incomplete markets which is key to the normative
message. On that point, the combination of incomplete markets, nominal rigidity, and a lower bound
on policy rates leaves room for normative analysis. This point is established in Farhi and Werning
(2016) and Korinek and Simsek (2016) who study demand-driven recessions (as in Eggertsson and
Krugman, 2012). Both papers promote the use of debt limits as macro-prudential tools. Here, we
argue that MP has enough tools to conduct that countercyclical policy with its balance sheet.

On the normative front, Nuno and Thomas (2020) and Bhandari, Evans, Golosov and Sargent (2020)
are among the first papers to study optimal MP under incomplete markets. In Nuno and Thomas
(2020), the focus is on inflation as a redistributive channel. In Bhandari et al. (2020), MP balances ag-
gregate demand stabilization against insurance considerations, with a focus on a single instrument.
Historically, financial stability has been conceived as a crucial element of MP, as noted in Stein (2012),
for example. The normative message here, that MP should actively target spreads, is controversial.
Curdia and Woodford (2016) and Arce, Nuno, Thaler and Thomas (2019) suggests that a floor system
is ideal. Instead, we take the side of Stein (2012) and Kashyap and Stein (2012) and argue that the
control of spreads is crucial for financial stability.

Organization. Section 2 lays out the core model. Section 3 describes the determination of credit,
interest and prices and the implementation of MP. Section 4 presents a study on MP regimes. Section
5 studies the benefits of running a corridor system. Section 6 concludes.

7Similarly, Lippi, Ragni and Trachter (2015) introduce aggregate shocks into a pure currency economy, and study the
optimal helicopter drops. Other related models include Silva (2020) and Buera and Nicolini (2020).
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2 Environment

2.1 From Policy Spreads to Credit Spreads

In the model that follows, we embed financial intermediation (by banks) in an environment where
money holdings, prices, and rates are determined in general equilibrium. In this introductory sec-
tion, we present the banking block. We derive a simple formula that maps an MP corridor spread
into a real intermediation spread for given monetary aggregates. Later, we show how real spreads
determine monetary aggregates, and thus, how the CB has the ability to control spreads. To aid the
presentation of this section, Appendix A presents the individual bank balance sheet, and Figure A
presents the model timeline with the corresponding T-accounts.

Banks. There is free entry and perfect competition among banks. We consider the static portfolio
decision of a bank within an interval of time ∆—below, we take the limit as ∆ → 0 to embed the
banking block to the general equilibrium. Banks are owned by households. Because there are no
aggregate shocks during the ∆ interval, the bank’s objective is to maximize static expected profits.
Competition guarantees zero expected bank profits.

At the start of the ∆ interval, banks choose their supply of nominal deposits, a, their holdings of nom-
inal loans, l, and reserves, m. The aggregate supply of deposits and loans, and holdings of reserves,
are denoted by Ab, Lb, and Mb, respectively. Deposits, loans, and reserves earn corresponding rates
ia, il, and im. Whereas the loan and deposit rates are equilibrium objects, im is a policy instrument.

After the portfolio decision is made, banks face random payment shocks, as in Bianchi and Bigio
(2020); Piazzesi and Schneider (2018). In particular, within the interval, payment shocks take one of
two values, ω ∈ {−δ,+δ} with δ ≤ 1. Each possible value occurs with equal probability and is i.i.d
across banks. If ω = δ, a bank receives δa deposits and is credited δa reserves from other banks. If
ω = −δ, the bank transfers δa deposits and δa is debited to other banks. Naturally, if a bank receives
a deposit, it absorbs the liability from another bank. If it loses a deposit, another bank absorbs its
liability. As a result of the transfer of liabilities, assets need to be transferred to settle the transactions.
A key assumption is that within the ∆ time interval, loans are illiquid in the sense that they must
stay with banks. Therefore, net deposit flows must be settled with reserves, which are cleared at the
CB.

Upon the payment shock to a bank, the net reserve balance of a bank at the CB is:

b = m + min {ω, 0} a.

That is, if the bank suffers a withdrawal, its balance at the CB is reduced. If the bank experiences
an inflow of deposits, its overnight balance is unchanged, although its balance will increase the next
day, after the position settles. Notice that deposits never leave the banking system, but a bank that
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receives a deposit inflow cannot lend the reserves it is owed.

Since ω is random, the reserve balance is not entirely under the control of a bank. For that reason,
it is possible that the bank ends up with a negative balance, b < 0, provided a bank starts with
insufficient reserves. A bank with a negative balance must close this negative position, either by
borrowing reserves from banks with a surplus or borrowing from the CB.

Interbank Market. After reserve positions are determined, an interbank market opens and banks
borrow and lend reserves to each other. For a balance b, a fraction of those balances are lent (or
borrowed, if negative) in the interbank market. In particular, if a bank has a surplus b, it lends
the fraction ψ+ to other banks and, hence, b− ψ+b remains idle in a CB account. If the bank has a
deficit,−b, it borrows only the fraction ψ− from other banks, and the remainder deficit,− (b− ψ−b),
is borrowed from the CB at a discount window rate idw. The discount rate is also a policy choice.
By convention, borrowed reserves from the CB earn the interest on reserves im. Thus, the effective
borrowing cost is the policy spread ι ≡ idw − im. The trading probabilities {ψ+, ψ−} are meant to
capture trading frictions in the interbank market. For the rest of the paper, we keep ι fixed.

Integrating b across banks yields expressions for the aggregate deficit and the aggregate surplus
balances:

B− ≡ 1
2

max
{

δAb −Mb, 0
}

and B+ ≡ 1
2

(
Mb + max

{
Mb − δAb, 0

})
.

Clearing in the interbank market requires that the total amount of reserve balances lent is equal to
the amount borrowed,

ψ−B− = ψ+B+. (1)

Trading frictions, a well-documented empirical feature (see Ashcraft and Duffie, 2007; Afonso and
Lagos, 2014), are key in the model to have a pass-through from policy to credit spreads. There are
many ways to induce trading frictions. Here, we assume that the interbank market is an over-the-
counter (OTC) market in the spirit of Afonso and Lagos (2015), but we adopt the formulation in
Bianchi and Bigio (2017) that renders analytic expressions. The interbank market works as follows:
The market operates in a sequence of n trading rounds. Given the initial positions

{
B−0 , B+

0
}
≡

{B−, B+}, surplus and deficit positions are matched randomly. When a match is formed between
two banks, they agree on an interbank market rate for the transaction. The remaining surplus and
deficit positions define a new balance,

{
B−1 , B+

1

}
. New matches are formed, and a new interbank

market rate emerges. The process is repeated n times, defining a sequence
{

B−j , B+
j

}
j∈1:n

until a

final round is reached. Whatever deficit remains is then borrowed from the CB at a cost given by ι.

The interbank market rate of a given trading round is determined by a bargaining problem in which
banks take into consideration the matching probabilities and trading terms of future rounds. This
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produces an endogenous average interbank rate, i f
. Given trading probabilities, the policy rates and

the average rate i f
, the average rates earned on negative and positive positions are respectively:

χ− = ψ−
(

i f − im
)
+ (1− ψ−) · ι, and χ+ = ψ+

(
i f − im

)
.

Banks take into account these costs and benefits when forming their portfolios. To express {χ−, χ+},
Bianchi and Bigio (2017) assume that matches are formed on a per-position basis and according
to a Leontief matching technology, λ

n min
{

B−j , B+
j

}
, where λ captures the trading efficiency. Let

θ = B−/B+ define an initial interbank “market tightness.” If θ ≤ 1, in the limit n→ ∞, trading prob-
abilities across all trading rounds, {ψ+, ψ−}, converge to ψ+ (θ) = θ (1− exp (−λ)) and ψ− (θ) =

1− exp (−λ), two expressions consistent with market clearing. With equal bargaining power, the
average interbank market rate i f

solves

i f
(θ, im)− im = ι ·

(
(θ + (1− θ) exp (λ))1/2 − 1

)
(1− θ) (exp (λ)− 1)

, θ ≤ 1, (2)

The corresponding expressions for the average cost functions are found in Appendix B. These coef-
ficients are independent of im and only depend on the total gains from trade, ι = idw − im. Of course,
im affects the direct return of holding reserves. If the CB has the ability to control χ, it will have
control over credit spreads.

The interbank market satisfies a symmetry. When θ ≥ 1, the limit n → ∞, produces {ψ+, ψ−} ={
1− exp (−λ) , θ−1 (1− exp (−λ))

}
and the interbank market

i f
(θ, im)− im = ι− i f

(
θ−1, im

)
, θ ≥ 1.

The Bank Problem. We turn to the bank’s optimal portfolio. The average benefit (cost) of an excess
(deficit) reserve balance, b, is:

χ(b; θ, ι) =

χ− (θ) b if b ≤ 0

χ+ (θ) b if b > 0
. (3)

We label χ the liquidity yield function. With this function, we are ready to present the bank’s problem:

Problem 1 [Bank’s Problem] A bank maximizes its instantaneous expected profits:

Πb = max
{l,m,a}∈R3

+

il · l + im ·m− ia · a + E [χ (b; θ, ι)]

9



subject to the budget constraint l + m = a where the distribution of reserve balances is:

b (a, m) =

{
m with probability 1/2

m− δ · a with probability 1/2
.

At the individual level, the bank objective is piece-wise linear and, in particular, linear along a ray
in the {m, a}-space. As in any model with linear firms, banks must earn zero (expected) profits in
equilibrium, otherwise they would make infinite profits. Furthermore, at the individual level, banks
will be indifferent among different portfolios, within a cone in the {m, a}-space. However, at the
aggregate level, the ratio of reserves to deposits will pin down the

{
il, im}. This feature is similar to

what occurs with competitive firms that operate a Cobb-Douglas production technology with two
inputs—whereas firms earn zero profits and the individual scale is indeterminate, the ratio of inputs
pins down relative prices.

Equilibrium Credit Spreads. Next, we explain how a ratio of monetary aggregates determines the
equilibrium loan and deposit rates. To that end, we define the aggregate liquidity ratio as Λ ≡ Mb/Ab,
which corresponds to the inverse of the money multiplier.8 The interbank market tightness can be
expressed in terms of this ratio:

θ (Λ) ≡ max
{

δ

Λ
− 1, 0

}
. (4)

The tightness θ is decreasing in the liquidity ratio because with more liquidity, there is less need to
borrow. The tightness decreases with Λ, and satisfies lim θ = ∞ as lim Λ → 0, that and θ = 0 for
any Λ ≥ δ. If we substitute (4) into (3), we can express χ as a function of the policy corridor, ι, and
the liquidity ratio, Λ, and do not depend on the level of

{
Mb, Ab}. Then, the linearity of the bank’s

problem, coupled with a free-entry condition, yield corresponding equilibrium nominal rates and a
real spread:

Proposition 1 [Nominal Rates and Real Spread] Consider an aggregate liquidity ratio Λ < δ. Then, for
given {Λ, im , ι}, any equilibrium with finite loans and deposits must feature the following nominal loan and
deposit rates:

il ≡ im +
1
2
(
χ+ + χ−

)
︸ ︷︷ ︸

reserve liquidity value

and (5)

ia ≡ im +
1
2
(
χ+ + χ−

)
︸ ︷︷ ︸

reserve liquidity value

− δ

2
χ−︸︷︷︸

deposit liquidity risk

. (6)

8We avoid the term “money multiplier” employed in textbooks because it is misleading. According to the textbook
notion, the money multiplier equals the inverse of the ratio of reserve requirements, but there are no reserve requirements
here.
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If Λ > δ, then, il = ia = im. In the knife edge case where Λ = δ, then any rates that satisfy il − ia ∈[
0, δ

2 χ− (0)
]

and ia = im +
(
il − ia) · (1− δ) /δ∆r are a possible solution. In all cases, banks earn zero

expected profits.

Proposition 1 establishes that the IOR is a basis rate for the nominal borrowing and lending rates,
which carry different liquidity premia over the IOR. To understand the formulas, notice that by
holding an additional reserve, the bank earns the IOR but also earns the expected liquidity value
of reserves. Of the bank ends in surplus, the liquidity value of reserves is the return from lending
reserves in the interbank market , χ+. If the bank ends in deficit, the liquidity value of reserves is
that it spares the average cost of borrowing from the interbank market, χ−. Each scenario occurs
with equal probability, so the expected liquidity value of reserves is 1

2 (χ
+ + χ−). Loans must earn a

premium over reserves because, as an alternative to reserves, their return must compensate the bank
for the liquidity value of reserves. In turn, the deposit liquidity premium reflects the liquidity risk
of issuing an additional deposit. On the margin, if the bank ends in deficit, an additional deposit
increases a reserve deficit by δ, which have a marginal settlement cost of χ−. Since the probability
of ending in deficit is one-half, the risk premium of deposits is 1

2 δχ−. On the margin, the return on
reserves must be equal to the return on deposits. Hence, the deposit liquidity premium equals the
liquidity value of reserves minus the liquidity risk of deposits.

The loan deposit spread, a key object for the nonfinancial sector, directly follows from subtracting
the deposit rate from the loans rate. The equilibrium credit spread, il − ia, is given by,

∆r = il − ia =
δ

2
χ−. (7)

The spread between two nominal rates is a real object, and thus affects household decisions, regard-
less of the inflation rate. This credit spread is positive whenever the liquidity ratio is below the
amount needed to satisfy the clearing of deficit banks Λ < δ, and decreases with the liquidity ratio.
Therefore, if the CB can influence that ratio, it will influence real activity. Figure 3 depicts the for-
mulas in Proposition 1 for nominal rates and the spread as functions of Λ, in a region of the space
where reserves are scare. The left panel plots

{
il, i f

, ia
}

as functions of (5) and (6) for fixed policy

rates {ι, im} . Both rates lie in between im and idw. We also see how the credit spread narrows with
the liquidity ratio. When reserves are ample, Λ > δ, we have that {χ+, χ−} = 0. Later, we discuss
situations where ia reaches negative zero, and triggers a DZLB, but for that we need first to present
the household’s decisions.

The next section embeds bank intermediation into the incomplete markets economy, in the spirit
of the early monetary model of Bewley (1983). Before we proceed, we discuss the assumptions
encountered so far.
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(a) Equilibrium nominal rate given ι and Λ (b) Equilibrium spread given ι and Λ

Figure 3: Interest Rates and Spread as Functions of Λ
Note: Panel (a) plots the nominal deposit, loan, average interbank rate, and policy rates as functions of Λ; Panel (b) the components of the liquidity
yield and the equilibrium spread. The figure is constructed using the calibration presented in Section 4.

Digression: on discount-loan facilities and payment shocks. The discount window rate and the
size of payment shocks stand in for missing features. In practice, the cost of reserve shortages can be
much larger than the actual discount window rate set by the CB. One reason for this is that discount
loans require collateral. If collateral is insufficient, a bank with a negative balance can be intervened
(for a related bank model with collateralized discount loans see De Fiore et al., 2018). Another
issue is that discount loans can bear a stigma (as in Ennis and Weinberg, 2013). For this reason, the
discount window rate in the model should be treated as a much larger cost than the discount rate set
by a CB and should not be thought of as being entirely under the control of the CB.

Another feature is that payment shocks are i.i.d. In the data, payment shocks are persistent. To
capture the costs of withdrawals, we must increase the size of shocks to compensate for the lack
of persistence in the model. Adding persistent shocks would make the model more realistic at the
expense of tractability—see Bianchi and Bigio (2020) for a more detailed discussion.

Also, banks here operate without equity. Equity can be introduced into the model with capital re-
quirements or limited capital mobility, features that would produce bank profits. This feature would
make equity an aggregate state variable, complicating the message. Likewise, there are no reserve
requirements in the model. Since the introduction of sweep accounts, the effective requirement is
small, but current bank regulation imposes minimum liquidity requirements and banks may self-
impose minimum liquidity requirements to avoid runs. These features are left out of the model.9

2.2 General Equilibrium

We now embed intermediation into the general equilibrium model. We take a continuous time limit
of the bank’s problem. Within a ∆ time interval, average profits are ∆ · πb—all rates are scaled by ∆

9See den Heuvel (2002) for an early model of bank equity capital. Wang (2019) studies the pass-through of MP as a
function of the level of bank equity and liquidity requirements.
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and the objective is linear. Since bank policy functions are independent of ∆, the equilibrium rates
of Proposition 1 also scale with ∆, even as ∆→ 0.10

The nonfinancial sector of the economy features a measure-one continuum of heterogeneous house-
holds. From their perspective, time is indexed by some t ∈ [0, ∞). The price of the good in terms
of money is Pt. Banks intermediate between borrower households and lender households, but since
they make zero profits, they are simply pass-through entities. The CB determines the policy corridor
rates, conducts open market operations, and makes/collects (lump sum) transfers/taxes to/from
households. Households attempt to smooth idiosyncratic income shocks, via the insurance provided
by the intermediation sector.

On a final note, recall that only expected profits, and not realized bank profits, are zero. We assume
that households own banks, some of which make profits and some of which make losses, netting
out to zero. Thus, the ownership of banks is akin to the ownership of firms with constant returns to
scale in other models. Thus, to simplify the model, we abstract from the ownership of banks from
now on.

Notation. Individual-level variables are denoted with lowercase letters. Aggregate nominal state
variables are denoted with capital letters. Aggregate real variables are written in capital calligraphic
font. For example, ah

t will denote nominal household deposits, Ah
t the aggregate level of deposits,

and Ah
t real household deposits.

Households. Households face a consumption-saving problem. Their preferences are described by:

E

[ˆ ∞

0
e−ρtU (ct) dt

]

where U (ct) ≡
(

c1−γ
t − 1

)
/ (1− γ) is their instantaneous utility. Households receive a flow of real

income:

dwt = wt (z) dt.

This income is the sum of monetary transfers Tt and labor income. Labor income depends on the
employment status z ∈ {e, u}. If z = e, the household is employed and if z = u, the household is
unemployed. The income of the employed and unemployed are related via

wt (e) =
(

1− τl
)
+ Tt, wt (u) = b + Tt

10The reserve balance bt, is a random variable. If we were to track bt as a function of time, this stochastic process would
not be well defined. However, treating bt+∆ as the single realization of the random variable is well defined and so is the
limit of the deposit and loans rates.
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where b is an exogenous unemployment benefit that measures the degree of exogenous labor market
insurance and τl is a labor tax that finances the unemployment benefit at steady state. In the expres-
sion, we are normalizing the real wage to one. The unemployment benefit b is needed to provide the
unemployed with some income.

