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Does the data economy have new economics? In the information age, production increasingly

revolves around information and specifically, data. Many firms, particularly the most valuable U.S.

firms, are valued primarily for the data they have accumulated. We have known since Wilson (1975)

that ideas, information, data and other non-rival inputs have returns to scale. Because large firms

benefit more from data, produce more data and grow bigger, data typically has increasing returns.

At the same time, any data scientist will tell you that data has decreasing returns: Most of the

predictive value comes from the first few observations. Understanding these opposing forces and

what they mean for an economy requires constructing a new, dynamic equilibrium framework, with

data as a state variable. Our model of the data economy teaches us that the long-run dynamics

and welfare resemble an economy with capital accumulation and decreasing returns. However, the

short-run features new dynamics, like increasing returns, negative profits, and the barter of data

for goods.

The primary contribution of the paper is not the particular predictions we explore, but our

model as a tool. Some of our predictions are unsurprising, given the model assumptions. But the

realism of the predictions supports the notion that the framework is a relevant and useful one.

The larger contribution is a tool to value data, measure its effects and to think clearly about the

aggregate economic consequences of data accumulation. Measuring and valuing data is complicated

by the fact that frequently, customers provide their data, in exchange for a free digital service. Our

value function assigns a positive value to goods and to data, even if they have a zero transaction

price. In so doing, it moves aggregate models beyond price-weighted valuation and toward an

updated way of thinking about economic value in a data economy.

Modeling the data economy is a challenge. A key feature is that firms/customer actions produce

data, which is a form of information. When actions are chosen, taking into account the information

those actions will generate, this is active experimentation. Micro models of active experimentation

are typically challenging to solve (Bergemann and Välimäki, 2000), even without the complicating

equilibrium forces. As an additional challenge, a useful model of the data economy should feature

data as a long-lived, depreciating and tradeable asset. That calls for a recursive Bellman approach,

with a data state variable. Tractably valuing data that a) comes from active experimentation, b)

generates value for many periods, c) is traded in markets with equilibrium prices and d) eventually

depreciates, calls for a new set of tools. While the resulting model looks like a standard DSGE
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framework, achieving this degree of simplicity requires care.

The model in Section 1 describes a particular type of digitized information: transaction-

generated data, used by firms to optimize their business processes, by accurately predicting future

outcomes. The data economy blossomed with breakthroughs in machine learning and artificial

intelligence. These are prediction algorithms. They require troves of data, which are naturally gen-

erated by transactions: buyer characteristics, traffic images, textual analysis of user reviews, click

through data, and other evidence of economic activity. Such data is typically used to help firms

optimize by forecasting demand, costs, earnings, labor needs, targeting advertising or selecting

investments or product lines.

Because of its simple structure, the model can be applied and extended in many ways. We ex-

plore some in the paper; others, such as imperfect competition or firm size dispersion, are discussed

in the conclusion. While adding features to the main model could allow it to better address one

question or another, keeping the model streamlined allows it to be used flexibly.

Section 2 shows how to value and depreciate data. Both are tough to observe directly. However,

our model offers a way to estimate how quickly a particular type of data loses value. Bayes’ Law

and its cousin, the Kalman filter dictate the rate at which information precision depreciates and

point us to a simple estimation procedure. Knowing how data depreciates allows us to build up a

recursive value function structure, that looks similar to ones used to value capital, but embodies

the value of production as active experimentation and the unique way in which data depreciates.

Section 3 explores the path a given firm takes when growing to its steady state (the short run).

When data is scarce, it may have increasing returns, because of a “data feedback loop.” More data

makes a firm more productive, which results in more production and transactions, which generate

more data, further increasing productivity and data generation. This is the dominant force when

data is scarce. Increasing returns also generates poverty traps. Firms with low levels of data earn

low profits, which makes little production optimal. But little production generates little data, which

keeps the firm data-poor. Firms may even choose to produce with negative profits, as a form of

costly investment in data and may still have high equity market valuations, despite having minimal

book value. This rationalizes observed data barter. Many digital services, like apps, which were

costly to develop, are given away to customers at zero price. The exchange of customer data for a

service, at a zero monetary price, is a barter trade.
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Section 4 examines the data economy in the long run. We start with a thought experiment:

Can data sustain growth, in the absence of any technological progress? This is an analogy to

the question Solow (1956) asks about capital. We find that, in the long run, diminishing returns

dominate. The long-run data economy looks just like a long-run capital economy, but for different

reasons: First, prediction errors can only be reduced to zero. That places a natural bound on

how much prediction error data can possibly resolve. Second, unforecastable randomness limits

how accurate firms’ forecasts can possibly be. Either one of these forces ensures that when data is

abundant, it has diminishing returns and cannot sustain growth.

Of course, if we change the model to make data an input into research and development (R&D),

it can sustain growth (Section 4.3). The message is not that anything is possible. The point is to

inform measurement: We should measure data used for R&D separately, just like macroeconomists

typically distinguish between regular capital investment and R&D investments.

Some of the most heated policy debates today revolve around firms’ use of data. Thinking about

regulation and welfare requires building out the household side of the model that micro-founds the

demand curve. Section 5 does this and finds that, despite the non-rivalry, the increasing returns,

and the production of data as a by-product, equilibrium choices are efficient. That doesn’t mean

that data cannot cause harm. It just means that the simple forces our model describes do not

compromise welfare, by themselves.

We augment the model to capture data externalities, such as lost privacy or stealing business

from rivals with data-targeted marketing. Such negative externalities obviously incentivize excess

data production, which in turn, inflates goods production, in order to generate the extra data. One

way in which the data economy reacts differently to externalities is that they prompt excessive data

trade. This finding offers new perspective on where to look for evidence on the strength of data

externalities.

Related Literature. This work builds on insights from many literatures, each of which has

some, but not all, of the features of this model. Work on information frictions in business cycles

(Caplin and Leahy, 1994; Veldkamp, 2005; Lorenzoni, 2009; Ordonez, 2013; Ilut and Schneider,

2014; Fajgelbaum et al., 2017) have versions of a data-feedback loop that operate at the level of the

aggregate economy: More data enables more aggregate production, which in turn, produces more
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data. The key difference is that in those papers information is a public good, not a private asset.

The private asset assumption in the current paper changes firms’ incentives to produce data, allows

data markets to exist and is what raises welfare concerns.

Choosing to acquire data is technically similar to other forms of information choice like the infor-

mation acquisition in Broer et al. (2021) or rational attention choices in Maćkowiak and Wiederholt

(2009), Matějka and McKay (2015) or Reis (2008). Our work borrows modeling strategies directly

from Morris and Shin (2002) and Angeletos et al. (2006) and shares a focus on the social value of

information. Work on media in the macroeconomy (Chahrour et al., 2019; Nimark and Pitschner,

2019) shares our focus on markets where information is bought and sold. Work on screening incen-

tives in lending (Asriyan et al., 2021) also views data as a durable asset with value. However, in

a data economy, transactions create data that can be sold. This feedback is absent in these other

literatures and is central to the data measurement challenges we address.

Compared to the existing literature on data and growth, the key difference in our model is that

data is information, used to forecast a random variable. In Jones and Tonetti (2018), Cong et

al. (2021) and Cong et al. (2020), data contributes directly to productivity. This is okay for their

objective – exploring growth versus privacy. But without modeling data as information, they cannot

explore the tension between diminishing and increasing returns that is central to data valuation.