Households transition from employment to unemployment according to an instantaneous transition
probability:

Γt ≡
[

Γeu
t

Γue
t

]
=

[
νeu + φ+

t

νue − φ−t

]
. (8)

Here {νue, νeu} are fixed parameters that capture natural transition rates and φ+
t ≡ max {φt, 0} and

φ−t ≡ min {φt, 0} . The variable φt merits some discussion. This term is an endogenous adjustment
that follows from the price rigidity. This feature is a dynamic version of the disequilibrium model
of Barro and Grossman (1971). The term adjusts as follows: φt is positive when there is an excess
demand of final goods for a value of φt = 0. In turn, φt is negative when there is an excess supply
of final goods for a value of φt = 0. Thus, Γt captures the endogenous transition rate from state z
to state z′, where z 6= z′. Importantly, the process for φt is allowed to produce discrete jumps in
employment-unemployment upon an unexpected shocks.

Although all financial assets are nominal, the individual state variable, st, represents real financial
claims. Households store wealth in bank deposits, ah

t , or as currency, mh
t , whereas borrowers obtain

loans from banks, lh
t . By convention,

{
ah

t , mh
t , lh

t
}
≥ 0. The real rates of return on deposits and

liabilities are ra
t ≡ ia − Ṗt/Pt and rl

t ≡ il − Ṗt/Pt—currency doesn’t earn any nominal interest, so its
real return is minus inflation. The law of motion of real wealth follows:

dst =

(
ra

t
ah

t
Pt
− Ṗt

Pt

mh
t

Pt
− rl

t
lh
t

Pt
− ct + wt (z)

)
dt, (9)

and the balance-sheet identity:(
ah

t + mh
t

)
/Pt = st + lh

t /Pt.

From a household’s perspective, there is no distinction between holding deposits or currency, be-
yond their rates of return—there is no transactions demand for money as in the cash-in-advance or
money search traditions. Hence, currency is only held when the nominal deposit rate is less than
or equal to zero, and both assets yield the same return. Currency is introduced into the model to
articulate a DZLB which puts a limit to how expansionary policy can be. Another observation is that
households will never hold deposits and loans simultaneously. Combining these observations, we
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write (9) more succinctly as:

dst = (rt (s) s− ct) dt + dwt where rt (s) ≡
{

ra
t if st > 0

rl
t if st ≤ 0

. (10)

Another important feature is that employment risk cannot be diversified. In particular, credit is
limited by a debt limit s̄ ≤ 0. This limit determines an absolute lower bound on real debt, st ≥ s̄
where s̄ ≤ 0 is exogenous. Technically, if s = s̄, then it must be that dst ≥ 0.

With these features, the household’s problem is summarized by the following Hamilton-Jacobi-
Bellman (HJB) equation:

Problem 2 [Household’s Problem] The household’s value and policy functions are the solutions to:

ρV (z, s, t) = max
{c}

U (c) + V′s · µ (z, s, t) + Γt
[
V
(
z′, s, t

)
−V (z, s, t)

]
+ V̇t (11)

and ṡ ≥ 0 at s = s̄ where µ (z, s, t) ≡ rts− c + wt (z).

Employment and Production. The mass of households adds to one, but among them, a fraction Ut

is unemployed as given by Γt. In particular, the mass of unemployed Ut evolves according to:

U̇t =
[
νeu + φ+

t
]
· (1−Ut)−

[
νue − φ−t

]
· Ut. (12)

The natural unemployment rate, which coincides with the steady-state unemployment is Uss =

νeu/ (νeu + νue) which is obtained by setting φss = U̇ss = 0, in this equation. Since labor is the
only production input, aggregate output is Yt ≡ 1−Ut.

Inflation. The price level evolves according to

π̇ (t) = ρ (π (t)− πss)− κ (Uss −Ut) . (13)

This is a classic forward-looking Phillips curve (NS), where we use the unemployment rate above/below
the natural rate Uss. In the expression, πss is a long-run expected inflation target implemented by the
CB interest-rate policy. As in Werning (2015), solving this equation forward delivers a formula for
inflation as a function of the future path of unemployment:

π (t) = πss + κ

ˆ ∞

0
exp (−ρs) (Uss −Ut+s) ds. (14)

Importantly, π (t) is not predetermined. Because it depends on the path of future unemployment,
it is allowed to jump at time zero. Also, note that inflation is boosted with an intensity κ. When
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unemployment is below steady state, the economy experiences wage pressure. In that case, wages
tend to increase. Similarly, the economy features deflation as the unemployment rate rises above
steady state. Like the unemployment flows, this feature of the model is ad hoc.

Wealth Distribution. At each instant t, there’s a joint distribution f (z, s, t) of real financial wealth,
s ∈ [s̄, ∞), and employment status z. The cumulative distribution of f is denoted by F. The wealth
distribution f satisfies a Kolmogorov-Forward equation (KFE),

∂

∂t
f (e, s, t) = − ∂

∂s
[µ (e, s, t) f (e, s, t)]− Γeu

t · f (e, s, t) + Γue
t · f (u, s, t) , and

∂

∂t
f (u, s, t) = − ∂

∂s
[µ (u, s, t) f (u, s, t)]− Γue

t · f (u, s, t) + Γeu
t · f (e, s, t) . (15)

with the boundary condition lims→∞ ∑z∈{u,e} F (z, s, t) = 1. As in Achdou, Han, Lasry, Lions and
Moll (2020), generically, there may be a positive mass of agents at the debt limit, F (z, s̄, t) ≥ 0.
Hence an integral over f refers to the Lebesgue-Stieltjes integral that takes into consideration the
mass points. The distribution satisfies the consistency condition:

Ut =

ˆ ∞

s̄
f (u, s, t) ds = 1−

ˆ ∞

s̄
f (e, s, t) ds.

Central Bank. As assets, the CB holds L f
t , are private loans, and as liabilities, the monetary base,

Mt. The CB has matched assets and liabilities, L f
t = Mt. The monetary base is comprised of the sum

of reserves, Mb
t , and currency, M0t—without loss of generality, banks do not hold currency. An OMO

(or a reverse OMO) is a simultaneous increase (or decrease) in dMt = dL f
t . Because of interest rate

differentials between assets and liabilities and because there is a penalty on discount-window loans,
the CB generates operational profits. All profits are distributed to the central government, which in
turn, distributes them as transfers. In addition to OMO, the CB also sets the interest on reserves,
im
t , and the discount window rate, idw

t , that we introduced earlier. In principle, we could think of{
im
t , idw

t
}

as independent instruments, but we leave fixed a corridor spread ι = idw
t − im

t ≥ 0.11

The CB’s operational profits are:

ΠCB
t = il

tL
f
t − im

t (Mt −M0t) + ιt
(
1− ψ−t

)
B−t . (16)

The interpretation is that the CB earns il
t on L f

t , and pays im
t on the portion of the money supply

held as reserves—it earns an interest rate differential—whereas ιt
(
1− ψ−t

)
B−t is the income earned

from discount window lending. The CB’s operational income plus the surplus or deficit from the

11The CB faces two solvency restrictions: idw
t ≥ im

t and idw ≥ 0 . If either constraint is violated, banks could borrow
reserves from the discount window and either hold reserves as currency or reserves and earn an arbitrage.
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unemployment benefit, (1−Ut) · τl −Ut · b, produce a government surplus that is distributed lump
sum:

PtTt = ΠCB
t + Pt

(
τl · (1−Ut)− b · Ut

)
. (17)

For the rest of the paper, we assume that Tt adjusts to satisfy the balanced budget above (fiscal
passive regime), whereas im

t follows from a Taylor rule.

A Time-Varying Taylor Rule. To set the interest on reserves, the CB runs a Taylor rule that allows
for discretionary short-term deviations, but eventually converges to a standard Taylor rule with
long-run commitment:

im
t = īm

t + ηt · (πt − πss) . (18)

There are several terms in this Taylor rule: ηt is a time-varying response to inflation and īm
t a time-

varying interest target that is consistent with a given inflation target. This formulation is flexible
enough to allow for isolated changes in policy rates: by letting īm

t change, we can isolate the effects
of policy rates while we need to shut down ηt to eliminate the feedback from future inflation to policy
rates. At the same time, we force

{
īm
t , ηt

}
to converge to the standard values of a Taylor rule, to abide

by the Taylor principle, to circumvent issues related to forward-guidance and lack of commitment.
If we do not allow for this discretionary component, we cannot isolate the effects of policies from the
endogenous response of the Taylor rule.

Markets. Outside money is held as reserves or currency. Aggregate currency stock is

M0t ≡ ∑
z∈{u,e}

ˆ ∞

s̄
mh

t (z, s) f (z, s, t) ds,

so equilibrium in the money market requires:

M0t + Mb
t = Mt. (19)

The credit market has two sides: deposit and loan markets. In the deposit market, households hold
deposits supplied by banks. In the loan market, households obtain loans supplied by banks. The
deposit market clears when:

Ab
t = ∑

z∈{u,e}

ˆ ∞

0
ah

t (z, s) f (z, s, t) ds, (20)
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where ah
t (s) ≡ Pts−mh

t (s), for a positive s. The loans market clears when:

Lb
t + L f

t = ∑
z∈{u,e}

ˆ 0

s̄
lh
t (z, s) f (z, s, t) ds, (21)

where lh
t (s) ≡ −Pts for negative s. Finally, the goods market clears whenever:

Yt ≡ 1−Ut = Ct ≡ ∑
z∈{u,e}

ˆ ∞

s̄
ct (z, s) f (s, t) ds. (22)

Equilibrium. A price path is the function
{

P (t) , il (t) , ia (t)
}

: [0, ∞) → R3
+. A policy path is the

function {im
t , Mt, Tt} : [0, ∞)→ R4

+. Next, we define an equilibrium.

Definition 1 [Perfect Foresight Equilibrium.] Given an initial condition for the distribution of wealth f0,
and an initial price level P0, a policy path, a perfect-foresight equilibrium (PFE) is given by (a) a price path,
(b) a path for the real wealth distribution f , (c) a path of aggregate bank holdings

{
Lb

t , Mb
t , Ab

t
}

t≥0 , (d)
unemployment flows, and (e) household’s policy

{
c, mh} and value functions {V}t≥0, such that:

1. The path of aggregate bank holdings solves the static bank’s problem (1),

2. The household’s policy rule and value functions solve the household’s problem (2),

3. The unemployment transitions satisfy (8),

4. The law of motion for f is consistent with (15),

5. The government’s policy path satisfies the budget constraint (16),

6. Asset markets and the goods market clear (1,19-22).

Next, we characterize the equilibrium dynamics. A steady state occurs when ∂
∂t f (z, s, t) = 0 and{

ra
t , rl

t
}

are constant. We use subscripts ss to denote variables at steady state. An important assump-
tion is that we treat P0 as given. As in any model with nominal assets, the time-zero price determines
the real distribution of wealth and thus an equilibrium path. The approach here is to think of P0 as
determined from past MP, and consider that through the nominal rigidity, prices cannot jump at
time zero.12 This approach circumvents the need for refinements that pin down time-zero prices
such as the fiscal theory of the price level. A final important feature is that Ut jumps when there are
unexpected shocks.13

12The idea is to think of the time-zero price as the price level at steady state consistent with a steady state given a
nominal monetary base of Mt that was committed a priori.

13The interpretation is that φt jumps to produce the market clearing rate of employment. In the applications, there is
only one time-zero jump.
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Digression: Model Assumptions. The endogenous labor market dynamics, φt, and the Phillips
curve are admittedly ad-hoc. However, these objects are designed to capture the idea that insuf-
ficient aggregate demand translates into unemployment flows—see the related work by Michaillat
and Saez (2015). A virtue of this approach is that the business cycle dynamics are driven through
the dynamics of firing and hiring rates (Davis, Faberman and Haltiwanger, 2006). Whereas there
are several ways to model employment flows and aggregate demand externalities, these typically
involve additional state variables that add complications while interfering little with the policy pre-
scriptions. Furthermore, the Phillips curve we adopt has been estimated many times. Thus, we
can think of it as an exogenous block of the model that is well understood empirically, although its
theoretical foundations are not clear.

Along a transition, the model shares the spirit of the new-Keynesian model: there is a short-run
trade-off between inflation and unemployment, but exploiting that trade-off is not desirable along a
transition with stable prices. To see this, suppose that the CB lowers the IOR at t. Since inflation is
a state variable, the policy lowers the real loans and deposit rates that stimulate consumption. How
does the model achieve an equilibrium in the goods and asset markets? For that, φt falls below zero,
producing a decline in Ut. From (14), we have that that increase will provoke an increase in inflation.
However, from (13), if inflation remains above a steady-state value, it accelerates the increase. Thus,
if the CB wants to stabilize inflation in the future, it needs to compensate for the pressure with
an offsetting increase in rates in the future and with an increase in the unemployment rate. Thus,
exploiting this tradeoff is undesirable.

The financial architecture in the model captures a fundamental feature of banking. In practice, banks
issue deposits in two transactions. The first is a swap of liabilities with the nonfinancial sector. When
banks make loans, they effectively credit borrowers with deposits, a bank liability is exchanged for
a household liability. This swap is the process of inside money creation. Deposits then circulate
as agents exchange deposits for goods. This circulation gives rise to the settlement positions. The
second transaction is the exchange of deposits (a bank liability) for currency (a government liability).

A missing element is government bonds. In practice, central banks conduct OMO by purchasing
government bonds. Here, negative holdings of L f are interpreted as government bonds. The implicit
assumption is that bonds are as illiquid as private loans. Bianchi and Bigio (2020) introduce bonds
that are more liquid than loans, but less so than reserves. The present model can be easily extended
to incorporate government bonds.

3 Implementation

A spread between two nominal rates is the spread between the two corresponding real rates. This
observation is important because it implies that if a CB can control a spread, it can control real
objects such as credit and the distribution of wealth, even in the long-run. We now explain how the
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CB implements a desired credit spread by conducting OMOs. Later we explain how the control over
credit spreads matters.

Implementation. From (7), we know that ∆rt is a function of the liquidity ratio Λt. A natural
question is how does the CB control ∆rt? The main result from this section is that the answer depends
on different regimes for the choices of the IOR and the size of the CB balance sheet (in real terms),{

im
t ,L f

t

}
.

For now, we can focus on a given instant of time t—and suppress the t subindex momentarily. To-
ward the characterization, it is useful to compute, θlb (im), the lower bound on the equilibrium inter-
bank market tightness for any given IOR, which is obtained solving:

θlb (im) ≡ min
θ∈[0,∞)

θ

subject to

im +
1
2
(
χ+ (θ) + (1− δ) χ− (θ)

)
> 0.

The constraint in this auxiliary problem just takes into account that the equilibrium deposit rate
given by (6) must be positive. The solution to this problem is trivial: when im < 0, then θlb (im) = 0
since ia = im is positive. When im ≥ 0, then θlb (im) > 0 is the market tightness consistent with
a zero deposit rate. This object is useful because it is only a function of a policy variable im. With
θlb (im), we can characterize several equilibrium objects as a function of

{
im,L f}. In particular, given

a distribution of real wealth f the equilibrium real balances of currency are:

M0
P

= I[im<0] ·max

{
1 + θlb (im)

1 + θlb (im)− δ
· L f − δ

1 + θlb (im)− δ
·
ˆ ∞

0
s f (s, t) , 0

}
,

and, consequently, the equilibrium liquidity ratio is:

Λ=

(
L f −M0/P

∑z∈{u,e}
´ ∞

0 s f ds−M0/P

)
.

The values of im and Λ are enough to catalog the three regimes in which MP operates and the effects
of policy changes, as shown in the following proposition:

Proposition 2 [Properties of Equilibrium Rates and Spreads] Consider a distribution of real wealth f , a price
level P at a time t. MP operates in either one of the following three regimes:
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Corridor Regime. If Λ < δ/
(
1 + θlb (im)

)
, then il > ia > im, and M0

P = 0. Furthermore,

dia

dim = 1,
d∆r
dim = 0,

dia

dL f L
f = −1

2

(
χ+

θ + (1− δ)χ−θ
)

Λ
< 0, and

d∆r
dL f L

f = −δ

2
χ−θ
Λ

< 0.

Floor Regime. If im > 0 and Λ > δ/
(
1 + θlb (im)

)
, then il = ia = im, ∆r = 0 and M0

P = 0.
Furthermore,

dia

dim = 1,
d∆r
dim =

dia

dL f L
f =

d∆r
dL f L

f = 0.

Liquidity Trap. If im < 0 and Λ > δ/
(
1 + θlb (im)

)
, then il > ia = 0 and M0

P > 0. Furthermore,

d∆r
dim = −δ

χ−θ (δµ− 1)(
χ+

θ (δµ− 1) + (1− δ)χ−θ (δµ− 1)
) < 0, and

dia

dim
t
=

dia

dL f L
f =

d∆r
dL f L

f = 0.

and d
dL f [M0/P] = 1+θlb(im)

1+θlb(im)−δ
.

Proposition 2 establishes the effects of policy in three regimes that depend on {im, Λ} as illustrated
by Figure 4. Liquidity is scarce for banks when Λt < δ/

(
1 + θlb (im)

)
and the interbank market is

active. In CB jargon, this regime is a corridor system implemented with a lean CB balance sheet, with
a small enough L f . In this regime, the credit spread is positive and controlled exclusively through
OMO, dL f . In turn, changes in im change the deposit rate one-for-one, without a change in the spread
on impact. However, the size of the CB balance sheet does affect the spread. The neutrality of im on
the spread implies that the CB can control inflation independently from its control over spreads.

The economy enters a floor system if im
t > 0 and Λt > δ/

(
1 + θlb (im)

)
. In a floor system, banks

are satiated: no bank faces a reserve deficit, so the interbank market is inoperative. The regime is
implemented with a fat balance sheet, with a large enough L f . In this regime, OMO are irrelevant
(in the sense of Wallace, 1981). Hence, in this regime, the CB loses the ability to affect spreads, but
still controls inflation through the IOR.

The economy enters a liquidity trap if im
t < 0 and Λt > δ/

(
1 + θlb (im)

)
. In a liquidity trap, the

deposit rate is zero. In that region, OMO are also irrelevant, but for a different reason. In a liquidity
trap, the CB still purchases bank loans by issuing liabilities, but in equilibrium, the private sector
responds by reducing deposits and increasing currency holdings such that the liquidity ratio remains
constant. Yet, despite the irrelevance of OMO, in this region, the spread is positive. The reason is
that a negative IOR penalizes the issuance of deposits. Since the deposit rate cannot fall below zero,
banks require a high lending rate to break even. As a result, a reduction in im

t provokes an increase
in the loans rate, contrary to the effects in the other regimes. This effect is an interest-rate reversal.
Since OMO do not have effects in this region, and reductions in the IOR only increase spreads, we
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will show that in this region the CB loses the ability to stimulate the economy. Appendix C.1 presents
a three dimensional plot that describes the effects of im

t and Λt on the interest rates.

The interest-rate reversal near a DZLB has been documented by Heider et al. (2019); Eggertsson et
al. (2019). Brunnermeier and Koby (2019) and Ulate (2020) also find this effect, but their mechanisms
operate through bank capital and monopoly power. To our knowledge, this is the first model to
establish a connection between a liquidity trap, negative rates, and the interest-rate reversal. Ap-
pendix C.1 also presents a discussion of alternative implementations of spreads through MP and
relates these alternative implementation to actual CB practices.

The analysis so far, describes how the pass-through from MP tools to the credit spread depends
on the settlement frictions in the interbank market. Because the pass-through depends on prede-
termined states, { f , P}, we can think of this pass-through as the unexpected instantaneous effects
of MP. Next, we characterize the evolution of the model’s state variables, taking the equilibrium
spreads as given.

δ

0

Floor
Regime

Corridor
Regime

Liquidity
Trap

Λ

im

δ
(1+θ(im))

Figure 4: Three Monetary Policy Regimes
Note: The figure presents the MP regimes as a function of the liquidity ratio Λ and the interest on reserves im.

Clearing in real terms. It is useful to express the government budget constraint in real terms. If
the CB induces a spread, the revenues from the spread must be earned by some agent in the econ-
omy. If banks earn zero profits, the only possibility is that the spread is earned by the CB. The next
proposition uses this observation to relate the real fiscal effects of the spread:

Proposition 3 [Real Budget Constraint] Assume that all asset markets clear. Then, transfers are given by:

Tt = ∆rt · ∑
z∈{u,e}

ˆ ∞

0
s f (z, s, t) ds︸ ︷︷ ︸

CB operational revenue ΠCB
t /Pt

+ τl (1−Ut)− b · Ut︸ ︷︷ ︸
fiscal deficit

. (23)
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The proposition gives us the level of transfers for a give spread. Given {∆rt, Tt}, market clearing in
real financial claims is consistent with equilibrium values for ra

t and φt. In turn, these variables must
be consistent with clearing in a single real asset market, as show by the following proposition:

Proposition 4 [Real Wealth Clearing and Walras’s Law] Let nominal rates be given by (5) and (6) and let
transfers be given by (23). Then, market clearing in real wealth, that is,

0 = ∑
z∈{u,e}

ˆ ∞

s̄
s f (z, s, t) ds for t∈[0,∞), (24)

implies market clearing in all asset markets and, furthermore, clearing in the goods market, (22).

From now on, we refer to the credit market as the market for real wealth, which summarizes the
loans, deposit and money markets into a single equation.

Steady State and Long-Run MP Effect. Consider a steady state. Let the CB target a long-run credit
spread ∆rss. At steady state, the disturbance in job-separation φt must be zero because this is the
only possibility consistent with a Phillips curve with constant inflation. We also know that inflation
has no effect in a steady state—here MP is super-neutral, unlike in a standard new-Keynesian model.
Thus, at steady-state, the real interest rate ra

ss solves:

0 = ∑
z∈{u,e}

ˆ ∞

s̄
s fss (z, s) ds.

Once we obtain an equilibrium ra
ss in steady state, which corresponds to the real interest rate, inflation

is given by the corresponding Fisher’s equation:

πss = π∞ = im
∞ − ra

∞ +
1
2
[
χ+

∞ + (1− δ) χ−∞
]

.

Once inflation is obtained, all nominal variables grow at the rate of inflation. To implement ∆rss, the
path of Mt must be consistent with the Λss that produces ∆rss according to (7).

An important observation is that the long-run real interest rate, ra
ss, is affected by the CB balance

sheet, through the spread. Thus, monetary policy is not long-run neutral, counter to the working
assumption of most empirical monetary models. Of course, this is not the only model where MP
affects long-run real interest rates. In fact, some classic examples are Lucas (1980); Bewley (1983) or
Aiyagari and McGrattan (1998). However, the sources of real long-run effects here are different. In
both in Lucas (1980); Bewley (1983) and Aiyagari and McGrattan (1998) the long-run real interest
rate depends on the the supply of net outstanding real government liabilities.14 In this paper, net

14In Bewley (1983) real-long run effects follows because households only hold currency and inflation pins down the
real rate and the real value of outstanding liabilities. In Aiyagari and McGrattan (1998) private credit co-exists with
government liabilities, but the net amount of government liabilities affects real rates.
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CB liabilities are zero, 0 = L f
t − Mt, but the real long-run effect follows because the gross amount

of outstanding government liabilities impact spreads. Like Bewley models, the model here features
neutrality, but unlike Bewley models, the model also features super neutrality thanks to the IOR,
Ljungqvist and Sargent (2012, Chapter 18.11).

Transitions. Along a transition, things work differently. In particular, πt is given by (13). Then,
given im

t and Λt, il
t and ia

t are determined by (5-6). The real rates rl
t and ra

t follow from the Fisher’s
equation,

rx
t = ix

t − πt for x ∈ {l, a}. (25)

Then, to satisfy clearing in the asset market, φt adjusts to satisfy (24).

Appendix C.2 discusses the equilibrium restriction imposed on MP along a transition. That appendix
also connects the monetary properties of this model with the monetary properties of classic Bewley
models, in connection to fiscal and monetary interactions. Appendix F explains how transitions are
calculated numerically.

4 Positive Analysis: From Instruments to Channels

This section covers the positive analysis. First, we discuss the effects of MP under a floor system
achieved by running a large CB balance sheet that satiates banks with reserves. Then, we study
these effects under a corridor system achieved by running a small CB balance sheet that limits the
supply of reserves. We also study the effects of MP when it enters a liquidity trap. After we study
the effects of policy, as a prelude to the normative analysis, we introduce a credit crunch episode and
conclude the section studying the macro insurance effects of different spreads.

Calibration. At this stage, we must present the calibration. The model has many missing elements
because the goal is to remain parsimonious. While the spirit is to remain parsimonious, keeping the
number of parameters small, we also want to provide a quantitative sense of the operating mecha-
nisms. In that sense, the calibration serves as a guide to inform us of the additional model features
that are needed to improve the quantitative fit. The calibration, which is inspired by the US economy
of the last decade, is summarized in Table 1.

The reasoning behind the calibration is as follows. Risk aversion, γ, is set to 2, a standard value in the
literature. The time discount, ρ, is set to 4%, to yield a steady-state real deposit rate of approximately
3.0%, close to the real return on one-year certificate of deposits. The steady-state IOR is chosen to
normalize steady-state inflation at 1.0%. The coefficient of the Taylor rule, η, is set to 1.5, also a
standard value. The Phillips-curve coefficient κ is set to 0.1, following the estimates in Hazell et al.
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Value Description Target/Reference
γ 2 risk aversion standard
ρ 0.04 time discount 1.0% real risk-free rate

νeu 0.4 job separation rate Shimer (2005)
νue 1.2 job finding rate labor income risk
κ 0.1 Phillips curve coefficient Hazell, Herreño, Nakamura, Steinsson et al. (2020)
b 0.41 unemployment benefit UI Replacement
τl 0.3 labor tax rate U.S. average labor income tax (OECD)
η 1.5 Taylor-rule coefficient Taylor (1993)

∆rss 1% steady-state credit spread Bianchi and Bigio (2020)
s̄ −1.5w (u) credit limit precautionary behavior

Table 1: Parameter Values
Note: The table lists the calibrated values of parameters and the corresponding reference/target of calibration.

(2020). We set the interbank-market efficiency, λ, to 2.1, following Bianchi and Bigio (2020) and set
the payment shock δ to produce the same steady-state interbank market tightness as in that paper.
We target a steady-state credit spread of 1.0% and accordingly set the discount window rate to obtain
that target.15

We calibrate the income process to strike a balance between fitting the job flows while producing a
reasonable income distribution with only four parameters. We set the unemployment benefit, b, to
41% of the real wages. This number matches the average US unemployment insurance replacement
rate between 2010 and 2019. The number overstates the actual earnings among the unemployed
because unemployment insurance is permanent in the model.16 The labor tax τl is set to 0.3, the av-
erage labor income tax.17 A standard approach to calibrate the employment-to-unemployment flows
is to use the transition rates of job-hiring and job-firing. Along those lines, we set νeu to 0.4, follow-
ing Shimer (2005).18 For the unemployment-to-employment rate, we set νue = 1.2. This number is
lower than the corresponding figure in Shimer (2005)—about 5.4. We need longer unemployment
spells because otherwise, the distribution of labor income is too concentrated around the median—it
is already excessively concentrated under the baseline calibration.

The last parameter is the debt limit, s̄ which we set to s̄ = −1.5 · b, to produce a debt-to-income ratio
of 1.5 for the poorest households. This debt limit is tighter than in the typical calibration used in the
literature. We chose a tighter debt limit because the precautionary motive is otherwise understated
as the model is missing other features that constrain consumption. For example, we are not including

15The required spread between the discount window rate and the rate on reserves is much higher than in the data, but
as we argued above, this is a stand-in for missing elements such as collateral and stigma (De Fiore et al., 2018).

16The UI replacement rate is the ratio of the claimants’ weekly benefit amount (WBA) to the claimants’ average weekly
wage. The average weekly wage is based on the hourly wage of a usual job claiment, normalized to a 40 hour work week.
The data is from https://oui.doleta.gov/unemploy/ui replacement rates.asp.

17The average labor income tax is equal to the U.S. average tax wedge for a single worker from 2000 to 2019. The data
is from OECD database https://data.oecd.org/tax/tax-wedge.htm.

18This is the annualized value of a monthly average separation rate of 0.034 between 1951 and 2003, used in Shimer
(2005).

25



Data Income Distribution

Model
Income

Distribution

(year average)

Data Wealth Distribution

Model
Wealth Distribution

(steady state)

Percentiles Nominal Value

(2019, $)

Relative to

Median

Relative to

Median
Nominal Value

(2019, $)

Deviation from Mean

(relative to per capita

income)

Deviation from Mean

(relative to per capita

income)

10% 14,945.45 24.99% 64.08% -466.58 -901.85% -51.77%

25% 30,638.18 51.23% 69.68% 12,430.11 -886.29% -27.59%

50% 59,806.73 100% 100% 121,411.37 -754.77% -0.38%

75% 105,898.51 177.07% 101.02% 403,283.56 -414.59% 23.80%

90% 166,549.65 278.48% 101.68% 1,219,126.46 569.99% 47.99%

Mean 82,861.41 138.55% 91.47% 746,821 0 0

Table 2: Household Income and Wealth Percentiles (Not-Targeted)
Note: The table lists the percentiles of household income and wealth obtained from U.S. data and model. Column 2 reports the nominal value of
U.S. household income percentiles in 2019, column 3 the ratio of percentiles to the median. Column 4 reports the model model analogue. Column 5
reports the nominal value of U.S. net worth percentiles in 2019, and column 6, the deviation of the percentiles from mean, relative to per capita income.
Column 7 reports the model analogue. The U.S. income distribution is from the 2019 Current Population Survey (CPS), and the net worth data from
the 2019 Survey of Consumer Finances (SCF).

illiquid assets (as in Kaplan et al., 2018) or consumption commitments (as in Chetty and Szeidl, 2007).

To benchmark the calibration, Table 2 reports the implied distribution of income in the model vis-á-
vis the data. As anticipated, the income distribution in the model is more concentrated than in the
data. In particular, the distribution is extremely concentrated above the median household income
because the median is on average employed through a typical year—thus, all households above the
median earn the same income. Below the median, there is a thicker tail, which as we noted, is still
more concentrated than in the data.

Likewise, the wealth distribution is also more concentrated in the model, at both ends of the dis-
tribution. Regarding the right tail of the wealth distribution, the model does not feature return
shocks, which are necessary to produce a realistic wealth concentration at the top quantiles. How-
ever, this feature should not be a concern since the consumption of wealthy households is close to
linear in wealth. Hence, the behavior of top quantiles is close to the behavior of a representative
agent model—Bilbiie (2020); Debortoli and Gali (2017). Regarding the left tail, it is again more con-
centrated in the model. In particular, the fraction of households for whom the debt limit is binding
is approximately 1.0% at steady state. By comparison, that figure is 10 times larger in Kaplan et al.
(2018) due to the presence of illiquid savings in that model. Since the behavior of constrained agents
is important for the responses to shocks, and we are understating the population at or near those
constraints, we compensate for that missing element with a tighter debt limit.

Finally, the CB operational revenue over output is 0.15%. Thus, the non-Ricardian effects in the
model are very small.
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Scenario Shock x xss x0 Tx ζ̄x

I. IOR
η 1.5 0 0 0.2
īm 1% {−2%,−3%,−4%} 1 50

II. Spread
η 1.5 0 0 0.2

∆r 0 1% 1 50
III. Credit Crunch s̃ s̄ 0.15s̄ 1 5

Table 3: Logistic Path - Changes in the IOR.
Note: This table lists the baseline calibration of parameters in the logistic paths in each experiments. The value of īm

0 depends on the experiment.

Logistics. In the experiments that follow, we study events where we shock exogenous variables.
In each experiment, we initiate the economy at a steady state and consider t = 0 to be the time of
an unexpected event. For each variable xt, we initiate its value at some x0+ where it stays put for an
interval after which the variable begins a transition to return to steady state:

xt =

x0, if t ∈ [0, Tx]

xss + (x0 − xss) · exp
(
−ζ̄x (t− Tx)

)
, if t > Tx.

(26)

We study the effects of shocks to four variables x ∈
{

η, īm, ∆r, s̃
}

—the variable s̃ captures a credit
crunch as we explain below. In the formulation, Tx is the time interval where the variable stays put.
After Tx, the variable transitions smoothly back to steady-state value, following the logistic (26) with
a parameter ζ̄x > 0 that controls the speed of mean-reversion. Under each experiment, we shock
several variables together, as summarized by Table 3, to conveniently disentangle effects.

4.1 Policy Effects

A Floor System and the Fisherian Channels. We now explain the effects of a CB that satiates
banks with reserves and operates through a floor system. If the CB satiates banks with reserves,
we observed that the only instrument with effects is the IOR. Under flexible prices, changes in the
IOR are neutral. In turn, when prices are rigid, changes in the IOR carry real effects akin to those in
Guerrieri and Lorenzoni (2017); Kaplan et al. (2018); Auclert (2019). Since, the effects of MP in those
papers are well understood, we do not carry our an analysis of their effects in further detail. Next,
we abandon a floor system and study the effects of changes in the IOR and OMO.

Corridor System: Steady State CB Balance Sheet and Micro Insurance. In a corridor system, the
size of the CB’s balance sheet, L f , affects the spread. We first consider the effects of changes in
spreads at steady state. Steady-state output is entirely determined by the natural job flows but the
amount of credit and real rates is affected by spreads. Figure 5 reports the real wealth distribu-
tion among employed and unemployed households (panels a and b, respectively) and real interests
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(panel c), for different values of ∆rss. There is a noticeable difference: larger spreads compress the
wealth distribution and reduce the mass of agents at the debt limit. The reason for this is that the
spread is a tax on credit. Like any tax, a greater spread reduces the real deposit rate while it increases
the real loans rates, making both savings and borrowings less attractive. Also like any tax, the spread
has an incidence on both sides of the market, on the loan demand or the deposit supply, depending
on what side is most elastic. As we can see from panel (b), the incidence on the interest rate on
loans is higher. This feature reflects that as agents approach their credit constraints, they become
less responsive to changes in interest rates, a result that has been stressed before—see Auclert (2019),
for example. This lower interest rate elasticity explains the greater incidence of spreads on borrow-
ers. To clear the credit market, the loans rate has to increase substantially more than the decrease in
deposit rates. The greater the relative interest rate elasticity of savers, the greater the effect.19

The more concentrated distribution of wealth under a corridor system plays an important role in the
model. In an incomplete markets economy, a more concentrated wealth distribution is an indication
of worse micro insurance. Take the extreme example of financial repression. Financial repression,
leads to a very equal society, where the unemployed suffer excessive consumption risks that lead
to ex-ante welfare losses. The increase in spreads produced in a corridor system is a less drastic
example, but the same logic applies: greater spreads hurt the insurance of idiosyncratic labor risk,
what we call micro insurance.20

-0.5 0 0.5 1 1.5 2
0.0014382

0.0015657

0.0016932

0.0018207

0.0019482

0.0020757

0.0022032

0.0023307

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) Employed

-0.5 0 0.5 1 1.5 2
0.007821

0.0083647

0.0089085

0.0094523

0.0099961

0.01054

0.011084

0.011628

0.012171

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) Unemployed

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

2

3

4

5

6

7

(c) Deposit and Loan Rates

Figure 5: Steady State Effects of Real Spreads.
Note: In panels (a) and (b), the measure of households with assets s̄ is a probability mass (left scale), and the measure of households with s > s̄ is a
probability density (right scale). In panel (c), deposit and loan rates are expressed in annual percentage terms.

We quantify the extent of micro insurance in a given steady state, to get a sense of the cost induced
by spreads, through the following metric. We compute the loss in steady state, Lmicro (∆rss), in a
complete-markets-no-inequality version of the model that delivers the same utility as the egalitarian
welfare criterion. The formula is:

U
(
Yss
(
1−Lmicro (∆rss)

))
ρ

≡ ∑
z∈{e,u}

ˆ ∞

s̄
V (s, z, ss; ∆rss) · f (s; ∆rss) ds. (27)

19Drechsler et al. (2017) documents that deposit rates are not very sensitive to MP and attributes the effect to market
power. We obtain the same result here because savers are more interest rate elastic than borrowers.

20The spread has a non-Ricardian effect through transfers, but this effect is quantitatively small.
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The value of Lmicro measures how much a planner would pay in terms of steady-state output to get
rid of the employment fluctuations. We call this loss the micro loss. To get a sense of magnitudes,
without a spread, we obtain a loss equivalent to Lmicro = 0.45%. If we increase the steady-state
spread to 0.25%, we obtain a micro loss of Lmicro = 0.4504%, roughly a 0.1 welfare loss. Raising the
spread further to 1% produces a Lmicro = 0.4554%, increasing the loss by 1.2%. As we should expect,
welfare losses are detrimental to ex-ante micro insurance.