Work exploring the interactions of data and innovation sounds similar, but has essential dif-

ferences. For example, in Garicano and Rossi-Hansberg (2012), IT allows agents to accumulate

more knowledge, which facilitates innovation. Agrawal et al. (2018) explore how breakthroughs in

AI could enhance discovery rates and economic growth. In models of learning-by-doing (Jovanovic

and Nyarko, 1996; Oberfield and Venkateswaran, 2018) and organizational capital (Atkeson and

Kehoe, 2005; Aghion et al., 2019), firms also accumulate a form of knowledge. But unlike prediction

data, this knowledge is not a tradeable asset. Acemoglu and Restrepo (2018) consider the growth

potential from robots. Although robots require data, they are rival capital goods, distinct from the

data itself. Our work analyzes data accumulation, in the absence of technological change. Once we

understand this foundation, one can layer these insights about innovation and automation on top.

Finally, the insight that the stock of knowledge can serve as a state variable comes from the five-

equation toy model sketched in Farboodi et al. (2019). That was a partial-equilibrium numerical

exercise, designed to explore the size of firms. This paper adds an aggregate equilibrium model,
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with goods markets, data markets, data non-rivalry, analytical solutions and welfare analysis. The

new dimensions to this model fundamentally shape the answers to our main questions about the

value of data and the functioning of a data economy.

1 A Data Economy

We build a framework in which data is information, which helps forecast random outcomes. More

accurate forecasts help firms optimize business processes. The model looks much like a simple Solow

(1956) model. To isolate the effect of data accumulation, the model holds fixed productivity, aside

from that which results from data accumulation. There are inflows of data from new economic

activity and outflows, as data depreciates. The depreciation comes from the fact that firms are

forecasting a moving target. Economic activity many periods ago was quite informative about the

state at the time. However, since the state has random drift, such old data is less informative about

what the state is today.

The key differences between our data accumulation model and Solow’s capital accumulation

model are three-fold: 1) Data is used for forecasting; 2) data is a by-product of economic activity,

and 3) data is, at least partially, non-rival. Multiple firms can use the same data, at the same time.

These subtle changes in model assumptions are consequential. They alter the source of diminishing

returns, create increasing returns and data barter, and produce returns to specialization.

1.1 Model

Real Goods Production Time is discrete and infinite. There is a continuum of competitive

firms indexed by i. Each firm can produce kαi,t units of goods with ki,t units of capital. These goods

have quality Ai,t. Thus firm i’s quality-adjusted output is

yi,t = Ai,tk
α
i,t (1)

The quality of a good depends on a firm’s choice of a production technique ai,t. Each period

firm i has one optimal technique, with a persistent and a transitory component: θt + εa,i,t. Neither

component is separately observed. The persistent component θt follows an AR(1) process: θt =
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θ̄+ ρ(θt−1 − θ̄) + ηt. The AR(1) innovation ηt ∼ N(0, σ2θ) is i.i.d. across time.1 Firms have a noisy

prior about the realization of θ0. The transitory shock εa,i,t ∼ N(0, σ2A) is i.i.d. across time and

firms and is unlearnable.

The optimal technique is important for a firm because the quality of a firm’s good, Ai,t, de-

pends on the squared distance between the firm’s production technique choice ai,t and the optimal

technique θt + εa,i,t:

Ai,t = g
(
(ai,t − θt − εa,i,t)2

)
. (2)

The function g is strictly decreasing. A decreasing function means that techniques far away from

the optimum result in worse quality goods.

Data The role of data is that it helps firms to choose better production techniques. One in-

terpretation is that data can inform a firm whether blue or green cars or white or brown kitchens

will be more valued by their consumers, and produce or advertise accordingly. In other words, a

technique could represent a resource allocation. Transactions help to reveal customers’ marginal

values, but these values are constantly changing. Firms must continually learn to catch up. Another

interpretation is that the technique is inventory management, or other cost-saving activities. Ob-

serving production and sales processes at work provides useful information for optimizing business

practices. For now, we model data as welfare-enhancing. Section 5 relaxes that assumption.

Specifically, data is informative about θt. At the start of date t, nature chooses a countably

infinite set of potential data points for each firm i: ζit := {si,t,m}∞m=1. Each data point m reveals

si,t,m = θt+1 + εi,t,m, (3)

where εi,t,m is i.i.d. across firms, time, and signals. For tractability, we assume that all the shocks

in the model are normally distributed: fundamental uncertainty is ηt ∼ N(µ, σ2θ), signal noise is

εi,t,m ∼ N(0, σ2ε ).

1One might consider different possible correlations of ηi,t across firms i. An independent θ processes
(corr(ηi,t, ηj,t) = 0, ∀i 6= j) would effectively shut down any trade in data. Since buying and selling data hap-
pens and is worth exploring, we consider an aggregate θ process (corr(ηi,t, ηj,t) = 1, ∀i, j). It is also possible to
achieve an imperfect, but non-zero correlation.
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The next assumption captures the idea that data is a by-product of economic activity. The

number of data points n observed by firm i at the end of period t depends on their production kαi,t:

ni,t = zik
α
i,t, (4)

where zi is the parameter that governs how much data a firm can mine from its customers. A data

mining firm is one that harvests lots of data per unit of output. Thus, firm i’s production uncovers

signals {sm}
ni,t
m=1.

The transitory shock εa,i,t is important in preserving the value of past data. It prevents firms,

whose payoffs reveal their productivity Ai,t, from inferring θt at the end of each period. Without

it, the accumulation of past data would not be a valuable asset. If a firm knew the value of θt−1 at

the start of time t, it would maximize quality by conditioning its action ai,t on period-t data ni,t

and θt−1, but not on any data from before t. All past data is just a noisy signal about θt−1, which

the firm now knows. Thus preventing the revelation of θt−1 keeps old data relevant and valuable.

Data Trading and Non-Rivalry Let δi,t be the amount of data traded by firm i, after pro-

ducing in date t. If δi,t < 0, the firm is selling data. If δit > 0, the firm purchased data.We restrict

δi,t ≥ δ, where δ ≤ 0. This does not prohibit selling or even selling multiple copies of data. But

it does bound sales so that a firm cannot sell so much data that it is left with a negative stock of

knowledge. If the firm buys δi,t > 0 units of data, it adds the data it produced and the data it

purchased, ni,t + δi,t units of data, to its stock of data.

Let the price of one piece of data be denoted πt.

Of course, data is non-rival. Some firms use data and also sell that same data to others. If there

were no cost to selling one’s data, then every firm in this competitive, price-taking environment

would sell all its data to all other firms. In reality, that does not happen. Instead, we assume that

when a firm sells its data, it loses a fraction ι of the amount of data that it sells to each other firm.

Thus if a firm sells an amount of data δi,t < 0 to other firms, then the firm has ni,t + ιδi,t data

points left to add to its own stock of knowledge. Recall that for a data seller, ιδ < 0 so that the firm

has less data than the ni,t points it produced. This loss of data could be a stand-in for the loss of

market power that comes from sharing one’s own data. It can also represent the extent of privacy
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regulations that prevent multiple organizations from using some types of personal data. Another

interpretation of this assumption is that there is a transaction cost of trading data, proportional

to the data value.