Corridor System: Changes in the IOR. We now consider the effects of changes in im
t under rigid

prices, holding ∆r fixed. Figure 6 presents the results of a transition that starts from steady state.
The transition is triggered by a 3.0% reduction in im

0 . The reduction of 3.0% lasts for a year, Tīm = 1.
The value of 3.0% is chosen, for comparison purposes with the shock that eliminates the spread. To
isolate the effects of this policy, we neutralize the feedback from the Phillips curve setting η to zero
during the experiment, as detailed in Table 3. The reversal of the policy change is immediate.

Three channels operate in tandem: a standard interest-rate channel, a credit channel, and a less im-
portant non-Ricardian channel. Because ∆r is fixed, the reduction in the IOR leads to reductions in
all nominal rates by 3.0%. A first effect is a decline in real rates——panel (b). Given that production
is demand determined, the reduction in real rates provokes an increase in output—panel (d)—which
occurs mechanically through a jump in employment and a subsequent decrease in unemployment—
panel (e). During the transition, unemployment remains above its natural level, and through the
Phillips curve, induces a corresponding increase in inflation—panel (c). The response is consistent
with the standard real-interest rate channel that operates in the new-Keynesian model. Here, the
direct effect of the interest rate is enhanced by the decline in job separations, which in turn stimu-
lates consumption. This additional consumption stimuli occurs through the expectations of higher
income by the unemployed. Quantitatively, the passthrough from the policy reduction to accumu-
lated output over the years is approximately 1/3—a one year 1% reduction in the IOR would lead
to 0.3% in accumulated output after one year. The quantitative effect is strong.

An important feature is that the volume of credit declines during the experiment. The reason is the
greater interest-rate sensitivity of savers. Because the spread is constant, the reduction in real deposit
and loan rates is the same. However, the reduction in the deposit rate stimulates the consumption
of the saver by more than the consumption of borrowers. If savers desire to save less, but borrowers
are less sensitive to interest rates, the economy needs another margin to reestablish an equilibrium.
What allows to reestablish an equilibrium is the indirect effect: the expected increase in hiring rates.
This increase in income is expected to be temporary, but due to the precautionary motive, it is able
to stimulate consumption among the unemployed.

The reduction in credit is important because behind it is an additional amplification effect through
the credit channel. Lurking in the background are reverse OMO that allow the CB to maintain a
constant spread. As credit falls in response to a reduction in the IOR, if the supply of reserves is
unaltered, the liquidity ratio would increase. Thus, to keep the liquidity ratio constant—and isolate
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the interest-rate channel—we have the CB conduct a reverse OMO. If the CB does not perform the
reverse OMO, the interest-rate channel is enhanced through the effect on spreads. Without that
correction, in a corridor system, changes in the IOR operate through both the interest rate and credit
channels.

We refer readers to Appendix E where we present an analysis of consumption elasticities at different
wealth levels, to different variables that are affected by MP. That analysis allows for a decomposition
of the strength of the effects of different channels on different agents.

Corridor System: OMO. Now consider an OMO that leads to a reduction in ∆rt, while keeping the
IOR constant. In the exercise, an OMO is engineered so ∆rt is brought down from 1% to 0% during
a year, T∆r, following the logistic path in Table 3. Again, we isolate the effects from the endogenous
response of the Taylor rule by setting η = 0 during the year of the response.

The effects are depicted in Figure 7. Panel (a) shows the path of spreads. The reduction in the spread
is produced by an OMO that increases the liquidity ratio. Since both the deposit and loan rates
carry premia over the IOR that decrease with the liquidity ratio, both nominal rates fall with the
OMO. However, note that the reduction in the lending rate is almost twice as large as the decline in
the deposit rate. As explained earlier, the policy has a direct effect through the credit channel and
another direct effect through the interest-rate channel. The qualitative effects are similar to those of
reductions in the IOR. Quantitatively, although the change in real deposit rates is the same as in the
previous exercise, the quantitative effect on output is about 15% larger on impact. This additional
strength is obtained through the reduction in the spread, which activates the credit channel.

Liquidity trap: Changes in the IOR. Next, we investigate the effects of reductions in the IOR that
activate a liquidity trap—as occurs when we move from the green to the brown region in Figure
4. The objective is to show that a reduction in im

t that leads to a liquidity trap is contractionary. We
study the three IOR reduction scenarios described in Table 3, which differ only in the initial reduction
in īm

0 . In one policy—the solid curve—we reduce īm
0 by 2.0%, in another policy, by 3.0%, to the point

where nominal deposit rates are just about zero, and in the final exercise, by 4.0% to a point past the
value that activates the DZLB in a liquidity trap—the dot-dashed line. In all cases, η is again set to
zero.

Figure 8 reports the responses. Panel (a) reports the effects on spreads. Notice that the policy that
takes the economy to the liquidity trap induces an increase in spreads by about 25 bps. Panel (b)
shows the corresponding deposit rates. We can observe that in a liquidity trap, reductions in the
IOR do not affect the real deposit rates because of the DZLB. Panels (d-f) show the effects on output,
separations, and the volume of credit. The takeaway is that the policy is expansionary prior to
entering the liquidity trap. However, the effect is quantitatively small because, as we have noted,
borrowers are less sensitive to changes in the loan rates. This response rationalizes the idea that in a
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liquidity trap, MP has reached its limits and is akin to pushing on a string. Neither reductions in the
IOR nor OMO can stimulate the economy.

4.2 A Credit Crunch and Macro Insurance

Credit Crunch. In the normative section that follows, we will study the advantages of a corridor
system when a credit crunch episode is possible. Here, we first study the standalone effects of a
credit crunch. In order to introduce a credit crunch, we modify the model. In addition to the debt
limit s̄, we introduce a time-varying borrowing limit, s̃t. The borrowing limit s̃t is triggered before the
household reaches its debt limit, s̄ ≤ s̃t ≤ 0. If households exceed their borrowing limit, st ≤ s̃t, they
are no longer allowed to accumulate more debt principal, but they are still allowed to roll over their
debt. Formally, this means that ctdt ≤ rl

tstdt + dwt in s ∈ [s̄, s̃t]. We interpret an increase in s̃t as a
credit crunch. From now on, we modify the household’s HJB equation to include this time-varying
constraint.

The distinction between borrowing and debt limits has technical and economic motivation: The
technical motivation is that the borrowing limit allows us to study an unexpected credit crunch.
Although an unexpected jump in the debt limit is not well-defined mathematically, an unexpected
jump in the borrowing limit is.21 In turn, the economic motivation is that if a bank wants to cut back
on credit, it may be convenient to tighten the borrowing limit, but not necessarily to force households
to repay debt principal immediately.22

Let’s discuss the effects of a credit crunch. We introduce a temporal expected increase in s̃t starting
from s̃ss = s̄ following the parameters of the credit crunch scenario in Table 3. In the scenario,
the policy rates are reacting through the Taylor rule—we obtain similar results if we set η to zero.
Figure 9 displays the transition. Panels (a) and (b) display the distribution of wealth among the
employed and unemployed at steady state and after the crunch is over in Ts̃. Notice that the mass
of households at the debt limit vanishes by Ts̃ and the wealth distribution slightly shifts to the left,
particularly among the unemployed. The reduction in credit occurs because the households that
violate the borrowing limit cannot increase their debts to smooth consumption. Instead, because
they can only roll-over their debts, they accumulate less debt on average. This produces a decrease in
the consumption of borrowers whose debt is above the borrowing limit. As a result of the contraction
in aggregate consumption, output falls. Due to price rigidities, real rates remain roughly constant—
Panel (d). Upon the shock, unemployment jumps and remains high during the credit crunch. The
decline in credit is shown in Panel (c).

21With an unexpected change in the debt limit, there would be a positive mass of households violating their debt
limits. This does not apply to the borrowing limit s̃t. An alternative approach is to study a gradual shock to debt limits
as in Guerrieri and Lorenzoni (2017).

22When a bank extends a loan, it increases its liabilities. This is not true about a loan rollover. During crises, banks
may want to roll over debt, although they are unwilling to extend loans because the latter consumes regulatory capital.
In addition, if loan repayment is suddenly forced, it can trigger default which may lead to costly underwritings.
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Macro Insurance: stability and macro-prudential power. In this section, we discuss how credit
spreads bring welfare benefits through better macro insurance. We refer to macro insurance as the
increase in the stabilization power of MP and the ability to mitigate the effects of shocks (macro-
prudential power).

For different steady-state values of the spread, Figure 10 displays the transition of output induced
by a reduction in the IOR (Panel a), by a reduction in the IOR together with an OMO that takes
spreads to zero (Panel b), and by a credit crunch event—as described in Table 3. The takeaway from
the figure is that the wider the spread, the greater the macro insurance. In Panel (a) we observe
that the wider the initial spread, the greater the output expansion after the reduction in the IOR.
The intuition behind the result is that with a wider initial spread, the volume of credit falls, which
compresses the distribution of wealth. The stabilization power increases as a result because the
mass of agents near their debt limits falls, and these are the agents less sensitive to interest rate
cuts. Panel (b) shows that if the reduction in the IOR is coupled with a reduction in spreads, the
stabilization is even greater. Finally, panel (c) demonstrates a macro-prudential benefit: With wider
initial spreads, because there is less overall borrowing, the interest burden of debt is lower for the
average bower. Thus, upon a credit crunch, the consumption by borrowers does not fall as much.
Thus, the contraction in aggregate demand in response to the credit crunch event is less severe, even
if there is no policy response.

(a) Reductions in the IOR

-5 0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) Reductions in the IOR and Spreads
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(c) Effects of a Credit Crunch

-5 0 5 10 15 20 25 30

-3

-2.5

-2

-1.5

-1

-0.5

0

Figure 10: Policy and Credit Crunch for Different Spreads.
Note: The figure reports the responses of aggregate output after an unanticipated reduction in IOR, an unanticipated reduction in IOR and spread, and
an unanticipated credit crunch. Aggregate output is expressed in percentage deviations from the steady state. In each panel, we simulate the paths
under four different steady-state spreads: ∆rss = {0.25%, 0.5%, 0.75%, 1%}.

Welfare Loss Decomposition. We construct a metric to measure macro and micro insurance during
a transition and use this metric in the normative analysis. First, for a given steady-state spread ∆rss,
we compute a metric for the welfare loss associated with the credit crunch, L0. We define this loss as
the output loss that would yield the same welfare in the steady state of a complete-market-and-no-
inequality version of the model. In this case, L0 is obtained by solving:

U
(
Yss
(
1−L0))
ρ

= ∑
z∈{e,u}

ˆ ∞

s̄
V (s, z, 0; ∆rss) · f ss (s; ∆rss) ds. (28)
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We are interested in decomposing L0 into metrics corresponding to macro and micro insurance. To
obtain that decomposition we compute Lmacro solving:

U (Yss (1−Lmacro))

ρ
≡
ˆ ∞

0
exp (−ρt)U (Yt) dt. (29)

Lmacro is the steady-state output loss that would yield the same welfare to a representative agent
that consumes the output generated by the model during the transition after the crunch. We add
and subtract (29) in (28) to obtain:

U
(
Yss
(
1−L0))
ρ

=
U (Yss (1−Lmacro))

ρ︸ ︷︷ ︸
macro insurance

+ ∑
z∈{e,u}

ˆ ∞

s̄

(
U
(
U−1 (ρV (s, z, 0; ∆rss))

)
−U (Yss (1−Lmacro))

ρ

)
· f ss (s; ∆rss) ds︸ ︷︷ ︸

micro-prudential insurance

. (30)

From this expression, we observe that welfare can be decomposed into a loss that stems from the
aggregate output and losses in terms of the deviation of agents from the welfare of the representative
agent. We can define the ex-post loss as a residual:

Lex−p,micro = L0 −Lmacro,

which is associated with the welfare losses from the second term—these refer to the losses produced
by lack of insurance. Clearly, if there was perfect risk sharing, Lex−p,micro = 0.

A final useful metric is a decomposition of Lmacro into the loss provoked by the shock and the loss—
the gain—attributed to MP stabilization. To obtain that decomposition, we let

{
Ỹt
}

be the output
path associated with the credit crunch, without a MP response—as shown in Panel (c) of Figure
10. Let Lmacro,pru be obtained by replacing it for Lmacro and replacing {Yt} by

{
Ỹt
}

in (29). Thus,
Lmacro,pru measures how the spread impacts welfare, without a policy response. Thus, it measures the
macro-prudential benefits of a given spread. The gain of MP stabilization is the difference between
the macro loss and the macro-prudential loss,

Lstab ≡ Lmacro −Lmacro−pru.

We present values for these metrics in the next section, as they are critical to understanding the
sources of running lean balance sheets.
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5 Normative Analysis: Optimal use of the Credit Channel

So far, we analyzed MP from a positive standpoint. A lesson from the steady-state analysis is that
spreads hurt micro insurance, but a lesson from the transitional dynamics is that MP is more pow-
erful in an economy where credit was contained by higher spreads. In this section, we investigate
if it is optimal to flood banks with reserves to eliminate spreads. That is, should the CB always run
a Friedman rule? The generic answer is no. In this model, the CB should operate a corridor system
during booms, sacrificing micro insurance for the sake of better future macro insurance.

To build the case for a corridor system, we must allow the crunch to be an anticipated event. The
anticipation of shocks is important because the policy objective is to correct an aggregate demand
externality. However, if households anticipate shocks, perhaps their own precautionary behavior
may be enough to correct the externality. By permitting shocks to be anticipated, we can conduct a
proper ex-ante welfare calculation.

At this stage, we face a technical challenge: Computing solutions in incomplete-markets models
with aggregate shocks is unfeasible when the state variable is the wealth distribution. This is why
the literature employs approximations (like bounded rationality as in for exampe, Krusell and Smith,
1998). Here, we want to say something about optimal policy, which complicates things further. The
technical challenge is thus to provide an exact solution to the optimal policy that does not rely on
bounded rationality approximations that possibly confound effects. Next, we present an approach
that provides insights without the need to compute the entire solution.

The Risky Steady State. Although it is impossible to compute an exact transition with recurrent
shocks, we employ an approach to compute solutions when the credit crunch is expected to occur
only once. In particular, we employ the risky steady-state (RSS) approach developed in Bigio, Nuno
and Passadore (2020a) following Coeurdacier, Rey and Winant (2011): In our context, the RSS is
defined as the asymptotic time limit of an economy where households anticipate the realization of
a single credit-crunch event. That is, we compute the steady state of an economy where the credit
crunch is expected, but the shock has not yet been realized. The RSS is the asymptotic limit economy
as the waiting time of the shock approaches infinity. After the credit crunch, households do not
expect the shock to occur again, so the model solution after the credit crunch is deterministic, but it
has the RSS as an initial condition. The assumption of a single event is reasonable, if we consider
shocks to be “disaster" events as discussed in Barro and Ursúa (2012). Disaster shocks are large
shocks that happen very rarely, and hence it is reasonable to disregard the effect of a second shock
on agent behavior. For sufficiently high discounting and events that are far apart enough in time, the
deterministic behavior after the single shock should approximate well the behavior under recurrent
shocks—akin to the turnpike Theorem.

In the context of this paper, the RSS is characterized as follows: given a Poisson intensity for the
realization of an an aggregate credit-crunch shock, θ,and a real spread, ∆r, the RSS is characterized
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by a modified household HJB equation and a wealth-employment distribution:

Definition 2 [RSS] The risky steady state of the economy is given by:

a) the solution to the household’s value and policy functions at the RSS are the solutions to:

ρṼ (z, s) = max
{c}

U (c) + Ṽ′s · µ̃ (z, s) + Γrss
[
Ṽ
(
z′, s
)
− Ṽ (z, s)

]
+ θ

[
V (z, s, 0)− Ṽ (z, s)

]
(31)

and ṡ ≥ 0 at s = s̄ where µ̃ (z, s) ≡ rrsss− c + wrss (z) + Trss.

b) the RSS distribution of wealth and employment status is:

0 = − ∂

∂s
[
µ̃ (e, s) f̃rss (e, s)

]
− Γeu · f̃rss (e, s) + Γue · f̃rss (u, s) , and

0 = − ∂

∂s
[
µ̃ (u, s) f̃rss (u, s)

]
− Γue · f̃rss (u, s) + Γeu · f̃rss (e, s) . (32)

c) In (31), the jump in the value V (z, s, 0) is the value function associated with a transition with initial
condition f̃ .

d) Given a spread target, ∆r, a real deposit rate ra that solves (24) applied to f̃ and Trss is given by (23) applied
to f̃ ad ∆r.

The technical advantage of the RSS approach is that it can be computed exactly and efficiently, as
is clear from the proposition. The only complication is that the distribution of wealth at the start
of the crunch, is unknown. However, we no longer need to solve for a fixed point in the space of
distributions, but only in the space of functions—the problem is of equal computational complexity
as a perfect-foresight transition. To see this, observe that to solve (31), all we need to obtain is a RSS
value for the real rate, rrss. With rrss, we obtain consumption rules that solve (31), and from these,
we obtain f̃rss according to (32). Then, f̃rss is the initial condition for a transition that converges to
steady state. Appendix F presents the complete algorithm.

Optimal CB Balance Sheet. To analyze the optimality of a corridor system, we study welfare at
the RSS. We compare the ex-ante welfare losses for different policy spreads at the RSS and different
stabilization policies during the realization of the crunch episode.

Due to the super-neutrality property of the environment, steady-state output is a constant—although
credit varies across different RSS. This feature provides us with a consistent benchmark to compare
welfare. We measure welfare using a utilitarian criterion, with equal weights across agents. We
express the welfare loss as we did for a steady state, but now computed in the RSS. Thus, Lrss (∆rss)

solves:

U (Yss (1−Lrss (∆rss)))

ρ
= ∑

z∈{u,e}

ˆ ∞

s̄
(Vrss (z, s)) f̃rss (z, s) ds.
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Before analyzing the effects at the RSS, it is instructive to first discuss the welfare loss in a determin-
istic steady state. In steady state, welfare losses are increasing with the spread. As discussed above,
higher spreads compress the steady-state distribution of wealth, and produce less inequality—see
Section 4. Since the objective of the planner is concave, an effect other than wealth inequality must
produce the greater welfare losses. For that reason, from a steady-state perspective, a lower spread
leads to lower welfare losses. In other words, spreads hurt micro insurance. Things turn out to be
different if an aggregate shock is anticipated.

We now consider various values for an initial RSS spread prior to a credit crunch shock. In all cases,
we start from im

ss = 1%. For each spread, we compute the RSS and then feed a credit crunch episode.
In turn, we consider four policy responses after the shock, corresponding to the policy experiments
of the previous sections. Under policy I, we close the spread to 0 and fix the IOR. Under policy II,
we reduce the IOR up to the DZLB and leave the spread constant. Under policy III, we reduce the
IOR to 1% below the value that triggers the DZLB. Under policy IV, we reduce the IOR only up to
the DZLB, and close the spread to 0. In all cases, we set η0 = 0. The policy instruments are constant
for one year and then follow the logistic paths.

The main takeaways are summarized by Figure 11. The Figure reports the RSS welfare for each
spread in the x-axis. Each curve (with the different colors) corresponds to one of the four stabilization
policies after the crunch. Comparing across ex-post policies, the greatest loss occurs when only the
spread is closed and there is no response in rates. We can also observe if policy only changes the IOR,
it induces greater welfare than if it just lowers spreads. This is because the spread is a more powerful
tool for a given deposit rate, there is more scope to drop rates because the spread is bounded. The
figure also shows that reductions in the IOR beyond the DZLB are counterproductive, as we argued
above. Naturally, the best the CB can do is to both eliminate the spread and bring the IOR down to
the boundary of the DZLB.

For our discussion, the most relevant comparison is across initial spreads: Regardless of the policy,
the lowest losses are for intermediate spreads near 0.75%. Why? In the RSS, the welfare loss is
governed by a tradeoff: A higher initial spread induces ex-ante welfare losses due to worse micro
insurance. However, during a transition, the effects of the credit crunch are mitigated when the
initial spread is higher. This is because higher spreads compress the distribution of wealth which
mitigates the direct impact of the credit crunch and increases the power of MP, as we discussed
earlier.

To further illustrate the tradeoff between micro and macro insurance, Panel (a) of Figure 12 plots the
welfare loss for various policies. The x-axis plots the ex-ante spread and the y-axis plots the IOR
immediately after the shock—in all cases we close the spread to zero and keep the IOR fixed during
the crunch. The vertical axis plots the RSS welfare loss. We can observe again that the optimal ex-
ante spread is positive. In terms of the response of the IOR, the welfare loss is decreasing up to the
value that activates the DZLB—at some negative value for the IOR. Panel (b) of Figure 12 reports
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Figure 11: Welfare Loss of Policies During a Credit Crunch (% deviation of Certainty Equivalent
from Yss).
Note: This figure depicts the welfare loss of a credit crunch policy response for different initial spreads. The welfare loss is measured in % deviation of
aggregate CE from steady-state output.

the optimal spread as a function of the Poisson intensity of the realization of the credit crunch event.
Naturally, the optimal spread is zero if the intensity is zero, as occurs in steady state. As the intensity
increases, the optimal spread increases until it reaches a level where there are no further benefits:
Above a steady-state spread of 0.72%, the mass of borrowers at their borrowing limits falls to a small
value where most of the effect is gone. Beyond that point, there are not further gains of increasing
spreads.

Noticeably, the welfare cost of a credit crunch and lack of insurance are small—as in most macroe-
conomic models. In this model, they only cost around 0.4% of the certainty equivalent in the first
best allocation. Operating at the optimal ex-ante spread with a sufficiently small balance sheet can
mitigate those welfare losses by about 1%. Naturally, the model needs many more ingredients to
increase the welfare losses produced by the inherent frictions.
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Figure 12: Optimal Credit Spreads.
Note: Panel (a) of the figure plots the RSS welfare loss as a function of the credit spread prior to the shock and the IOR after the shock. Each pair of the
initial IOR im

0 and the credit spread ∆rss in the figure represent the following exercise: in the RSS, the IOR is 1% and the credit spread is equal to ∆rss.
When the credit crunch occurs, the government sets the IOR to be im

0 and reduces the credit spread to 0 for 12 months, and adjusts the paths of the IOR
and the credit spread following logistics. Panel (b) plots the optimal credit spread as a function of the Poisson intensity of the credit crunch shock. The
optimal credit spread minimizes the RSS welfare loss when the initial IOR im

0 after the credit crunch is 0.

Welfare Decomposition. Finally, we decompose the welfare loss in a RSS into its micro and macro
insurance components. We seek to understand where the benefits are coming from. The egalitarian
welfare at the RSS can be decomposed into welfare before and after the shock:

U (Yss (1−Lrss))

ρ
=

ρ

ρ + φ
·

∑z∈{e,u}
´ ∞

s̄ U (crss (s, z; ∆rss)) · f rss (s; ∆rss) ds
ρ︸ ︷︷ ︸

ex-ante welfare

(33)

+
φ

ρ + φ

∑z∈{e,u}
´ ∞

s̄ U
(
U−1 (ρV (s, z, 0; ∆rss))

)
· f rss (s; ∆rss) ds

ρ︸ ︷︷ ︸
ex-post welfare

.

Thus, welfare is the weighted average of welfare obtained from the expected discounted time at the
RSS (ex-ante welfare) and the welfare at the start of the credit crunch. The first term in the summation
is akin to steady state welfare for which we can compute an ex-ante micro loss Lex−a,micro, as we did
in the steady-state decomposition solving (27). The second term is akin to the ex-post welfare at the
beginning of the transition, which we can decompose into the terms,

{
Lmicro−pru,Lstab,Lmacro−pru}

as in the end of the previous section. Thus, using the decomposition in (33) we obtain that the RSS
loss can be decomposed into approximately the following term:

Lrss ≈ ρ

ρ + φ
Lex−a,micro +

φ

ρ + φ

(
Lex−p,micro + Lmacro−pru + Lstab

)
.
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Policy Welfare Loss Decomposition of Welfare Loss
∆rrss Lrss Lex−a,micro Lex−p,micro Lmacro−pru Lstab

0.25% 0.4310 0.4537 0.4260 0.1513 -0.1645
0.5% 0.4286 0.4556 0.4295 0.0773 -0.0999

0.75% 0.4249 0.4601 0.4365 0.0347 -0.0744
1% 0.4257 0.4641 0.4423 0.0259 -0.0731

Table 4: Table: RSS Decomposition of Reducing the IOR to the DZLB during a Credit Crunch (% of
Yss)
Note: The table reports the RSS welfare loss decomposition for different initial spreads. The decomposition is performed for four values of steady-
state spreads: ∆rss ∈ {0.25%, 0.5%, 0.75%, 1%}. The column Lrss reports the egalitarian welfare loss at the risky steady state. The column Lex−a,micro

reports the welfare loss for the ex-ante micro insurance. The column Lex−p,micro reports the welfare loss for the ex-post micro insurance. The column
Lmacro−pru reports the post-shock macro-prudential loss under no policy response. The column Lstab reports the post-shock stabilization benefits of a
policy response. All losses are expressed in percentage deviations from steady-state aggregate output. In all cases, the error term in the decomposition
is negligible.

The numerical results from this decomposition applied to the four values of the spread, ∆rss ∈
{0.25%, 0.5%, 0.75%, 1%}, are presented in Table 4. As we noted above, the RSS welfare loss Lrss

is lowest for a positive spread of 0.75%. This follows from a trade-off between micro insurance
and macro insurance. Prior to the shock, micro insurance always decreases with the spread, as
evident from the values of Lex−a,micro, just as it does in a steady state. After the shock, the ex-post
Lex−p,micro insurance is also worse because spreads are closed only temporarily during the crunch.
The important message is that the micro losses are compensated by greater macro benefits, which
increases in the spread. The macro loss is the sum of the macro prudential loss and the stabilization
welfare loss. Observe that the macro-prudential loss falls with the level of spreads. This is because,
with tighter spreads, the contraction in aggregate demand is lower after the credit crunch for higher
spreads. The stabilization loss is negative because MP improves welfare during a crunch. This
benefit decreases as we increase spreads because the stabilization power of MP loses importance
because the macro-prudential policy does the job of mitigating the effects of the shock. All in all, an
ideal spread is obtained when all these marginal conditions offset each other, which occurs at some
intermediate value. Because an intermediate spread is generated by a limited supply of reserves, i.e.,
a lean CB balance sheet, the model suggests that constantly operating with large CB balance sheets
is a bad idea.

Other Shocks: Discount-Factor Shocks. The normative message of the paper is laid out in the
context of a credit crunch. One alternative way to view aggregate demand externalities is as an
episode where agents face discount factor shocks Eggertsson and Krugman (2012). Discount factor
shocks can capture deeper phenomena like sectoral shocks like those of the Covid-19 crisis—–see
(Guerrieri, Lorenzoni, Straub and Werning, 2020; Bigio, Zhang and Zilberman, 2020b). Appendix
E.3 presents an analogue analysis in the context of discount factor shocks. The message remains the
same. Limiting credit is desirable to save MP for the future.
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6 Conclusion

In the final paragraph of the introduction to his collected works on monetary economics, Lucas
(2013), Robert E. Lucas writes: “Now, toward the end of my career as at the beginning, I see myself
as a monetarist. My contributions to monetary theory have been to incorporate the quantity theory
into modern modeling. For the empirically well established predictions —long-run links— this job
has been accomplished. On the harder questions of monetary economics—the real effects of mon-
etary instability, the roles of inside and outside money, this work contributes examples but little in
empirically successful models. It is understandable that in the leading operational macroeconomic
models today—the RBC and the new-Keynesian models—money as a measurable magnitude plays
no role at all, but I hope we can do better than this in the future.”

This paper is one of the many recent attempts to let money play that special role that Lucas alludes
to. In fact, the model here is a descendant of one of Lucas’s models, Lucas (1980). Here, the supply
of reserves—outside money in the language of Lucas—is an input for the supply of credit—inside
money. The paper is explicit about the implementation of MP and how different instruments affect
different interest rates. If we are open to accepting that idea, we begin to challenge some preconcep-
tions about MP: the idea that MP is neutral is long run neutral or that a single interest rate is all that
matters to understand MP.

We furthermore argued that in an incomplete markets economy, with nominal rigidities, MP is more
powerful in a regime with scarce reserves. This observation allows us to frame a normative message:
managing a countercyclical CB balance sheets is desirable. We hope this study contributes to the
debates on the optimal conduct of MP and that Lucas sees a positive slope in this small step.
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A List of Acronyms and Accounting Identities

List of Acronyms in the Paper. Along the paper we used the following acronyms:

• MP: Monetary Policy

• CB: Central Bank

• DZLB: Central Bank

• IOR: Interest on Reserves

• OMO: Open-Market Operation

Household Balance Sheet. The household’s balance sheet in in nominal terms is structured as:

Assets Liabilities
mh

t lh
t

ah
t Ptst

.

Bank Balance Sheet. The balance sheet of an individual bank is structured as:

Assets Liabilities
mb

t ab
t

lb
t

.

CB Balance Sheet. The balance sheet of the CB is structured as:

Assets Liabilities

L f
t Mt

Monetary Aggregates. The monetary aggregates are given by, Mt, the monetary base, M0t, the currency and M1t ≡
Ab

t + M0t, the highest monetary aggregate.

Money Multiplier. The money multiplier MMt is the inverse of the liquidity ratio, MMt = Λ−1
t = Ab

t / (Mt −M0t).

Timeline of interbank transactions. Figure A presents the accounting for banks, within a ∆ time interval. Unlucky
banks get hit by negative withdrawal shocks, which can lead them to a negative balance of reserves in the period. That
bank mus cover the position by the end of the interval by borrowing funds from other banks, or from the discount
window.
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B Formulas for the Interbank-Market Payments

According to Bianchi and Bigio (2017), the formulas for the interbank market rate and the trading probabilities depend
are broken into two cases, depending on whether θ > 1 or not.

Case I: θ ≤ 1. The trading probabilities for surpluses and deficit positions along a trading session are:

ψ+ (θ) ≡ θ
(

1− e−λ
)

, ψ− (θ) ≡ 1− e−λ.

The expected interbank payments are given by:

χ− (θ, η) = ι
(θ + (1− θ) exp (λ)) 1−η − θ

(1− θ) exp (λ)
,

and

χ+ (θ, η) = ι
θ (θ + (1− θ) exp (λ)) 1−η − θ

(1− θ) exp (λ)
.

The resulting average interbank market rate is:

i f
(θ, η) ≡ im + ι

(θ + (1− θ) exp (λ)) 1−η − 1
1− exp (λ)

(34)

Case II: θ ≥ 1. The trading probabilities for surpluses and deficit positions along a trading session are:

ψ+ (θ) ≡
(

1− e−λ
)

, ψ− (θ) ≡ θ−1
(

1− e−λ
)

.

The expected interbank payments obtained as follows a simple symmetry property:

χ− (θ, η) = ι− χ+
(

θ−1, 1− η
)

and

χ+ (θ, η) = ι− χ−
(

θ−1, 1− η
)

The resulting average interbank market rate is:

i f
(θ, η) ≡ ι− i f

(
θ−1, 1− η

)
(35)

Equal Bargaining Power. In the present paper we set η = 1/2. Thus, we have that for θ > 1, the solution is:

χ− (θ) = ι− χ+
(

θ−1
)

and

χ+ (θ) = ι− χ−
(

θ−1
)
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The resulting average interbank market rate is:

i f
(θ) ≡ ι− i f

(
θ−1
)

(36)
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C Implementation

C.1 Alternative Implementations

MP implementation in a liquidity trap: Spread and Negative Interest on Reserves. Figure 3 that
depicts a map from the liquidity ratio to borrowing and lending rates. That figure is valid when police variables are
set within the corridor system regime. In Figure 13 we keep ΛMB constant and show borrowing a lending rates, as we
vary im. As we can observe, there’s an interval of values for im such that the spread is constant and both rates move in
parallel. Once im reaches a sufficiently low value, further reductions in im begin to increase spreads while the deposit
rate stays fixed. Beyond that point, currency is held by households.
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(a) Equilibrium Rates
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(b) Equilibrium Spread

Figure 13: Negative Interest on Reserves and the DZLB.
Note: This figure depicts the equilibrium rates and spread as a function of interest on reserves under DZLB. All the rates and spread are expressed in
basis points.

In 14 we vary im and ΛMB together. Panel (a) shows the spread as a function of both policy variables. There are many
combinations that allow to implement the same spread at the DZLB. Panels (b-c) the corresponding deposit and loans
rates.
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(a) Equilibrium Spread (b) Equilibrium Deposit Rate

(c) Equilibrium Loan Rate

Figure 14: Negative Interest on Reserves, Liquidity Ratio and the DZLB.
Note: This figure presents the equilibrium spread, deposit rate and loan rate as functions of liquidity ratio and interest on reserves under DZLB. All
the rates and spread are expressed in basis points.

Alternative Implementations. In the current formulation, the CB has two tools, {im
t , Mt}. We observed that im

controls inflation directly and that the size of the balance sheet can achieve a desires spread. We took as given the spread
ι. In principle, a desired spread can also be implemented by moving idw − im, while keeping M fixed. We could be
tempted to argue that these instruments have different fiscal consequences, but they don’t:

Corollary 1 [No Fiscal Consequence of an implementation choice] Consider two policies {ι, Λt} that implement the same spread,
∆rt. Both are consistent with the same government budget constraint.

It is worth discussing alternative MP implementations (Bindseil, 2014, reviews cross-country practices.). One way to
the control the spread directly is through OMO that targets the interbank rate, i f

. Because there is a map from i f
to
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∆rt, a target for the interbank rate also implements a spread independently of im. In practice, most CBs have an explicit
interbank rate target, but restrict the way in which they achieve that target: targeting an interbank market at the middle
of the corridor, i f

= im + 1
2 ι. Other countries keep the rate on reserves at zero, but move ι and maintaining a constant

distance between the discount rate and the target. With these additional constraints, CBs simultaneously spreads and
inflation when they change policy rates—perhaps inadvertently.

C.2 Implementation Conditions

In the body of the text, we laid out the model. The following proposition describes the set of allocations that can be
achieved by a policy with a stationary inflation path.

Proposition 5 [Implementation Conditions] Consider a desired equilibrium path for {ra
t , ∆rt, ft, πt, φt}t≥0. To implement the

equilibrium path, the CB chooses
{

im
t ,L f

t

}
subject to the following restrictions:

1. L f
t ≤ −

´ 0
s̄ s f (s, t)ds

2. The equilibrium liquidity ratio is Λt = min
{

Λzlb (im
t , ιt) , ΛMB

(
ft,L f

t

)}
,

3. The real transfer, Tt, adjusts to satisfy (23),

4. The real spread, ∆rt, satisfies (7) given Λt,

5. Given im
t and Λt, the nominal rates

{
il
t, ia

t

}
are given by (5-6),

6. Given φt, the unemployment rate Ut satisfies (8),

7. Inflation is consistent with the Phillips curve, (13),

8. The real rates
{

rl
t, ra

t

}
are consistent with Fisher’s equation (25),

9. The distribution of wealth, f , evolves according to (15); f0 given,

10. Given f , the job separation φt guarantees the real asset market-clearing condition (24).

Proposition 5 describes the allocations that can be induced by the CB. These allocations are affected by the CB because
it controls the spread and the IOR. The implementation constraint L f

t ≤ −
´ 0

s̄ s f (s, t)ds simply tells that there must be
enough private liabilities to set L f

t .

Fiscal-Monetary Interactions in Bewley Models. This is not the only model where MP affects real long-term
interest rates. In fact, a first example where that is the case is found in Bewley (1983). However, in that class of models,
the effect follows because the CB can affect the long-term value net CB liabilities. Here, net CB liabilities are always zero,
but the effect follows from the ability to impact real spread. The model inherits some long-run properties of the Bewley
model: the model features neutrality and there is also a continuum of equilibria if we do not fix P0. Different from
Bewley’s original model, the economy here is also super neutral because reserves pay interest Ljungqvist and Sargent
(2012, see Chapter 18.11 for a discussion of these issues).
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D Proofs

D.1 Proof of Proposition 1

Preliminary Steps. We are interested in solutions that satisfy {l, m, a} > 0. An individual bank takes {χ+, χ−, θ}
and the interest rates

{
ia, il

}
as given. Consider the bank’s problem:

πb = max
{l,m,a}∈R3

+

(
il · l + im ·m− ia · a + E [χ (b; θ, ι)]

)
subject to the budget constraint l + m = a and the law of motion for reserve balances at the CB:

b (a, m) =

{
m with probability 1/2

m− δ · a with probability 1/2
.

The objective is homogeneous of degree 1. Hence, profits should be zero otherwise the solution is unbounded or zero.
Although the solution is unbounded, we can determine the equilibrium portfolio shares consistent with given rates. We
also know that the objective is piece-wise linear. Thus, it can be transformed into a linear program. However, here we
characterize the solution through the principle of optimality.