Data Adjustment and the Stock of Knowledge The information set of firm i when it

chooses its technique ai,t is2 Ii,t = {Ii,t−1, {si,t−1,m}
ωi,t−1

m=1 , Ai,t−1}, where ωi,t−1 is the net number of

data points added (or subtracted if ω is negative), after accounting for data purchases or sales. To

make the problem recursive and to define data adjustment costs, we construct a helpful summary

statistic for this information, called the “stock of knowledge.”

Each firm’s flow of ni,t new data points allows it to build up a stock of knowledge Ωi,t that it

uses to forecast future economic outcomes. We define the stock of knowledge of firm i at time t

to be Ωi,t. We use the term “stock of knowledge” to mean the precision of firm i’s forecast of θt,

which is formally:

Ωi,t := E[(E[θt|Ii,t]− θt)2]−1. (5)

Note that the conditional expectation on the inside of the expression is a forecast. It is the firm’s

best estimate of θt. The difference between the forecast and the realized value, E[θt|Ii,t] − θt, is

therefore a forecast error. An expected squared forecast error is the variance of the forecast. It’s

also called the variance of θ, conditional on the information set Ii,t, or the posterior variance. The

inverse of a variance is a precision. Thus, this is the precision of firm i’s forecast of θt.

Our data adjustment cost Ψ captures the idea that if a firm that does not store or analyze any

data wants to transform itself to a machine learning powerhouse, it would require new computer

systems, workers with different skills, and learning by the management team. As a practical matter,

if there is no data adjustment cost, a firm would immediately purchase the optimal amount of data,

just as in models of capital investment without capital adjustment costs. Data adjustment costs

are important because they make dynamics gradual.

2We could include aggregate output and price in this information set as well. We explain in the model solution
why observing aggregate variables makes no difference in the agents’ beliefs. Therefore, for brevity, we do not include
these extraneous variables in the information set.
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Equilibrium definition. A firm chooses a sequence of production, quality and data-use deci-

sions ki,t, ai,t, δi,t to maximize

∞∑
t=0

(
1

1 + r

)t
E
[
PtAi,tk

α
i,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t|Ii,t

]
(6)

Firms update beliefs about θt using Bayes’ law. Each period, firms observe last period’s revenues

and data, and then choose capital level k and production technique a. The information set of firm

i when it chooses its technique ai,t and its investment ki,t is Ii,t.

Pt denotes the equilibrium price per quality unit of goods. In other words, the price of a good

with quality A is APt. By assumption, the inverse demand function and the industry quality-

adjusted supply are:

Pt = P̄ Y −γt , (7)

Yt =

∫
i
Ai,tk

α
i,tdi.

Firms take the industry price Pt and the parameter P̄ as given. Price is not random because,

by the central limit theorem, the aggregate or average A converges to a known value.3 The data

price πt equates data demand and supply. As in Solow (1956), we take the rental rate of capital as

given. This reveals the data-relevant mechanisms as clearly as possible. This could be an industry

or a small open economy, facing a world rate of interest r.

1.2 Interpreting Model Assumptions

Alternatives to data as a forecasting tool. In this model, the defining feature of data is that it is

a tool to forecast a future state θt+1. This is not the only way to represent data. As mentioned

before, some papers model more data as a direct contribution to TFP, which may well be a useful

shorthand for data that is an input into R&D. Another approach to modeling data is as an improved

matching technology. It could improve the match between customers and goods or between workers

and tasks. Matching and noisy information are not separate phenomena. They are two ways of

3Appendix A shows that, because there are infinitely many firms with independent signals and a noisy prior,
independent forecast errors imply independence in Ai,t’s and that this implies a deterministic price and aggregate
output.
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representing an information friction. So, this could be a matching model. In this case, the noisy

signal model was a more tractable formulation.

Can data be sold multiple times? Our setting allows this. Whether a firm sells d data points or

sells 1 data points d times makes no difference, as long as ι of knowledge is lost, each time a firm

sells a data point.

Investing in data quality. If a firm can pay for a higher z data processing ability, then this

will further accentuate the data feedback loop and increasing returns. Larger firms with more

transactions to process will get a higher marginal benefit from better data technology and will

acquire even more knowledge than small firms. While that additional channel is interesting and

may be quantitatively important, it doesn’t change any of the ideas we develop in this paper.

Therefore, we hold z fixed for simplicity.

Why this formulation of quality? The function g is an arbitrary function. It makes sense to

assume it is decreasing because otherwise, worse forecasts improve quality. But the argument of the

g function is quadratic in the difference between actions and optimal actions. This quadratic form

is an approximation to many relationships. It has a long history in tracking problems like this one

where agents use information to forecast a changing state. In economics, this quadratic loss formu-

lation is used extensively in the global games literature, following Morris and Shin (2002). Most

importantly, this formulation simplifies the solution because it ensures that conditional variance is

a sufficient statistic for mapping what a firm knows to their value function.

1.3 Solution: Optimal Technique and Expected Quality

A key to simplifying the problem to a one-state variable problem lies in understanding the expected

quality that results from the optimal choice of technique.

Taking a first order condition with respect to the technique choice, we find that the optimal

technique is a∗i,t = Ei[θt|Ii,t]. Thus, expected quality of firm i’s good at time t in (2) can be

rewritten as E[Ai,t] = E
[
g
(
(Ei[θt|Ii,t]− θt − εa,i,t)2

)]
. The squared term is a squared forecast

error. It’s expected value is a conditional variance, of θt + εa,i,t. That conditional variance is

denoted Ω−1i,t + σ2a.

To compute expected quality, we first take a second-order Taylor approximation of the quality

function, expanding around the expected value of its argument: g(v) ≈ g(E[v]) + g′(E[v]) · (v −
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E[v]) + (1/2)g′′(E[v]) · (v − E[v])2. Next, we take an expectation of this approximate function:

E[g(v)] ≈ g(E[v]) + g′(E[v]) · 0 + (1/2)g′′(E[v]) · var(v). Recognizing that the argument v is a

chi-square variable with mean Ω−1i,t + σ2a and variance 2(Ω−1i,t + σ2a), the expected quality of firm i’s

good at time t in (2) can be approximated as

E[Ai,t|Ii,t] ≈ g
(

Ω−1i,t + σ2a

)
+ g′′

(
Ω−1i,t + σ2a

)
·
(

Ω−1i,t + σ2a

)
. (8)

If the g function is not too convex, then quality is a deceasing function of expected forecast

errors. Or put simply, more data precision increases the quality of a firm’s good. We will return

to the question of highly convex, unbounded g functions in the next section.

Importantly, only the variance (or precision) of signals enters in expected utility, not the prior

mean or signal realization. As in Morris and Shin (2002), precision, which in this case is the stock

of knowledge, is a sufficient statistic for expected utility and therefore, for all future choices. The

quadratic loss, which eliminates the need to keep track of signal realizations, simplifies the problem

greatly.

2 Valuing and Depreciating Data

Before exploring predictions of the model, we work out what this model structure teaches us about

how data should be depreciated and valued.

2.1 Depreciating Data

Solving our dynamic model requires taking a stand on the depreciation rate of data. This depreci-

ation rate estimation is of independent interest. For the most valuable firms in the world, data is

arguably their most valuable asset. Yet, data valuation and data accounting are in their infancy.

A key question for valuing data is assessing how quickly data depreciates.

Luckily, our model also points us to a method for quantifying depreciation. It teaches us that the

depreciation rate of data is a particular function of the persistence and volatility of the environment

that data is used to forecast. We derive and explain this depreciation formula, which can be used

in this model, or in any environment where data is used for forecasting and where a linear and
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normal stochastic environment is a reasonable approximation.

To derive this depreciation formula, we start from the state evolution equation. Recall that it

is an AR(1): θt+1 = θ̄ + ρ(θt − θ̄) + εt+1. Consider the beliefs about the time-t state and how they

change when the same information is used to forecast the t + 1 state. At the start of date t, the

conditional variance of beliefs about the state θt is V [θt|It] := Ω−1t , where Ωt is what we’ve called

the “stock of knowledge” and is the object we want to depreciate.

Next, we simply apply the same conditional variance operator, with the same information set,

to the AR(1) equation above: V [θt+1|It] = ρ2V [θt|It]+σ2ε = ρ2Ω−1t +σ2ε . This holds in the absence

of learning any additional information about the state during all of period t. In this no date-t

learning case, we invert the variance and rearrange V [θt+1|It]−1 to get:

Ωno learning
t+1 =

Ωt

ρ2 + σ2εΩt
.

To be clear, this is not the correct law of motion for the state Ω in this model because firms learn

new information every period. But examining the no-learning case is instructive because the only

thing changing the stock of knowledge from one period to the next is depreciation. While typically,

one would depreciate a capital stock by multiplying capital kt times a term like (1 − δk). The

equivalent multiplicative term here is (ρ2 + σ2εΩt)
−1, which multiplies Ωt. Thus, the depreciation

rate, the equivalent of δk in a capital accumulation model, is

data depreciation rate = 1− 1

ρ2 + σ2εΩt

A larger fraction of the stock of knowledge is lost to depreciation when the state changes lots from

one period to the next (high σ2ε ), when there is lots of knowledge to begin with (high Ωt), and when

high persistence makes the state a more variable process (high ρ).4

Depreciation rates are typically linear operators on the stock being depreciated. Appendix A.3

describes three types of economies where the data depreciation rate will be well-approximated by

4One might wonder why this depreciation rate can be negative for small values of ρ2 + σ2
εΩt. These are cases

where the firms is so uncertain that its conditional variance is higher than the unconditional variance of next period’s
outcomes. This is not a scenario that ever arises in our model. If an agent were so uncertain, then simple mean-
reversion should reduce their uncertainty. This natural reduction in uncertainty, without any additional data, is what
would show up as a negative rate of depreciation.
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a standard-looking multiplicative constant term.

Accounting rules depreciate all data like software, by amortizing it over three years. That is a

depreciation rate of 30% per year. Our results suggest that the depreciation rate of data may vary

widely, depending on whether the data is used to forecast something more static, like consumer

location or tastes, or something more ephemeral like equity order flow.

2.2 A Law of Motion for Data

To get from this depreciation rate to the law of motion for the stock of knowledge requires adding

new data from three sources: 1) data that was a by-product of production, 2) data that was bought

or sold and 3) data that was inferred from a firm seeing its own quality at the end of the period.

These pieces of information are incorporated into beliefs using Bayes’ law.

The number of new data points generated by firm i’s production, ni,t is assumed to be data

mining ability times end of period physical output: zik
α
i,t. Bayes law tells us that the posterior

precision of a normal variable is the sum of the prior precisions and signal precisions. This means

that the sum of the precisions of all the data points, ni,tσ
−2
ε , should be added to the stock of

knowledge.

At the firm level, data inflows need to be adjusted for data trade. If a firm buys data (δi,t > 0),

we add all the newly-acquired data precision δi,tσ
−2
ε to the stock of knowledge. If a firm sells data

(δi,t < 0), we subtract a fraction ι of that signal precision from their stock of knowledge. Since δi,t

is negative, we add the negative number δi,tσ
−2
ε to subtract off the lost knowledge.

Finally, the additional information learned from seeing one’s own realization of quality Ai,t, at

the end of period t has precision σ−2a .5 This information is different from the purchased or produced

data because the quality realization is a signal about θt, not about θt+1. Therefore, σ−2a gets added

to the time-t stock of knowledge and depreciates, just like other time-t knowledge, that the firm

takes with it to time t+ 1.

Lemma 1 puts the data depreciation and data inflows together. It tells us how the stock of

knowledge evolves from one period to the next.

5We are approximating a mixture of normals here with a normal variable, whose mean and variance are equated
to the mean and variance of the mixture variable. The mixture arises because the quadratic term inside the quality
function g can be positive or negative. In many cases, the prior on θt will make one quadratic root much more likely
than the other. In such cases, the mixture is almost a pure normal with σa = σA. See Appendix A for more details.
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Lemma 1 Evolution of the Stock of Knowledge In each period t,

Ωi,t+1 =
[
ρ2(Ωi,t + σ−2a )−1 + σ2θ

]−1
+
(
ni,t + δi,t(1δi,t>0 + ι1δi,t<0)

)
σ−2ε (9)

The proof of this lemma and of all the lemmas and propositions that follow are in Appendix

A. The proof is an application of Bayes’ law, or equivalently, the Ricatti equation of a modified

Kalman filter. Because the information structure is similar to that of a Kalman filter, the sequence

of conditional variances, or their inverse, the sequence of precisions, is deterministic.

Non-rivalry as a negative bid-ask spread. Data non-rivalry adds a kink to the effective

price of data, which shows up as indicator functions in (9). This acts like a negative bid-ask spread

in the data market. It drives a wedge between the value of the data sold and the opportunity cost,

the amount of data lost through the act of selling. While a bid-ask spread typically involves some

loss from exchange of an asset, with non-rivalry, exchanging data results in more total data being

owned. If the buyer pays a price π per unit of data gained, the seller earns more than π per unit

of data forfeited, because they forfeit only a fraction of the data sold.

Appendix A shows how to reformulate the problem where the choice variable is the amount

of data added to a firm’s stock of knowledge: ωi,t = ni,t + δi,t for data purchases (δi,t > 0)

and ωi,t = ni,t + ιδi,t for data sales (δi,t < 0). Then we can define an adjusted price of data,

π̃i,t ≡ π/(1ωi,t>ni,t + ι1ωi,t<ni,t). When a firm sells data, π̃ is divided by ι < 1, which raises the

adjusted price. This idea is that a firm that sells δ units of data only gives up δι units of data. So

it’s as if they are getting a higher price per unit of data forfeited. This insight allows us to import

modeling and measurement tools from finance for a market equilibrium, with a bid-ask spread.

Information from aggregate prices. One might wonder why firms do not also learn from

seeing aggregate price and the aggregate output. They reflect aggregate quality, which depends on

the squared difference between θt and other firms’ technique ajt. That squared difference reflects

how much others know, but not the content of what others know. Because the mean and variance

of normal variables are independent, knowing others’ forecast precision reveals nothing about θt.

Seeing one’s own outcome Ai,t is informative only because a firm also knows its own production

technique choice ai,t. Since firms’ actions are not observable, aggregate prices or quantities reveal
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what other firms predicted well. But they convey no useful information about whether θt is high

or low.