To obtain a solution, we substitute out l from the budget constraint to obtain a modified problem:

π (m, a) ≡ max
{m,a}

((
im − il

)
·m +

(
il − ia

)
· a + 1

2
χ+m +

1
2

(
χ+ · I[ m

a >δ] + χ− · I[ m
a ≤δ]

)(
m− δ

2
a
))

,

subject to a ≥ 0 and m ∈ [0, a]. In a solution with a > 0, we can factor deposits and write the objective as:

π (m, a) ≡ max
a∈R++

a ·
[(

il − ia
)
+ ϑ

]
where

ϑ ≡ max
µ∈[0,1]

[
− δ

2

(
χ− · I[µ≤δ] + χ+ · I[ m

a >δ]

)
+

((
im − il

)
+

1
2

χ+ +
1
2

(
χ+ · I[µ>δ] + χ− · I[µ≤δ]

))
µ

]
.

and we recover m = µ · a. We further write ϑ as:

ϑ ≡ max
{

ϑscarcity, ϑsatiation
}

,

where

ϑscarcity ≡ sup
µ∈[0,δ)

− δ

2
χ− +

((
im − il

)
+

1
2
(
χ+ + χ−

))
µ

and

ϑsatiation = max
µ∈[δ,1]

− δ

2
χ+ +

((
im − il

)
+ χ+

)
µ.

Thus, we break ϑ into two sub-problems, one corresponding to the case where the bank has enough reserves to meet the
withdrawal shock and always end with a positive balance (satiation) and another where the bank ends with a reserve
deficit if it faces a shock (scarcity).

We have three possible cases depending on the three possible signs of
(

im − il
)
+ 1

2 χ+. We describe each of these cases
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next.

Case 1 (not an equilibrium). If
(

im − il
)
+ 1

2 χ+ > 0, we argue that this condition cannot occur in equilibrium.

If this case, the solution to ϑsatiation is to set µ as large as possible. Thus, ϑsatiation =
(

im − il
)
+
(

1− δ
2

)
χ+ with µ = 1.

Since χ− ≥ χ+, the solution to ϑscarcity is also to set µ as large as possible, which then yields: ϑscarcity = − δ
2 χ− +((

im − il
)
+ 1

2 (χ
+ + χ−)

)
δ =

(
im − il

)
+ δ

2 χ+. Note that

ϑsatiation − ϑscarcity = χ+

(
1− δ

2

)
− δ

2
χ+ = (1− δ) χ+ > 0,

where the inequality follows form δ < 1.

Thus, under the stated case, it is optimal for the bank to be satiated. Therefore, the solution to the bank’s problem is to
set, ϑ = ϑsatiation with µ = 1. However, since µ = 1, this implies that a = m. This cannot occur in an equilibrium with
positive loans. Hence, in equilibrium,

(
im − il

)
+ χ+ ≤ 0, two cases we evaluate next.

Case 2 (equilibrium with satiation). Assume that
(

im − il
)
+ χ+ = 0. Then, ϑsatiation = − δ

2 χ+ ≤ 0 for any

µ ∈ [δ, 1]. Also, because
(

im − il
)
+ χ+ = 0, the value of holding a portfolio with reserves scarcity is:

ϑscarcity ≡ sup
µ∈[0,δ)

− δ

2
χ− +

1
2

χ−µ.

The objective is increasing in µ, and thus, ϑscarcity = 0 with a solution µ→ δ. Hence, ϑ = ϑscarcity ≥ ϑsatiation.

We now consider the aggregate conditions, setting Λ = µ. Since for any µ = Λ ≥ δ, we have that θ = 0, we verify that
in any case χ+ = 0. Thus, ϑscarcity = ϑsatiation = 0, and any [δ, 1] is a solution.Thus, from the stated condition we obtain
that: (

im − il
)
+ χ+ = 0→ χ+ = 0, im = il .

We now turn to the deposit rate. Given that ϑ = 0, and that π = 0 is an equilibrium condition for any a, it must be that

im = ia.

Thus, if µ ≥ δ, all banks are satiated and all nominal rates are equal:

im = ia = il . (37)

This case corresponds to the solution under satiation where Λ ≥ δ.

Case 3 (knife-edge and scarcity equilibria). Finally, assume that
(

im − il
)
+ χ+ < 0. In this case, the solution

to ϑsatiation is attained when µ = δ. Thus,

ϑsatiation =

(
im − il +

1
2

χ+

)
δ < 0.

Now, let’s consider the value of ϑscarcity.
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Again, we have to separate the analysis case into three possible cased depending now on the sign of
(

im − il
)
+

1
2 (χ

+ + χ−). We do so in the following steps:

Case 3.a (not an equilibrium). Assume that
(

im − il
)
+ χ+ < 0 and in addition that im − il + 1

2 (χ
+ + χ−) < 0.

Then, the solution to ϑscarcity = − δ
2 χ− obtained when µ = 0. Therefore,

ϑscarcity − ϑsatiation = −
(

im − il +
1
2
(
χ+ + χ−

))
δ > 0.

The inequality follows by hypothesis. Thus, the bank would chose to remain with a reserve scarcity and set µ = 0.
However, this solution implies that m = 0. Therefore, hence, the case cannot occur with positive reserve holdings.

We furthermore know that:(
il − im

)
∈
[

χ+,
1
2
(
χ+ + χ−

)]
,

because neither case 3.a nor case 1 can occur in equilibrium.

Case 3.b (knife edge case). Assume that
(

im − il
)
+ χ+ < 0 and in addition im − il + 1

2 (χ
+ + χ−) > 0. Then,

the solution to ϑscarcity =
(

im − il + 1
2 χ+

)
δ obtained lim µ → δ. Thus, ϑscarcity = ϑsatiation and hence, the solution to ϑ

requires to set µ = δ . Since for µ = δ, we have that χ+ = 0 then ϑ =
(

im − il
)

δ. Thus, combining with the stated
hypothesis we obtain:

im < il .

From the condition that requires π = 0, we obtain:

il − ia =
(

il − im
)

δ.

Thus, clearing this condition we obtain:

∆r ≡ il − ia = (ia − im)
δ

1− δ
.

We re-write the solution to ia as:

ia = im + ∆r (1− δ) /δ. (38)

Then, from
(
im − il)+ 1

2 χ− (0) > 0 we obtain that

im +
1
2

χ− (0) > il = ia + ∆̇r → 1
2

χ− (0) >
ia − im

1− δ
=

∆r
δ

Thus, in the point where Λ = δ, we have that the spread is given by:

∆r ∈
[

0,
δ

2
χ− (0)

]
. (39)
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We arrive at the final case next.

Case 3.c (scarcity solutions). Assume that
(

im − il
)
+ χ+ < 0 and in addition im − il + 1

2 (χ
+ + χ−) = 0. Then,

the solution to ϑscarcity = − 1
2 χ+δ obtained by any µ ∈ [0, δ]. Thus,

ϑsatiation − ϑscarcity =

(
im − il +

1
2

χ+ +
1
2

χ−
)

δ = 0,

where the equality follows by hypothesis. Thus, the bank is indifferent between level of reserves from µ ∈ [0, δ]. There-
fore, in this case we have that:

il = im +
1
2
(
χ+ + χ−

)
. (40)

From the condition that requires π = 0, we obtain:

(
il − ia

)
+ ϑ = 0→

(
il − ia

)
=

δ

2
χ−

and, thus, we obtain:

ia = im +
1
2
(
χ+ + χ−

)
− δ

2
χ−. (41)

Summary. Thus, taken together, we know that

{
il , ia

}
∈
[

im, im +
1
2
(
χ+ + χ−

)]
If an equilibrium features scarcity of reserves, it must fall in case 3.c and satisfy (40) and (41), as stated in the proposition.
If the satiation is strict in the sense that Λ > δ, then we are in case 2, and the solution is given by (37). Finally, a knife
edge case occurs when Λ = δ the satiation is weak in the sense that Λ = δ. In this case, there’s a range of values as given
by Case 3.b. and equations (39) and (38). QED.

D.2 Proof of Proposition 2

We now derive the effects of policy instruments,
{
L f

t , im
t

}
∈ R+ ×R, on the interest rates and the quantity of currency.

Recall that {Pt} and { ft} , are pre-determined. Thus, we focus on the instantaneous impact of policies, holding fixed
prices and wealth. Since effects are static, for the rest of the proof we avoid time subscripts.

Equilibrium conditions. Recall that from Proposition 1 that we have the following subsystem of equilibrium
conditions:

il = im +
1
2
(
χ+ (θ) + χ− (θ)

)
(42)

and

ia = im +
1
2
(
χ+ (θ) + (1− δ)χ− (θ)

)
≥ 0. (43)
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In turn, the spread is given by:

∆r =
δ

2
χ− (θ) . (44)

Also, note that

θ (Λ) ≡ max
{

δ

Λ
− 1, 0

}
, (45)

with derivative θΛ (Λ) = − δ
Λ2 < 0.

The liquidity ratio of banks, considering the monetary base and currency holdings is given by:

Λ =
M/P
D/P

=
M/P−M0/P

∑z∈{u,e}
´ ∞

0 s f (z, s, t) ds−M0/P
=

L f −M0/P
∑z∈{u,e}

´ ∞
0 s f (z, s, t) ds−M0/P

. (46)

The second equality is obtained by replacing the money-market clearing condition and the deposit-market clearing
condition, and then, by replacing the CB balance sheet. Given Λ, the market tightness is given by:

θ (Λ) = δ

(
∑z∈{u,e}

´ ∞
0 s f (z, s, t) ds−M0/P

L f −M0/P

)
− 1. (47)

From the household’s problem, we also have that

M0 ≥ 0 with strict equality if ia > im. (48)

Equations (42-48), represent a subsystem of equilibrium conditions.

Organizing results into Policy Regimes. We study the effects of policy changes in three possible regimes,
defined as follows:

• We say that MP is in a Corridor Regime if
{
L f , im

}
is such that ia > im and M0 = 0.

• We say that MP is in a Satiation Regime if
{
L f , im

}
is such that ia = im > 0.

• We say that MP is in a Liquidity Trap if
{
L f , im

}
is such that ia = 0 > im and M0 > 0.

These regions do not overlap and cover the space of policies
{
L f , im

}
∈ R+ ×R: By definition, the parameters corridor

and satiation regimes do not overlap because ia > im and ia = im cannot occur together and ˙χ+ (θ) + (1− δ)χ− (θ) is a
monotone function in θ, thus separating the space in Λ. By definition, a liquidity trap occurs if

{
L f , im

}
induce either

(a) ia = 0 > im and M0 > 0 or (b) ia = im = 0 and M0 ≥ 0.

We consider the policy effects at the strict interior of these regions. At the boundaries, the system is not differentiable. It
is convenient to define the money multiplier as the inverse of the liquidity ratio:

µ ≡
∑z∈{u,e}

´ ∞
0 s f (z, s, t) ds

L f .

Case 1 (im > 0). Assume that im > 0. Then, because ia ≥ im > 0, is must be that M0 = 0 for any L f . Note that since
M0 = 0, combining the CB budget constraint, (16), the money-market clearing condition, (19), and the bank’s budget
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constraint, we obtain that:

dL f = dM = dMb = −dLb, dMh = 0.

BecauseMh = 0, we obtain that (47) is:

Λ =
L f

∑z∈{u,e}
´ ∞

0 s f (z, s, t) ds
.

By Proposition 1, we know that if Λ < δ then, banks must face a reserve scarcity and thus, an equilibrium must feature:

il > ia > im.

We have reserve scarcity only when:

L f < δ

ˆ ∞

0
s f (s, t) ds.

We now consider the effects of policy variables when there is scarcity and when there isn’t.

Case 1.a (im > 0 and Λ < δ). We now consider the policy effects of changes in L f
t and im

t when im ≥ 0 and
L f < δ

´ ∞
0 s f (s, t) ds.

Let’s consider first the effects of changes in im
t . Taking the differential with respect to im in (6) and (5) we obtain:

∂il

∂im = 1,
∂ia

∂im = 1,
∂∆r
∂im = 0.

Now, let’s consider the differential with respect to L f . Using (6) we obtain:

dia =
1
2
(
χ+

θ (θ) + (1− δ)χ−θ (θ)
) ∂θ

∂Λ
∂Λ
∂L f dL f .

Substituting derivatives yields:

dia = −1
2
(
χ+

θ (θ) + (1− δ)χ−θ (θ)
) δ

Λ
dL f

L f < 0.

Similarly, the change in the equilibrium spread is:

d∆r = − δ

2
χ−θ (δµ− 1) · µ · dL f

L f < 0.

Finally, we obtain:

dil = dil + d∆r = − δ

2
(
χ+

θ (δµ− 1) + χ−θ (δµ− 1)
)
(δµ− 1)

dL f

L f < 0.

From this expression, we obtain the semi elasticities displayed in the proposition, for the corridor system regime.
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Case 1.b (im > 0 and Λ ≥ δ). We now consider the policy effects of changes in L f
t and im

t when im ≥ 0 and
L f > δ

´ ∞
0 s f (s, t) ds. Thus, we have that in this case:

∂il

∂im = 1,
∂ia

∂im = 1,
∂∆r
∂im = 0.

Therefore, the effects of changes in the IOR are again given by:

∂il

∂L f L
f = 0,

∂ia

∂L f L
f = 0,

∂∆r
∂L f L

f = 0.

Case 2 (im < 0). Assume that im < 0. In this case, banks cannot be satiated because 0 > im = ia implies banks
would not hold deposits, a situation that we do not considered in body of the paper. However, it is possible to construct
equilibria where deposits are zero. In that case, households only hold currency and the stock of loans is held by the CB.
This is ruled out in the paper.

We now define implicitly θlb (im). Thus function maps and IOR to an interbank market tightness that takes the deposit
rate to exactly zero using (6):

0 ≡ im +
1
2

(
χ+
(

θlb (im)
)
+ (1− δ)χ−

(
θlb (im)

))
≥ 0. (49)

Also, we define,

Ξ =
(
χ+ (0) + (1− δ)χ− (0)

)
.

If im ∈ [−Ξ, 0], then since (χ+ (θ) + (1− δ)χ− (θ)) is strictly increasing and bounded between [0, Ξ], we obtain that
θlb (im) is well defined in im ∈ [−Ξ, 0]. We now substitute (47) with M0 into (49) to obtain:

1
2

(
χ+

(
δ

(
∑z∈{u,e}

´ ∞
0 s f (z, s, t) ds

L f

)
− 1

)
+ (1− δ)χ−

(
δ

(
∑z∈{u,e}

´ ∞
0 s f (z, s, t) ds

L f

)
− 1

))
= −im ≤ Ξ.

From here, we define Llb (im, f ) as the CB balance sheet size such that without currency, the interbank market tightness
is exactly θlb (im). We obtain:

δ

(´ ∞
0 s f (s, t)
Llb (im, f )

)
− 1 = θlb (im) .

Re-arranging yields:

Llb (im, f ) ≥ δ

1 + θlb (im)

ˆ ∞

0
s f (s, t) .

We now analyze the effects of policy in two cases, depending on whether Λ ≤ Llb (im, f ) or Λ > Llb (im, f ).

Case 2.a (im < 0 and L f < Llb (im, f )). Next, we show that if L f < Llb (im, f ) and im < 0, the effects of policy
are identical to those of Case 1.a. First, observe that,

θlb (im) = δ

(´ ∞
0 s f (s, t)
Llb (im, f )

)
− 1 < δ

(
∑z∈{u,e}

´ ∞
0 s f (z, s, t) ds−M0/P

L f −M0/P

)
− 1 = δµ− 1 = θ,
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for any M0 where the inequality follows because:

∂

∂M0

[
δ

(
∑z∈{u,e}

´ ∞
0 s f (z, s, t) ds−M0/P

L f −M0/P

)]
=

1
P

µ

(
1

L f −M0/P
− 1

∑z∈{u,e}
´ ∞

0 s f (z, s, t) ds−M0/P

)
> 0.

and L f < Llb. Thus, we have that L f < Llb implies θ > θlb (im). Since this is the case, from Proposition 1, and {χ−, χ+}
increasing in θ, we have that ia > im, from the bank’s problem. Since ia > im implies that M0/P = 0, the equilibrium is
characterized by the conditions of case 1.a.

Case 2.b (im < 0 and L f ≥ Llb (im, f )). Next, we show that if L f ≥ Llb (im, f ) and im < 0, the effects of MP
are modified. OMO lead to an increase in currency and reductions in rates to an interest rate reversal. Observe that if
L f > Llb (im, f ) and M0/P = 0,then the corresponding market tightness would be:

θ̃ = δ

(
∑z∈{u,e}

´ ∞
0 s f (z, s, t) ds

L f

)
− 1 ≤ δ

(
∑z∈{u,e}

´ ∞
0 s f (z, s, t) ds

Llb (im, f )

)
− 1 = θlb (im) .

Now, since {χ+, χ−} are increasing in θ, the equilibrium deposit rate obtained from from Proposition 1 would be negative
if the market tightness is indeed θ̃ < θlb (im). Thus, it must be that if L f > Llb (im, f ), M0 > 0 to obtain a tightness such
that θ = θlb (im) .

In particular, it must be the case that:

θlb (im) = δ

(
∑z∈{u,e}

´ ∞
0 s f (z, s, t) ds−M0/P

L f −M0/P

)
− 1, (50)

and solving M0/P, we obtain that:

M0/P =
1 + θlb (im)

1− δ + θlb (im)
L f − δ

1− δ + θlb (im)

ˆ ∞

0
s f (s, t) > 0. (51)

We now consider the change in currency balances and markets rates to changes in L f . We have that taking differentials
in (51) we obtain:

dM0/P =
µ

µ− 1
dL f .

where we used that:

µ

µ− 1
=

δµ

δµ− δ
=

1 + θ

θ + 1− δ
=

1 + θlb (im)

1− δ + θlb (im)
.

Next, we produce the effects of policy instruments on the equilibrium rates. We obtain

∂

∂L f

[
θlb (im)

]
= 0,

and thus, it must be that:

∂il

∂L f L
f = 0,

∂ia

∂L f L
f = 0,

∂∆r
∂L f L

f = 0.

Next, consider the effects of changes in the IOR on the market rates and currency holdings. Note that we have from (49)
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that if the deposit rate is zero:

dim = −1
2
(
χ+

θ + (1− δ)χ−θ
)

dθ < 0.

Then, from the expression for the spread, we have that:

d∆r =
δ

2
χ−θ dθ = −δ

χ−θ(
χ+

θ + (1− δ)χ−θ
)dim < 0.

Thus:

∂∆r
∂im = −δ

χ−θ (δµ− 1)(
χ+

θ (δµ− 1) + (1− δ)χ−θ (δµ− 1)
) < 0.