2.3 Valuing Data: A Recursive Representation

One of the most important valuation questions for modern economists, investors and accountants

is how to value data. While some data is transacted and might be valued at its price, lots of data is

retained by a firm, for its own use. A value function approach assigns a value to a firm with a given

amount of data. While that is not a cookbook recipe for assigning a dollar value to data, it offers a

first step, a clear way to think about data value and what its components are. Our value function

can guide data valuation, in the same way that capital value functions have guided economists’

measurement of capital values, for decades.

Lemma 2 The optimal sequence of capital investment choices {ki,t} and data sales {δi,t ≥ −ni,t}

solve the following recursive problem:

V (Ωi,t) = max
ki,t,δi,t

PtE[Ai,t|Ii,t]kαi,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t +

(
1

1 + r

)
V (Ωi,t+1) (10)

where E[Ai,t|Ii,t] is an increasing function of Ωi,t, given by (8), ni,t = zik
α
i,t, and the law of motion

for Ωi,t is given by (9).

This result greatly simplifies the problem by collapsing it to a deterministic problem with choice

variables k and δ and one state variable, Ωi,t, the stock of knowledge. In expressing the problem

this way, we have already substituted in the optimal choice of production technique. The quality

Ai,t that results from the optimal technique depends on the conditional variance of θt.

Since Ωi,t can be interpreted as a discounted stock of data, V (Ωi,t) captures the value of this

data stock. V (Ωi,t) − V (0) is the present discounted value of the net revenue the firm receives

because of its data. Therefore, the marginal value of one additional piece of data, of precision 1, is

simply ∂Vt/∂Ωi,t. When we consider markets for buying and selling data, ∂Vt/∂Ωi,t represents the

firm’s demand, its marginal willingness to pay for data.
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3 Short Run Features of a Data Economy

A key source of difference between a capital-based and a data economy is the short-run convexity of

data accumulation, at the firm level. The convexity is a form of increasing returns that arises from

the data feedback loop: Firms with more data produce higher quality goods. The higher profit

per unit from higher quality goods induces more production, which results in more transactions

and more data. Thus more data begets more data. While that sounds positive, it also creates

the possibility of a firm growth trap, with very slow growth and financial losses, early on the in

the lifecycle of a new firm. As a result, the life-cycle path of book-to-market or Tobin’s Q of data

firms looks very different from capital-intensive firms. Finally, the fact that transactions generate

data as a by-product explains why every exchange includes an element of barter, where goods are

exchanged for data, frequently at a positive monetary price. But sometimes, the exchange of goods

for data happens at a zero monetary price, in which case pure barter arises.

While these results may not be a surprising distance from our assumptions, they all demonstrate

the ability of the framework to make sense of and re-interpret new data economy phenomena. Tools

to model data phenomena can, in turn, be used to inform ongoing policy debates. Establishing

that this is an economically-relevant collection of assumptions is important before using it for

measurement or welfare analysis.

3.1 Increasing Returns in the Short Run

While our model is a general equilibrium one, it is instructive to explore one firm growing. While

all others are in steady state, we drop in one, atomless, low-data (low Ωi,t) firm and observe its

growth and transition to a high-data firm. From this exercise, we learn about the forces are work in

the model. This exercise also teaches us about barriers to new firm entrants. Of course, equilibrium

effects are crucially important. We study those in the next section. But the nature of the one-firm

problem is so different from a typical macro model, that it is worth taking the time to understand

it in isolation.

For this section, we adopt a linear quality function, for simplicity: g(x) = Ā− x. We relax this

asssumption later on, when we discuss the long run.
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Figure 1: A single new firm grows slowly: Inflows and outflows of one firm’s data.
Line labeled inflows plots the individual firm i version of the data inflows in Equation (13). Line labeled outflows
plots the individual firm i version of the quantity in (14). Firm i is in an economy where all other firms are in steady
state. Details in Appendix A.15.

Proposition 1 S-Shaped Accumulation of Knowledge When all firms are in steady state,

except for one firm i, then the firm’s net data flow Ωi,t+1 − Ωi,t

a. increases with the stock of knowledge Ωi,t when that stock is low, Ωi,t < Ω̂, when goods production

has sufficient diminishing marginal return, α < 1
2 , adjustment cost Ψ is sufficiently low, P̄ is

sufficiently high, and the second derivative of the value function is bounded V ′′ ∈ [ν, 0); and

b. decreases with Ωi,t when Ωi,t is larger than
ˆ̂
Ω.

Figure 1 illustrates the inflows, outflows and dynamics of a single firm. This figure illustrates one

possible economy. Data production may lie above or below the data outflow line. The difference

between data inflows (solid line) and data production (dashed line) is data purchases. These

purchases push the inflows line up and help speed up convergence.

The quality-adjusted production path of a single, growing firm mimics the path of its stock

of knowledge. The difference between the S-shaped inflows and nearly linear outflows in Figure 1

traces out the S-shaped output path of a new entrant firm in this environment.

Firm size distribution One reason the S-shaped accumulation of data is interesting is that it

also generates S-shaped path of firm size over time. When firms grow slowly in their early phase

and then, only later grow quickly, this lends itself to a bifurcated firm size distribution. There are

many new firms that are stuck small and data-poor. Then, there are firms that have reached the
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explosive growth phase in the middle of the S-curve and grew large. In a world with increasing and

then decreasing returns, firms do not remain mid-sized for long.

Single firms can have decreasing returns For some parameter values, the diminishing returns

to data is always stronger than the data feedback loop. Proposition 8 in the appendix shows that,

when learnable risk is abundant, knowledge accumulation is concave. In such cases, each firm’s

trajectory looks like the concave aggregate path in Figure 4. But the appendix describes the set

of parameters that make the data feedback loop sufficiently strong, to make data inflows convex at

low levels of knowledge.

3.2 New Firms’ Profits, Book Value and Market Value

In a data economy, the trajectory of a single firm’s profits, book value and market value are

quite different from those in an economy driven by capital accumulation. Since empirical evidence

on profits, book value and market value are easily available, it is useful to explore the model’s

predictions along these dimensions. In doing so, we relate to the literature on using Tobin’s Q to

measure intangible capital.

In a standard model, a young, capital-poor firm has a high marginal productivity of capital.

The firm offers high returns to its owners and has a book and market value that differ only by the

capital adjustment cost. In a data economy, data scarcity makes a young firm’s quality and profits

low. In fact, there is a range of parameters for which young firms cannot possibly make positive

initial profits. Start by defining a firm’s profit:

Profitt = PtAi,tk
α
i,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t. (11)

Proposition 2 A Single New Firm Loses Money. Assume that g(σ2a + σ2θ) < 0. Then for

a firm entering with zero data, Ωi,0 = σ−2θ , the firm cannot make positive expected profit at any

period t unless it has made strictly negative expected profit at some t′ < t.

The reason such a firm produces, even though producing loses money, is that production gen-

erates data, which has future value to the firm. This firm is doing costly experimentation. This is

like a bandit problem. There is value in taking risky, negative expected value actions because they
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Figure 2: S-shaped growth can create initial profit losses and high market-to-book value of data.
Market value is the value function of the firm, V (Ωi,t), divided by 10 to facilitate visualization. Knowledge stock
defined in Lemma 1. Book value defined in (12). Parameters are discussed in Appendix A.15: ρ = 1, r = 0.2, β =
0.97, α = 0.3, ψ = 4, A = 0.5, σ2

a = 0.05, σ2
θ = 0.5, σ2

ε = 0.1, z = 0.01, π = 0.002, P = 1, ι = 1

generate information. Such behavior is also called active experimentation. Production at time t is

like paying to generate information, which will allow the firm to be profitable in the future. The

reason that the firm’s production looses money is that if g(σ2a+σ2θ) < 0, the initial expected quality

of the firm’s good is too low to earn a profit. But production in one period generates information

for the next, which raises the average quality of the firm’s goods, and enables future profits.

The idea that data unlocks future firm value implies that in order to increase its stock of

knowledge, a new firm both produces low quality goods to self-produce data, and buys some data

on the data market, as depicted in Figure 1. The two mechanisms of building stock of knowledge

lead to a discrepancy between a firm’s book value and market value. It is so because accounting

rules do not allow a firm’s book value to include data, unless that data was purchased. In the

context of our simple model, the firm rents but does not own any capital, and data is the firm’s

only asset. Therefore, we define the firm book value to be the discounted value of all purchased

data. The indicator function 1δi,t>0 captures only data purchases, not self-produced data. If we

equate the book value depreciation rate to the household’s rate of time preference β, then

Book Valuet =
t∑

τ=0

βt−τπτδτ1δi,τ>0. (12)

The market value of the data is the Bellman equation value function V (Ω) in (10).

Figure 2 plots the market value, book value and profits of a young firm, over time. The difference

between the market and book value of a firm is used to measure intangible assets. The high market
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value and low book value, given firm characteristics, are typically interpreted as a large intangible

asset stock. Our firms exhibit this hallmark. The negative profits described in Proposition 2,

representing costly experimentation, also show up here. This result connects our model to work

measuring intangible capital as a gap between market and book values, as well as to work exploring

financial barriers to firm entry.

Figure 2 also illustrates an example where the firm makes negative profits for the first few

periods because it sells goods at a loss. Producing goods at a loss eventually pays off for this firm.

It generates data that allows the firm to become profitable. This situation looks like Amazon at

its inception. During its first 17 quarters as a public company, Amazon lost $2.8 billion, before

turning a profit. Today, it is one of the most valuable companies in the world.

3.3 Data Barter and Missing GDP

Data barter arises when goods are exchanged for customer data, at a zero price. While this is a

knife-edge possibility in this model, it is an interesting outcome because it illustrates a phenomenon

we see in reality. In many cases, digital products, like apps, are being developed at great cost to

a company and then given away “for free.” Free here means zero monetary price. But obtaining

the app does involve giving one’s data in return. That sort of exchange, with no monetary price

attached, is a classic barter trade. The possibility of barter is not shocking, given the assumptions.

But the result demonstrates the plausibility of the framework, by showing how it speaks to data-

specific phenomena we see.

The analysis also reveals that not only are zero-price transactions, like free apps, being missed,

every transaction, in principle, has a data barter element to it. Every firm should charge slightly

less for every product, because of the value of the data that accompanies its sale. In practice, a

whole segment of the economy is not being captured by traditional GDP measures because the

transactions price misses the value of data being paid.

Proposition 3 Bartering Goods for Data It is possible that a firm will optimally choose

positive production kαi,t > 0, even if its price per unit is zero: Pt = 0.

At Pt = 0, the marginal benefit of investment is additional data that can be sold tomorrow, at

price πt+1. If the price of data is sufficiently high, and/or the firm is a sufficiently productive data
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producer (high zi), then the firm should engage in costly production, even at a zero goods price, to

generate the accompanying data. Our framework allows us to assign a value to such barter trades

and partial-barter trades, despite their zero monetary price.

These results could enable better measurement of GDP. Investment in a stock of valuable

knowledge is missing from aggregate measures of economic activity. Even if we cannot observe the

data-adjusted true price of a transaction, if we can measure the value of the asset being generated,

we can fill in this missing value. The value of the knowledge asset generated by all this barter

trade is V (Ωi,t) − V (Ωi,t−1), for each firm i. Typical numerical approaches to approximating a

value function could be applied to V (Ωi,t). Alternatively, one might use revenue data, use hiring

and wages of workers who maintain data stocks and work with data, or look for the covariance of a

firms’ choices with the random variables it needs to forecast. A detailed discussion of the myriad of

approaches to measure this value function is beyond the scope of this paper. However, frameworks

like this are important inputs into digital economy measurement because they guide our thinking

about what is missing and how to infer this missing aggregate economic activity.

4 Long-Run Features of a Data Economy

While the previous section emphasized the contrasts, this section highlights ways in which the long-

run in this data economy is surprisingly similar to a capital-based production economy. Within the

model, there is no long run growth because data has diminishing returns, a property documented

empirically by (Bajari et al., 2018). Since data is a non-rival asset that contributes to productivity,

one might question why it is fundamentally different from new ideas. To explore this, we describe a

general class of models in which the accumulation of data used for forecasting does create long-run

growth. This class of models has some unusual properties. To sustain long-run growth without

innovation, perfect foresight must generate infinite output and all relevant future states must be

deterministic. On the other hand, if we allow innovation, data that is an input into idea creation

can easily generate growth. The take-away is that, just like with capital, we should distinguish

between data that is used for research and development and data that is not.
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Figure 3: Economy converges to a data steady state: Aggregate inflows and outflows of data.
Line labeled inflows plots the quantity in (13) for the aggregate economy, for different levels of initial data stock and
optimal capital choices. Line labeled outflows plots the quantity in (14). In all examples, we adopt a linear quality
function g(z) = g(0) − z and a quadratic data adjustment cost: Ψ(∆Ωi,t+1) = ψ(∆Ωi,t+1)2, where ψ is a constant
parameter and ∆ represents the percentage change: ∆Ωi,t+1 = (Ωi,t+1 − Ωi,t)/Ωi,t.

4.1 Diminishing Returns and Zero Long Run Growth

Just like we typically teach the Solow (1956) model by examining the inflows and outflows of

capital, we can gain insight into our data economy growth model by exploring the inflows and

outflows of data. Consider an economy with firms that are symmetric in size, in data and in

choice variables. Fora representative firm in this economy, we define the additions to the data

stock that are generated by time-t economic activity to be inflows and define the total losses due

to depreciation as outflows.

Inflows: Ω+
t = σ−2ε

∫
i
zik

α
i,tdi+ σ−2a (13)

Outflows: Ω−t = Ωt + σ−2a −
∫
i

[
(ρ2(Ωi,t + σ−2a ))−1 + σ2θ

]−1
di. (14)

This is equivalent to the outflow and inflow for a representative firm i who operates in an economy

populated with identical firms with no data trade.6

Figure 3 illustrates the inflows and outflows (eq.s 13 and 14), in a form that looks just like the

traditional Solow model with capital accumulation. What we see on the left is the large distance

between inflows and outflows of data, when data is scarce. This is a period of fast data accumulation

6In an equilibrium where data is traded and ι < 1, this would create an additional term in inflows that represents
the net additions to the data stock from non-rivalry of traded data. Adding such data creation complicates the
expressions and does not change any of the results in this section.
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Figure 4: Aggregate growth dynamics: Data accumulation grows knowledge and output over time,
with diminishing returns. Parameters: ρ = 1, r = 0.2, β = 0.97, α = 0.3, ψ = 0.4, γ = 0.1, A = 1, P = 1, σ2

a =
0.05, σ2

θ = 0.5, σ2
ε = 0.1, z = 5, ι = 1 . See Appendix A.15 for parameter selection and numerical solution details.

and fast growth in the quality and value of goods. What we see on the right is the distance between

inflows and outflows diminishing, which represents growth slowing. Eventually, inflows and outflows

cross at the steady state. If the stock of knowledge ever reached its steady state level, it would no

longer change, as inflows and outflows just balance each other. Likewise, quality and GDP would

stop growing.