Finally, the effect on currency holdings is given by is:

dθ = δµ

(
1

L f −M0/P
− 1´ ∞

0 s f (s, t)−M0/P

)
dM0/P > 0.

Thus, we obtain that increases in the IOR produce increases in the reserve balances:

∂

∂im [M0/P] = −
δµ
(

1
L f−M0/P

− 1´ ∞
0 s f (s,t)−M0/P

)
1
2
(
χ+

θ + (1− δ)χ−θ (θ)
) < 0.

General solution to currency balances. We obtain a general solution to the currency holdings. The solution is
given by:

M0/P = I[im<0] ·max

{
1 + θlb (im)

1− δ + θlb (im)
L f − δ

1− δ + θlb (im)

ˆ ∞

0
s f (s, t) , 0

}
.

Note that when im < 0, then θlb (im) > 0. Thus, the term on first entry is positive when:

L f >
δ

1 + θlb (im)
,

which coincides with (51) when im.

Regimes that are not considered in the paper. There could be equilibria where L f = Lb = M0
P =

∑z∈{u,e}
´ ∞

0 s f (z, s, t) ds. That is, equilibria in which the CB does all the intermediation. In this case deposits are zero
and bank balance sheets are empty. This will occur if the interest in reserves is so low that banks cannot hold deposits,
−im > ι

2 . At that point, the deposit rate is zero and the loans rate is also zero. We do not consider this case.

QED.
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D.3 Flow of Funds Identity

In the proofs that follow, we make use of the following Lemma.

Lemma 1 If the deposit, loans and money markets clear, then:

Pt ∑
z∈{u,e}

ˆ ∞

s̄
s f (z, s, t) ds = 0. (52)

Proof. The deposits and loans markets clearing conditions require:

Ab
t = ∑

z∈{u,e}

ˆ ∞

0
ah

t (s, z) f (s, z, t)ds (53)

Lb
t + L f

t = ∑
z∈{u,e}

ˆ 0

s̄
lh
t (s, z) f (s, z, t)ds, (54)

and clearing in the money market requires:

Mb
t + M0t = Mt. (55)

If we aggregate the budget constraint—the balance sheet identity—of banks, we obtain:

Ab
t = Lb

t + Mb
t . (56)

Once we combine (53), (54), and (55) into (56), we obtain:

∑
z∈{u,e}

ˆ ∞

0
ah

t (s) f (s, z, t)ds = ∑
z∈{u,e}

ˆ 0

s̄
lh
t (s) f (s, z, t)ds + Mt −M0t − L f

t . (57)

Nominal deposits and currency are related to real wealth via:

Pt ∑
z∈{u,e}

ˆ ∞

0
s f (s, z, t)ds = ∑

z∈{u,e}

ˆ ∞

0
ah

t (s, z) f (s, z, t)ds + M0t. (58)

and, similarly for loans:

−Pt ∑
z∈{u,e}

ˆ 0

s̄
s f (s, z, t)ds = ∑

z∈{u,e}

ˆ 0

s̄
lh
t (s) f (s, z, t)ds. (59)

This condition can be expressed in terms of real household wealth, with the use of (58) and (59):

Pt ∑
z∈{u,e}

ˆ ∞

0
s f (s, z, t)ds−M0t = Pt ∑

z∈{u,e}

ˆ 0

s̄
s f (s, z, t)ds + Mt −M0t − L f

t .

Thus, using that Mt = L f
t , we obtain:

∑
z∈{u,e}

ˆ ∞

0
s f (s, z, t)ds = ∑

z∈{u,e}

ˆ 0

s̄
s f (s, z, t)ds.

Thus, clearing in all nominal asset markets implies clearing in a single real asset market, (52). QED.
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D.4 Proof of Proposition 3

The nominal profits of the CB are given by:

ΠCB
t = il

tL
f
t − im

t (Mt −M0t) + ιt
(
1− ψ−t

)
B−t .

Note that the earnings from discount-window loans equal the average payment in the interbank market, and thus:

ιt
(
1− ψ−t

)
B−t = −E [χt (b (At, At − Lt))] . (60)

By Proposition 1, banks earn zero profits in expectation. Thus,

−E [χt (b (At, At − Lt))] = il
tL

b
t + im

t Mb
t − ia

t Ab
t . (61)

Thus, substituting (60) and (61) into the expression for π
f
t above yields:

ΠCB
t = il

tL
f
t − im

t (Mt −M0t) + il
tL

b
t + im

t Mb
t − ia

t Ab
t .

= il
tL

h
t − ia

t Ah
t ,

where we used the clearing condition in the money market, Mb
t + M0

t = Mt, the deposit market, Ab
t = Ah

t , and the loans
market, Lh

t = Lb
t + L f

t . Now, observe that:

ΠCB
t = −il

tPt ∑
z∈{u,e}

ˆ 0

s̄
s f (z, s, t)ds− ia

t

Pt ∑
z∈{u,e}

ˆ ∞

0
s f (z, s, t)ds−M0t.

 ,

but we know from the household’s problem that ia
t M0t = 0. Hence, profits are given by:

ΠCB
t = −il

tPt ∑
z∈{u,e}

ˆ 0

s̄
s f (z, s, t)ds− ia

t Pt ∑
z∈{u,e}

ˆ ∞

0
s f (z, s, t)ds.

Then, since ia = il − ∆r, we have that:

ΠCB
t = −il

tPt

 ∑
z∈{u,e}

ˆ ∞

s̄
s f (z, s, t)ds

+ ∆rtPt ∑
z∈{u,e}

ˆ ∞

0
s f (z, s, t)ds.

Thus, from Lemma 1, we obtain:

ΠCB
t = Pt · ∆rt ∑

z∈{u,e}

ˆ ∞

0
s f (z, s, t)ds.

Now, we turn to the government’s budget constraint, (17), we have that:

PtTt = Pt ·

∆rt ∑
z∈{u,e}

ˆ ∞

0
s f (z, s, t)ds

+ Pt

(
τl · (1−Ut)− b · Ut

)
,
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and dividing by the price level we obtain

Tt = ∆rt ∑
z∈{u,e}

ˆ ∞

0
s f (z, s, t)ds + τl · (1−Ut)− b · Ut

as stated by the proposition. QED.

D.5 Proof of Proposition 4

Proof of Clearing in all markets. Lemma 1 shows that if all asset markets clear, then there is clearing in real
wealth (24). We now proof the converse. That is, if (24) holds, then, the deposit loans, and money markets must clear.

The proof is by contradiction. We start by taking (24) as given. Next, we multiply by Pt in both sides and, by definition,
obtain:

∑
z∈{u,e}

ˆ 0

s̄
lh
t (s) f (z, s, t)ds = ∑

z∈{u,e}

ˆ ∞

0
ah

t (s) f (z, s, t)ds + M0t.

From the central bank’s balance sheet, we obtain that:

∑
z∈{u,e}

ˆ 0

s̄
lh
t (s) f (z, s, t)ds = ∑

z∈{u,e}

ˆ ∞

0
ah

t (s) f (z, s, t)ds + Mt −Mb
t , for t ∈ [0, ∞). (62)

We now substitute the balance sheet of the CB, Mt = L f
t , and the consolidated balance sheet of banks, Mb

t = Ad
t − Lb

t , to
obtain. In this case, we obtain:

∑
z∈{u,e}

ˆ 0

s̄
lh
t (s) f (z, s, t)ds− L f

t − Lb
t = ∑

z∈{u,e}

ˆ ∞

0
ah

t (s) f (z, s, t)ds− Ad
t .

This equation guarantees that if there is no clearing in the loans market, there is no clearing in the deposit market by that
same amount. Assume there is a deviation from market clearing in the amount ε. Then, an income ∆r · ε would not be
accounted for by. However, since all the spread is earned by the CB, following Proposition (23), it must be that ε = 0.
QED.

Proof of Walras’s Law. Next, we prove that if (24) holds, then the goods market clears, which is a derivation of
Walras’s law in the continuous-time setting.

Recall that f satisfies the following KFE equations:

∂

∂t
f (e, s, t) = − ∂

∂s
[µ (e, s, t) f (e, s, t)]− Γeu

t · f (e, s, t) + Γue
t · f (u, s, t) , and

∂

∂t
f (u, s, t) = − ∂

∂s
[µ (u, s, t) f (u, s, t)]− Γue

t · f (u, s, t) + Γeu
t · f (e, s, t) .

A similar KFE holds for the cumulative distributions:

∂

∂t
F (e, s, t) = −µ (e, s, t) f (e, s, t)− Γeu

t · F (e, s, t) + Γue
t · F (u, s, t) , and

∂

∂t
F (u, s, t) = −µ (u, s, t) F (u, s, t)− Γue

t · F (u, s, t) + Γeu
t · F (e, s, t) .
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Recall that the integrals in the clearing conditions, are Lebesgue integrals. It is convenient to be explicit about the mass
points at the debt limit in (24):

0 = ∑
z∈{u,e}

[
s̄F(z, s̄, t) + lim

σ→s̄+

ˆ ∞

σ
s f (z, s, t)ds

]
,

so that the first integral is in the Riemann sense. Then, taking time derivatives:

0 = ∑
z∈{u,e}

 ∑
z∈{u,e}

s̄
∂

∂t
F(z, s̄, t) +

∂

∂t

[
lim

σ+→s̄

ˆ ∞

σ
s f (z, s, t)ds

] . (63)

Substituting the KFE equations into the first term, we obtain:

∑
z∈{u,e}

s̄
∂

∂t
F(z, s̄, t) = −s̄ · ∑

z∈{u,e}

(
µ (z, s, t) f (z, s̄, t) + Γzz′

t · F (z, s, t)− Γz′z
t · F

(
z′, s, t

))
.

= − ∑
z∈{u,e}

s̄µ (z, s, t) f (z, s̄, t) . (64)

The second line follow from: ∑z∈{u,e} Γzz′
t · F (z, s, t)− Γz′z

t · F (z′, s, t) = 0.23

Substituting the KFE equations into the second term of (63), we obtain:

∑
z∈{u,e}

∂

∂t

[
lim
σ→s̄

ˆ ∞

σ
s f (z, s, t)ds

]
= ∑

z∈{u,e}

ˆ ∞

s̄

−s
∂

∂s
[µ (s, t) f (z, s, t)]︸ ︷︷ ︸

A≡

−s
(

Γzz′
t · f (z, s, t) + Γz′z

t · f
(
z′, s, t

))
︸ ︷︷ ︸

B≡

 ds.

We analyze each term in the integral. First, notice that B = 0, because again:

∑
z∈{u,e}

[
Γzz′

t · f (z, s, t)− Γz′z
t · f

(
z′, s, t

)]
= 0,

Second, we use integration by parts, to obtain that A is given by:

− ∑
z∈{u,e}

lim
σ→s̄

ˆ ∞

σ
s

∂

∂s
[µ (s, t) f (z, s, t)] ds = ∑

z∈{u,e}
−s · µ (s, t) f (z, s, t)|∞s̄︸ ︷︷ ︸

A.1≡

+ ∑
z∈{u,e}

ˆ ∞

s̄
µ (s, t) f (z, s, t) ds︸ ︷︷ ︸

A.2≡

.

Importantly, to use integration by parts, in evaluating the definite integral, we use the Lebesgue integral. Thus, A.2 is in
the Lebesgue sense again.

Evaluating the termsA.1 yields,

lim
s→∞

f (z, s, t) = 0 and lim
σ→s̄

σ · µ (σ, t) f (z, σ, t) = s̄
∂

∂t
F(z, s, t).

23The employment status is independent of z and population is preserved. Thus, the condition says that within a
wealth level, the mixing from employment to unemployment does not change wealth.
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Thus, summing the terms (64) and A.1, we obtain that (63), is equivalent to:

0 = ∑
z∈{u,e}

ˆ ∞

s̄
µ (s, t) f (z, s, t) ds.

Next, we compute the integral A.2. Recall that:

µ (s, t) =
[
rt (s)

(
s−mh (z, s, t) /Pt

)
− Ṗt/Pt ·mh (z, s, t) /Pt − c (z, s, t) + wt (z)

]
.

From the household’s problem, ia
t ·mh (z, s, t) = 0 for s > 0 and mh (z, s, t) = 0 for any s ≤ 0. Hence, we have that:

(
rt (s) + Ṗt/Pt

)
mh (z, s, t) /Pt = 0.

Thus, we can freely add the term above into the drift, since this term is always zero, hence:

µ (s, t) = [rt (s) · s− c (z, s, t) + wt (z)] .

Thus, A.2 reduces to:

∑
z∈{u,e}

ˆ ∞

s̄
µ (s, t) f (z, s, t) ds = ∑

z∈{u,e}

ˆ ∞

s̄
[rt (s) s− c (z, s, t) + wt (z)] f (z, s, t) ds. (65)

We have that:

∑
z∈{u,e}

ˆ ∞

s̄
(wt (z)− c (s, t)) f (z, s, t) ds =

(
1− τl

)
(1−Ut) + b · Ut + Tt − Ct,

and using Yt = (1−Ut) we have:

∑
z∈{u,e}

ˆ ∞

s̄
(wt (z)− c (s, t)) f (z, s, t) ds = Yt − Ct − τl · (1−Ut) + b · Ut + Tt

In turn, we have that:

∑
z∈{u,e}

ˆ ∞

s̄
rt (s) s · f (z, s, t) ds = rl

t ∑
z∈{u,e}

ˆ ∞

s̄
s · f (z, s, t) ds− ∆rt ∑

z∈{u,e}

ˆ ∞

0
s f (z, s, t) ds

= −∆rt ∑
z∈{u,e}

ˆ ∞

0
s f (z, s, t) ds.

where the second line follows from the market clearing condition, Lemma 1.

Thus, summing the last two equations above, we obtain that (65) is:

0 = ∑
z∈{u,e}

ˆ ∞

s̄
[rt (s) s− c (z, s, t) + wt (z)] f (z, s, t) ds

= Yt − Ct + Tt − τl · (1−Ut) + b · Ut − ∆rt ∑
z∈{u,e}

ˆ ∞

0
s f (z, s, t) ds,
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but recall that (23) implies that Tt = τl · (1−Ut)− b · Ut + ∆rt ∑z∈{u,e}
´ ∞

0 s f (z, s, t) ds. Thus, we obtain that (65) implies:

0 = Yt − Ct.

This expression verifies Walras’s Law.

D.6 Proof of Corollary 1

The discount window profits are equal to ∆rt
´ ∞

0 s f (s, t) ds since banks are competitive and earn zero profits. Given the
same real credit spread ∆rt, the equilibrium real wealth distribution f (s, t) is also same. Thus Corollary 1 is established.
QED.
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E Marginal Propensities to Consume

E.1 Marginal Propensities to Consume

Decomposition of the channels. To gauge the sensitivity to we decompose the semi elastisity of consumption
to changes in spreads as follows:

d ln c (z, s)
d∆rss

=
∂ ln c (z, s)

∂∆rss︸ ︷︷ ︸
credit channel

+
∂ ln c (z, s)

∂ra
ss

· ∂ra
ss

∂∆rss︸ ︷︷ ︸
interest-rate channel

+
∂ ln c (z, s)

∂Tss
· ∂Tss

∂∆rss︸ ︷︷ ︸
Ricardian effect

where ∂ra
ss

∂∆rss
< 0 and ∂Tss

∂∆rss
> 0. The semi elasticities ∂ ln c(z,s)

∂∆rss
, ∂ ln c(z,s)

∂ra
ss

and ∂ ln c(z,s)
∂Tss

are plotted in Figure 15. The key
takeaways are that each term is associated with a transmission channel. From the figure, we can observe that different
households respond differently to the different channels. First, let’s consider the non-Ricardian channel. Consistent
with work on fiscal transfers, the poor are most sensitive to transfers and among them, the unemployed. Consider
now the interest-rate channel: increases in rates impact much more the wealthy than the poor. Finally, in terms of
the credit channel, it impacts every household, even savers, through their expectations. Naturally, the spread impacts
the consumption of the poor the most, except those that are very close to their debt limits, which do not adjust their
consumption anyways.
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Figure 16 sums up the effects through all channels. We can observe that increases in the spread have very different effects
among borrowers and savers. For savers, the rate channel dominates, and increases their consumption. For the poor, the
credit channel dominates and an increase in spreads impacts their consumption negatively. Among these, the employed
are the most sensitive.
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(c) Semi-Elasticity ∂ ln c(e,s)
∂∆rss

of the Employed Households under
Different Spreads
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(d) Semi-Elasticity ∂ ln c(u,s)
∂∆rss

of the Unemployed Households under
Different Spreads

Figure 16: (General Equilibrium) Steady State Effects of Real Spreads on Marginal Propensity to
Consume.
Note: This figure depicts the instantaneous marginal propensities to consume (MPC) function and the semi elasticities of household consumption to
real spreads for different values of spreads. The instantaneous MPC is defined as ∂c(z,s)

∂s for z = e, u. The semi-elasticity of consumption to real spreads

is defined as ∂ ln c(z,s)
∂∆rss

for z = e, u. For all panels, the real spread is expressed in annual percentage terms.

E.2 Transition Paths in Normative Analysis

In this appendix, we report the transition paths for the risky-steady-state equilibrium, where we reduce IOR to DZLB
and close spread during an anticipated credit crunch. These transition paths correspond to the paths that lead to the
welfare measures in 11.
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E.3 Discount Factor Shocks

In this section, we study the optimality of an ex-ante spread, when the discount factor shock takes the form: e−ρtδ (t),
where δ (t) is a U-shape curve over time, and assume δ (t) = 1 if there is no discount factor shock. We multiply the
households utility by δ (t) in the HJB equation to produce this patience shock. Figure 6 plots the path of δ (t).

Reduction of IOR to DZLB and No Spread. As in Section 5, we simulate starting from four values of the
spread, ∆rss = {0.5%, 0.75%, 1%, 1.25%}. For the long-run monetary policy we set im

ss = 1% for all scenarios. For the
monetary policy during shock, we set īm

0 = 0 and ∆rt = 0, so the nominal deposit rate ia
t ≡ 0 during this period. Out

of the shock, ∆rt ≡ ∆rss. The following table reports the welfare loss (in terms of certainty equivalence) at time 0 and
the following figure plots the transition paths of all scenarios. We we can observe, the same tradeoff emerges when we
consider a patience shock.