What diminishing returns means for a data-accumulation economy is that, over time, the aggre-

gate stock of knowledge and aggregate amount of output would have a time path that resembles the

concave path in Figure 4. Without idea creation, data accumulation alone would generate slower

and slower growth. Figure 1 differs from Figure 3 because it represents a single firm’s transition,

not the transition of a whole economy of symmetric firms, growing together. The difference between

the two is the equilibrium price effect of goods prices and data prices.

Conceptually, diminishing returns arise because we model data as information, not as an ad-

dition to productivity. Information has diminishing returns because its ability to reduce variance

gets smaller and smaller as beliefs become more precise. Forecast errors can, at best, be zero and

typically cannot even reach zero.

Long Run Growth Impossibility Results Is there some other model, without innovation,

where forecast data accumulation can sustain growth? For sustained growth to be possible, two

things must both be true: 1) Perfect one-period-ahead foresight implies infinite real output; and
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2) the future is a deterministic function of today’s observable data.7 Both conditions are at odds

with most theories.

In our economy, expected aggregate output is
∫
i E[Ai,t]k

α
i,tdi. From the capital first order con-

dition, we know that capital choice ki,t will be finite, as long as expected quality E[Ai,t] is finite.

Thus, the question of whether growth can be sustained becomes a question of whether E[Ai,t] can

become infinite in the limit, for any firm i, as all firms accumulate more and more data.

Definition 1 (Sustainable Growth) Let Yt =
∫
i E[Ai,t]k

α
i,tdi, such that ln(Yt+1) − ln(Yt) is the

aggregate growth rate of expected output. A data economy can sustain a minimum growth rate g > 0

if ∃ T such that in each period t > T , ln(Yt+1)− ln(Yt) > g.

Proposition 4 To Sustain Growth, Forecasts Must Enable Infinite Output Sustainable

growth in our data economy requires that there exists a v such that as v → v the quality function

approaches infinity g(v)→∞.

Mathematically, this result is simple. If expected quality (g) does not approach infinity in the

high-data limit, then output cannot become infinite. If output cannot be infinite, then it cannot

grow at any rate g > 0 forever.

However, this simple idea is economically significant for two reasons. First, there are many

models with perfect foresight. None generate infinite real economic value. Second, if society as a

whole knows tomorrow’s state, they can simply produce today what they would otherwise be able to

produce tomorrow. Thus, imposing finite real output at zero forecast error is a sensible assumption.

But this common-sense assumption then leads to the conclusion that data has diminishing returns.

For the next result, we first formalize the notion of learnable. Recall that ζi,t is the set of all

signals that nature draws for firm i. These are all potentially observable signals. Not all will be

observed. Define Ξt to be the Borel σ-algebra generated by {ζi,t ∪ Ii,t}∞i=1. This is the set of all

variables that can be perfectly predicted with some combination of prior information Ii,t and time-t

observable data.

Definition 2 (Fundamental Randomness) A variable v has time-t fundamental randomness if

v 6 ∈ Ξt.

7It is also true that inflow concavity comes from capital having diminishing returns. The exponent in the production
function is α < 1. But that is a separate force. Even if capital did not have diminishing marginal returns, inflows
would still exhibit concavity.
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Fundamental randomness means future events that are not deterministic functions of observable

events today. If they are not deterministic functions of something that can be observed today, then

no signal can perfectly predict these future events. In other words, fundamentally random variables

are not perfectly learnable. In our model, fundamental randomness or unlearnable risk is present

when σ2a > 0.

Proposition 5 Data-Driven Growth Implies No Fundamental Randomness Suppose

the quality function g is finite almost everywhere, except g(0) → ∞. Sustainable growth requires

that productivity-relevant variables (θt and εa,i,t) have no time-(t− 1) fundamental randomness.

The condition that g is finite-valued, except at zero, simply rules out the possibility that firms

that have imperfect forecasts and still make mistakes can still achieve perfect, infinite quality.

But this formulation allows what Proposition 4 does not. It says, even if you believe perfect one-

period-ahead forecasts can produce infinite output, you still get diminishing returns because of the

existence of fundamental, unlearnable randomness.

Thus, if one believes some events tomorrow are fundamentally random, data must have dimin-

ishing returns. Conversely, even if one believes that nothing is truly random, but they believe that

with one-period ahead knowledge, an economy can only produce the finite amount today that they

would otherwise produce tomorrow, then data must also have diminishing returns.

4.2 General Equilibrium Effects

The difference between one firm entering when all other firms are in steady state (Proposition 1),

and all firms growing together (Propositions 4 and 5), is prices. When all firms are data-poor,

all goods are low quality. Since quality units are scarce, prices are high. The high price of goods

induces these firms to produce goods, creating data. When the single firm enters, others are already

data-rich. Quality goods are abundant, so prices are low. This makes it costlier and slower for the

single firm to grow. What works in the opposite direction in the one-firm problem is that data may

also be abundant, keeping the price of data low.
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4.3 Endogenous Growth

If data (or capital) is used for research and development, the constant addition to the stock of new

ideas can sustain growth. This extension transforms our data economy version of Solow (1956),

into a data-driven endogenous growth model. Of course, for this formulation to make sense, one

needs to believe that information about who buys what can be used to discover growth-sustaining

technologies. If that is true, then this augmented version of the model would be more useful for

long-term economic forecasts.

Instead of Equation (2), assume the evolution of quality follows

Ai,t = Ai,t−1 + max{0,∆Ai,t} with ∆Ai,t = Ā− (ai,t − θt − εa,i,t)2. (15)

The solution inherits the same structure as before: the expected change in quality of firm i’s good

at time t is E[∆Ai,t|Ii,t] = Ā − Ω−1i,t − σ2a. The interpretation is that more data allows for more

precisely targeted innovations, which increase the size of the technology advance. Depending on Ā,

data might make innovation viable (∆Ai,t positive).

This extension teaches us that data used for research should be measured separately from data

used for other purposes, just like economists typically do for capital expenditures.

5 Welfare and Data Externalities

Discussions of data regulation abound. Optimal policy depends on what aspects of a data economy

are efficient or inefficient. Our framework can be used for welfare analysis, but lacks an important

consideration: Data is not always used for a socially productive purpose. Firms can use data to

steal customers away from other firms. This section models the household side of the economy and

then adds a business stealing externality, to examine the welfare properties of a data economy.

5.1 A Micro-founded Model for Welfare Analysis

Consider an economy with two goods: a numeraire good, mt, that will be produced using labor lt,

and a retail good ct, that is produced using capital and data. Let Pt denote the price of the retail

good in terms of the numeraire.
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Households There is a continuum of homogeneous infinitely lived households, with quasi-linear

preferences over consumption of the retail good ct and the numeraire good mt. The representative

household’s optimization problem is

max
ct,mt

+∞∑
t=0

u(ct) +mt

(1 + r)t
(16)

s.t. Ptct +mt = Φt ∀t

Households have CRRA utility for retail good consumption: u(ct) = P̄
c1−γt
1−γ . The household bud-

get constraint equates the expenditure on the two consumption goods to household income, which

is aggregate firm profits Φt. Since aggregate output is non-random, as argued earlier, aggregate

profits and the household’s optimization problem are also not random in each period t.