Table 8: Welfare Loss of Reducing IOR to DZLB and Closing Spread During Discount Factor Shock

Scenario of ∆r 0.5% 0.75% 1% 1.25%

L0 (∆rss) 0.5361 0.5349 0.5378 0.5308

Lss (∆rss) 0.0238 0.0284 0.0326 0.0365
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F Solution Algorithm

The computational method follows (Achdou et al., 2020) closely. The main differences are the pres-
ence of the net asset position and the spread. Propositions 1, 3 and 4 are the objects we need to solve
the model. They allow us to solve the model entirely by solving for the equilibrium path of a single
price. For example, we can solve the model by solving the path for a real deposit rate ra

t . The spread
∆rt follows immediately from Proposition 1 if we know the path for ιt and Λt set by the CB. The real
spread gives us rl

t. To solve the household’s problem, we need the path for
{

ra
t , rl

t, Tt
}

. The path for
Tt must be consistent with (23). Then, the evolution of f (s, t) obtained from the household’s prob-
lem yields the right-hand side of equation (24). The equilibrium rate ra

t must be the one that solves
(24) implicitly.

Note that in the steady state of the model, given the real credit spread ∆r, the HJB equation (11),
KFE equation (15) and the real market clearing condition (24) imply that the equilibrium solution
to the real markets is independent of implementation and nominal variables. Thus, we divide the
solution algorithm into two parts: the part of real market and the part of implementation. For the
part of real market, the path of credit spreads is taken as given. For the part of implementation and
nominal variables, we take the IOR im as given and use the equations (6), (7) and the Fisher equation
to pin down the steady-state interbank market tightness θ, nominal deposit rate ia and inflation
rate π. However, in solving the transition dynamics, the real market variables are connected to
implementation and nominal variables via the Phillips curve and the Taylor Rule. Therefore, given
the initial IOR im

0 and the path of the real credit spreads ∆rt, we solve the real deposit rate ra
t and

the endogenous adjustment rate φt jointly using the real market clearing condition and the Fisher
equation. Our algorithm closely follows the finite difference in Achdou et al. (2020).

F.1 Solution Algorithm: Stationary Equilibrium

We need to compute the value of the deposit rate that satisfies the real market clearing condition (24)
in steady state. We focus on the stationary equilibrium where the stead-state job finding rate and job
separation rate are the natural rates calibrated in Table 1. Therefore, the endogenous adjustment rate
φss is 0 in steady state. This implies that the steady-state values of total output, the employment and
unemployment population are Yss = ess =

νue

νeu+νue and uss =
νeu

νeu+νue .

To solve the steady-state real deposit rate ra
ss, we use an iteration algorithm that proceeds as follows.

Let us denote z ∈ {e, u} as the household’s employment status, z′ = {e, u} \z, and s ∈ [s̄, ∞) as the
household’s asset holdings. First, we take the real credit spread ∆r as given, consider an initial guess
of deposit rate ra,0 and fiscal transfer T0,0, and set the iteration index j, k := 0. Then:

1. Individual household’s problem. Given ra,k and T j,k, for each z ∈ {e, u}, solve the household’s
value function V j,k (z, s) from HJB equation (11) using a finite difference method. Calculate the con-
sumption function cj,k (z, s) and the asset accumulation rate µj,k (z, s) = rk (s) · s− cj,k (z, s) +wj,k (z),
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where

rk (s) =

ra,k, if s > 0,

ra,k + ∆rss, if s ≤ 0,

wj,k (e) = 1− τl + T j,k, and wj,k (u) = b + T j,k.

2. Aggregate distribution. Given µj,k (z, s) and cj,k (z, s), solve the KF equation (15) for f j,k (z, s)
using a finite difference method.

3. Fiscal transfer and total output. Given cj,k (z, s), f j,k (z, s), calculate fiscal transfer

T j+1,k = ∆rss ·
ˆ ∞

0
s
[

f j,k (e, s) + f j,k (u, s)
]

ds + τl · ess − b · uss.

If T j+1,k is close enough to T j,k, proceed to 4. Otherwise, set j := j + 1 and proceed to 1.

4. Equilibrium real deposit rate. Given f j,k (z, s), compute the net supply of real financial claims

S
(

ra,k
)
=

ˆ ∞

s̄
s
[

f j,k (e, s) + f j,k (u, s)
]

ds

and update the interest rate: if S
(
ra,k) > 0, decrease it to ra,k+1 < ra,k and vice versa. If S

(
ra,k) is

close enough to 0, stop. Otherwise, set k := k + 1 and j = 0, and proceed to 1.

5. Equilibrium implementation and nominal variables. Given the exogenous credit spread ∆rss

and IOR rate im
ss, the steady-state interbank market tightness θss, the nominal deposit rate ia

ss and
inflation rate πss are given by

∆rss =
δ
2 χ− (θss) ,

ia
ss = im

ss +
1
2 [χ

+ (θss) + (1− δ) χ− (θss)] ,
πss = ia

ss − ra
ss.

F.1.1 Solution to the HJB equation

The household’s HJB equation is solved using an upwind finite difference scheme similar to Achdou
et al. (2020). It approximates the value function V (z, s) on a finite grid with step ∆s : s ∈ {s1, ..., sI},
where si = si−1 + ∆s = s1 + (i− 1)∆s for 2 ≤ i ≤ I. The bounds are s1 = s̄ and sI = smax, such that
∆s = (smax − s̄) / (I − 1). The upper bound smax is an arbitrarily large number such that f (z, s, t) = 0
for all s > smax. We use the short-hand notation Vz,i ≡ V (z, si), and similarly for the policy function
cz,i and µz,i.

Note that the HJB involves the first and second derivatives of the value function, V′z,i = V′s (z, si) and
V′′z,i = V′′s (z, si). The first derivative is approximated with either a forward (F) or a backward (B)
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approximation,

V′z,i ≈ ∂FVz,i ≡
Vz,i+1 −Vz,i

∆s
, (66)

V′z,i ≈ ∂BVz,i ≡
Vz,i −Vz,i−1

∆s
. (67)

The second-order derivative is approximated by a central difference:

V′′z,i ≈ ∂ssVz,i ≡
Vz,i+1 − 2Vz,i + Vz,i−1

(∆s)2 . (68)

Let the superscript n be the iteration counter. The HJB equation is approximated by the following
upwind scheme,

Vn+1
z,i −Vn

z,i

∆
+ ρVn+1

z,i = U
(
cn

z,i
)
+ ∂FVn+1

z,i ·
(
µn

z,i,F
)+

+ ∂BVn+1
z,i ·

(
µn

z,i,B
)−

+ Γzz′
[
Vn+1

z′,i −Vn+1
z,i

]
, (69)

where

µn
z,i,F = r (si) · si −

(
∂FVn

z,i
)−1/γ

+ w (z) , (70)

µn
z,i,B = r (si) · si −

(
∂BVn

z,i
)−1/γ

+ w (z) . (71)

The optimal consumption is set to

cn
z,i =

(
∂Vn

z,i
)−1/γ , (72)

where

∂Vn
z,i = ∂FVn

z,i1µn
z,i,F>0 + ∂BVn

z,i1µn
z,i,B<0 + ∂V̄n

z,i1µn
z,i,F≤01µn

z,i,B≥0.

In the above expression, ∂V̄n
z,i =

(
c̄n

z,i

)−γ
where c̄n

z,i is the consumption level such that µn
z,i = 0, i.e.,

c̄n
z,i = r (si) · si + w (z) .

Substituting the definition of the derivatives (66), (67) and (68), equation (69) is

Vn+1
z,i −Vn

z,i

∆
+ ρVn+1

z,i = U
(
cn

z,i
)
+

Vn+1
z,i+1 −Vn+1

z,i

∆s
·
(
µn

z,i,F
)+

+
Vn+1

z,i −Vn+1
z,i−1

∆s
·
(
µn

z,i,B
)−

+ νzz′
[
Vn+1

z′,i −Vn+1
z,i

]
.
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Collecting terms with the same subscripts on the right-hand side

Vn+1
z,i −Vn

z,i
∆ + ρVn+1

z,i = U
(

cn
z,i

)
+ αn

z,iV
n+1
z,i−1 + βn

z,iV
n+1
z,i + ζn

z,iV
n+1
z,i+1 + νzz′Vn+1

z′,i

αn
z,i = −

(µn
z,i,B)

−

∆s

βn
z,i = −

(µn
z,i,F)

+

∆s +
(µn

z,i,B)
−

∆s − νzz′

ζn
z,i =

(µn
z,i,F)

+

∆s

(73)

Note that α1 = 0, and we set ζ I = 0 for the stability of the algorithm. Equation (73) is a system of 2I
linear equations which can be written in the following matrix form:

1
∆

(
Vn+1 −Vn

)
+ ρVn+1 = Un + AnVn+1

where

An =



βn
e,1 ζn

e,1 0 · · · 0 νeu 0 0 · · · 0
αn

e,2 βn
e,2 ζn

e,2 0 · · · 0 νeu 0 0 · · ·
0 αn

e,3 βn
e,3 ζn

e,3 0 · · · 0 νeu 0 0
... . . . . . . . . . . . . . . . . . . . . . . . . ...

0 . . . . . . αn
e,I βn

e,I 0 0 0 0 νeu

νue 0 0 0 0 βn
u,1 ζn

u,1 0 0 0
0 νue 0 0 0 αn

u,2 βn
u,2 ζn

u,2 0 0
0 0 νue 0 0 0 αn

u,3 βn
u,3 ζn

u,3 0

0 0 . . . . . . . . . . . . . . . . . . . . . . . .

0 · · · · · · 0 νue 0 · · · 0 αn
u,I βn

u,I



, (74)

and

Vn+1 =



Vn+1
e,1
...

Vn+1
e,I

Vn+1
u,1
...

Vn+1
u,I


, Un =



U
(

cn
e,1

)
...

U
(

cn
e,I

)
U
(

cn
u,1

)
...

U
(

cn
u,I

)


.
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The system in turn can be written as

BnVn+1 = dn (75)

where Bn =
(

1
∆ + ρ

)
I−An and dn = Un + 1

∆ Vn.

The algorithm to solve the HJB is as follows. We take the interest rate {r (si)}I
i=1 and fiscal transfer

T as given and begin with an initial guess
{

V0
e,i, V0

u,i

}I

i=1
. Set n = 0. Then:

1. Compute
{

∂FVn
z,i, ∂BVn

z,i

}I

i=1
using (66) and (67).

2. Compute
{

cn
z,i

}I

i=1
using (72) and

{
µn

z,i,F, µn
z,i,B

}I

i=1
using (70) and (71).

3. Find
{

Vn
z,i

}I

i=1
solving the linear system of equations (75).

4. If
{

Vn+1
z,i

}
is close enough to

{
Vn

z,i

}
, stop. Otherwise set n := n + 1 and proceed to step 1.

F.1.2 Solve KFE in Stationary Equilibrium

The stationary distribution of real wealth satisfies the Kolmogorov Forward equation:

0 = − ∂

∂s
[µ (z, s) f (z, s)]− νzz′ · f (z, s) + νz′z · f

(
z′, s
)

, (76)

1 =

ˆ ∞

s̄
[ f (e, s) + f (u, s)] ds. (77)

We also solve the equation using a finite difference scheme. We use the notation fz,i ≡ f (z, si) .The
system can be expressed as

0 = −
fz,i

(
µn

z,i,F

)+
− fz,i−1

(
µn

z,i−1,F

)+
∆s

−
fz,i+1

(
µn

z,i+1,B

)−
− fz,i

(
µn

z,i,B

)−
∆s

− νzz′ fz,i + νz′z fz′,i,

or equivalently

fz,i−1ζz,i−1 + fz,iβz,i + fz,i+1αz,i+1 + fz′,iν
z′z = 0.

The linear equations system can be written as

ATf = 0, (78)
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where AT is the transpose of A = limn→∞ An. Notice that An is the approximation of the operator
A and AT is the approximation of the adjoint operator A∗. In order to impose the normalization
constraint (77), we replace one of the entries of the zero vector in equation (78) by a positive constant.
We solve the system (78) and obtain a solution f̂. Then we renormalize as

fz,i =
f̂z,i

∑I
i=1 ∑z∈{e,u} f̂z,i∆s

.

The algorithm to solve the stationary distribution is as follows.

1. Given the interest rate {r (si)}I
i=1 and fiscal transfer T, solve the HJB equation to obtain an estimate

of the matrix A.

2. Given A, find the aggregate distribution f.

F.2 Solution Algorithm: Transition Dynamics

The equilibrium transition path is solved in finite horizon [0, T̄], assuming that the terminal state of
the economy is steady state. The finite horizon is discretized evenly into NT̄ points in time dimen-
sion. We use an iterative algorithm as follows. Given the initial distribution of real wealth f0 (z, s)
and the path of exogenous shocks (e.g., equation (26), guess a path of real deposit rate ra,0

t , endoge-
nous adjustment rate φ0

t total output Yt, and fiscal transfer Tt, and set the iteration index j, k := 0.
Then

0. The asymptotic steady state. The asymptotic steady-state value function and real wealth distri-
bution are calculated from Section F.1.

1. The aggregate output, employment and unemployment. Given the path of φk
t and the terminal

condition U k
T̄ = uss, solve the law of motion of unemployed mass (12) backwards in time to compute

the path of unemployed mass U k
t . Calculate the path of aggregate output Yk

t = 1−U k
t .

2. Individual household’s problem. Given ra,k
t , φk

t , U k
t and T j,k

t , and the terminal condition V j,k (z, s, T̄) =
Vss (z, s), solve the HJB equation (11) backwards in time to compute the path of V j,k (z, s, t). Calculate
the consumption policy function cj,k (z, s, t) and the rate of asset accumulation µj,k (z, s, t).

3. Aggregate distribution. Given cj,k (z, s, t) and µj,k (z, s, t), solve the Kolmogorov Forward equa-
tion (15) with initial condition f j,k (z, s, 0) = f0 (z, s) forward in time to compute the path for f j,k (z, s, t).

4. Fiscal transfer and total output. Given cj,k (z, s, t), f j,k (z, s, t) and U k
t calculate the path of fiscal

transfer

T j+1,k
t = ∆rt ·

ˆ ∞

0
s
[

f j,k (e, s, t) + f j,k (u, s, t)
]

ds + τl ·
(

1−U k
t

)
− b · U k

t .

If
{

T j+1,k
t

}T̄

t=0
is close enough to

{
T j,l

t

}T̄

t=0
, proceed to 5. Otherwise, set j := j + 1 and proceed to 2.
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5. Equilibrium inflation rate and nominal deposit rate. Given the path of aggregate unemployed
mass U k

t and the terminal condition of inflation πk
T̄ = πss, solve the Phillips curve (13) backwards

in time to compute the path of the inflation rate πk
t . Next, given the paths of discretionary rate īm

t ,
Taylor parameter ηt and the inflation rate πk

t , use the Taylor rule (18) to calculate the path of IOR im,k
t .

Then given the path of credit spread ∆rt, back out the path of interbank market tightness θt using

∆rt =
δ

2
χ− (θt) .

Finally, compute the nominal deposit rate using the implementation equation (6), i.e.,

ia,k
t = im,k

t +
1
2
[
χ+ (θt) + (1− δ) χ− (θt)

]
.

6. Equilibrium real deposit rate and endogenous adjustment rate. Given f j,k (z, s, t), ia,k
t and πk

t ,
calculate

Sr
(

ra,k
t , φk

t , t
)
=

ˆ ∞

s̄
s
[

f j,k (e, s, t) + f j,k (u, s, t)
]

ds

and

Sφ
(

ra,k
t , φk

t , t
)
= ia,k

t − ra,k
t − πk

t .

We update
{

ra,k
t , φk

t

}T̄

t=0
to
{

ra,k+1
t , φk+1

t

}T̄

t=0
using the Broyden’s method. However, one can use

alternative numerical methods for finding roots in 2NT̄ variables. If

max
t

{
max

{∣∣∣Sr
(

ra,k
t , φk

t , t
)∣∣∣ ,
∣∣∣Sφ

(
ra,k

t , φk
t , t
)∣∣∣}}

is close enough to 0, stop. Otherwise, set k := k + 1 and j = 0, and proceed to 1.

F.2.1 Solution to the HJB Equation

The dynamic HJB equation (11) can be approximated using an upwind scheme as

ρVn = Un+1 + An+1Vn +
1

∆t

(
Vn+1 −Vn

)
,

where An+1 is defined in an analogous fashion to (74), and ∆t = T/N denotes the time length of
each discrete period. We start with the terminal condition VN = Vss and solve the path of value
function backward, where Vss denotes the solution to stationary equilibrium obtained from Section
F.1. For each n = 0, 1, ..., N − 1, define Bn =

(
1

∆t + ρ
)

I−An+1 and dn+1 = Un+1 + 1
∆ Vn+1, and we
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can solve

Vn = (Bn)−1 dn+1.

F.2.2 Solution to the KF Equation

Let {An}N−1
n=1 be the solution obtained from Section F.2.1. It is the approximation to the operator A.

Using a finite difference scheme similar to the one we employed in Section F.1.2, we obtain:

fn+1 − fn

∆t
= (An)T fn+1,

which implies

fn+1 =
(

I− ∆t (An)T
)−1

fn, n = 0, 1, ..., N − 1. (79)

We start from the initial period condition f0 = f0 and solve the KFE forward using (79).

F.3 Solution Algorithm: Risky Steady State Equilibrium

The risky steady state equilibrium consists of the post-shock transition path and the pre-shock steady
state. We solve the two parts simultaneously based on the algorithm in Section F.1 and F.2 as follows.
Set the iteration index k := 0. Then

1. Use the algorithm in Section F.1 to solve the post-shock steady state. Use the post-shock steady-
state distribution fss (z, s) as the guess of initial wealth distribution f k (z, s, 0) at time 0, and use the
algorithm in Section F.2 to solve the post-shock transition path and time-0 value function Vk (z, s, 0).

2. Use Vk (z, s, 0) in step 1 as the input into the following risky steady state HJB:

ρVrss (z, s) = max
{c}

U (c)+
∂Vrss (z, s)

∂s
·µ (z, s)+ νzz′ [Vrss

(
z′, s
)
−Vrss (z, s)

]
+χrss [V (z, s, 0)−Vrss (z, s)] .

Solve the risky steady state solution Vk
rss (z, s) and f k

rss (z, s) using the above HJB together with the
KF equation (15) and the real market clearing condition (24) according to the algorithm in Section
F.1.

3. Set f k+1 (z, s, 0) = f k
rss (z, s) as the initial wealth distribution at time 0, and then use the algorithm

in Section F.2 to solve the post-shock transition path and time-0 value function Vk+1 (z, s, 0).

4. Iterate step 2 and 3 until
{

f k
rss (z, s) , Vk

rss (z, s)
}

converges.
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