Retail Good Production The producers of the retail goods live forever. They use capital,

rented at a constant exogenous cost r, trade data, and produce the retail good using their capital

and data. There are two types of retail firms. They are identical, except for their, zi, the efficiency

with which they convert produced units into data. We consider a measure λ of low data-productivity

firms with zi = zL , and a measure (1 − λ) of high data-productivity firms with zi = zH , where

zL < zH .

Profit is revenue minus adjustment costs, minus data costs (if δ > 0) or plus revenue from data

sales (if δ < 0), minus the cost of capital, Φit := PtAi,tk
α
i,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t. The profit

the households get is the aggregate firm profit,

Φt =

∫
Φitdi = Pt

∫
i
Ai,tk

α
i,tdi−

∫
i
Ψ(∆Ωi,t+1)di− r

∫
i
ki,tdi,

Firms maximize the expected present discounted value of their profit:

max
{ki,t,δi,t}∞t=0

V (Ωi,0) =

+∞∑
t=0

1

(1 + r)t
(
PtE[Ai,t|Ii,t]kαi,t −Ψ(∆Ωi,t+1)− πδi,t − rki,t

)
. (17)

Data governs the expected quality of goods, E[Ai,t], described by Equations (5) and (8). Law

of motion for data is expressed in Equation (9).
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The retail sector represents an industry where consumption and data are industry-specific, but

capital is rented from an inter-industry market, at rate r, paid in units of numeraire.8

Market Clearing conditions are also the resource constraints in the planner problem:

Retail good : ct = λAL,tk
α
L,t + (1− λ)AH,tk

α
H,t,

Numeraire good : mt + r (λkL,t + (1− λ)kH,t) +
(
λΨ(∆ΩL,t+1) + (1− λ)Ψ(∆ΩH,t+1)

)
= 0

Data : λδL,t + (1− λ)δH,t = 0.

Equilibrium An equilibrium is household choices of ct and mt that maximize (16), firm choices

of capital ki,t and data δi,t that maximize (17) and prices Pt and πt that clear markets. In addition,

we restrict our attention to economies with λ, zH and zL such that there exists a symmetric, pure-

strategy equilibrium, where all firms of the same type make the same choices; if zi = zj , then

δi,t = δj,t and ki,t = kj,t ∀t.

These assumptions deliver the same inverse demand as in (7). But these foundations allow us to

compare the decentralized equilibrium and optimal social planner outcomes, to see if inefficiencies

arise.

Proposition 6 Welfare The steady state allocation is socially efficient.

Equilibrium capital investment and data production are efficient because there are no exter-

nalities. The constraint, that data may only be produced through the production of goods, is a

constraint that is faced both by the planner and the firm. Prices of goods and data reflect their

marginal social value. This aligns the private and social incentives for production.

5.2 Data for Business Stealing

Policy analysis needs to consider potential data externalities. For example, when data can be used

for marketing or other forms of business stealing, firms’ use of data harms others. Privacy costs

8Equivalently, we can interpret this as a small, open economy where capital and numeraire goods are tradeable
and retail goods are non-tradeable. The world rental rate of capital is r. This simplification puts the focus on data.
An endogenously determined rental rate of capital would increase when firms are more productive. This would create
a wealth effect for capital owners. These equilibrium effects are well-studied in previous frameworks, but are not
related to economics of data.
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can also take the form of a non-pecuniary externality. In the presence of such an externality, firms’

choices will obviously be socially inefficient. By incorporating such an externality in a tractable

way, our framework can be made more relevant for welfare estimation and policy analysis.

Using data for business stealing can be represented through a quality externality:

Ai,t = Ā−
[(
ai,t − θt − εa,i,t

)2 − b∫ 1

j=0

(
aj,t − θt − εa,j,t

)2
dj
]

for b ∈ [0, 1] (18)

Notice that the business stealing externality does not change firms’ choices because it does not

enter in a firm’s first order condition.9 Therefore, it does not change data inflows, outflows, data

sales or capital choices, at a given set of prices. However, it does influence the aggregate quality of

goods.

The baseline model is represented by b = 0. In this case, equations (18) and (2) are identical

and there is no externality.

Alternatively, if b > 0, a firm’s quality depends on the difference between the precision of its

own prediction and the average precision of the predictions of all other firms. In other words,

each firm achieves maximum quality when other firms have minimum quality. This captures the

idea that when one firm uses data to market effectively, it reduces the ability of all other firms to

generate value by reaching their preferred customers.

The extreme case where data does not have any social value is b = 1. The aggregate losses

from business stealing entirely cancel out the productivity gains from data:
∫
Ai,tdi = Ā. Moving

b between 0 and 1 regulates the extent to which data enhances welfare.

Proposition 7 Welfare with Business Stealing If b > 0, there is over-investment in the

steady state level of capital and excessive trade in the data market in equilibrium.

Proposition 7 incorporates two distinct inefficiencies: excessive production and excessive data

trade. While firms internalize the benefits of additional data from high production and additional

revenue from data sales, they neglect the external effect: Higher data production and sales reduces

9To see why this is the case, note that firm i’s actions have a negligible effect on the average productivity term∫ 1

j=0

(
aj,t − θt − εa,j,t

)2
dj. So the derivative of that new externality term with respect to i’s choice variables is zero.

If the term is zero in the first order condition, it means it has no effect on choices of the firm. This formulation of
the externality is inspired by Morris and Shin (2002).
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the quality of other firms’ goods. Thus, in equilibrium, too much output is produced and too much

data is traded.

The idea that firms sell too much data might appear counter-factual, since social networks and

search engines do not primarily sell data directly. Instead, they use their data primarily to sell

data services to their business customers. For example, Facebook revenue comes primarily from

advertising, which is a data service. However, sales of data services is a type of data sales. A formal

analysis of the equivalence between data services and data sales is in Admati and Pfleiderer (1990).

6 Conclusions

The economics of transactions data bears some resemblance to technology and some to capital. It

is not identical to either. Data has the diminishing returns of capital, in the long run. But it has

the increasing returns of ideas and technologies, early in the transition path to steady state. Thus,

while the accumulation and analysis of data may be the hallmark of the “new economy,” this new

economy has many economic forces at work that are old and familiar.

We conclude with future research possibilities that our framework could enable.

Firm size dispersion. One of the biggest questions in macroeconomics and industrial organiza-

tion is: What is the source of the bifurcation in firm size? One possible source is the accumulation

of data. The S-shaped dynamic of firm growth implies that firms stay small for a while and then

grow large rapidly. During the convex, increasing returns portion of the growth trajectory, small

initial differences in the initial data stock of firms get amplified into large differences in firm size.

Firm competition. Instead of assuming price taking behavior, one could model a finite number

of firms that consider the price impact of their production decisions. In a static setting, the degree

of imperfect competition modulates firms’ use of data and firms’ data affect the extent to which

they compete (Eeckhout and Veldkamp, 2022). Working this out in a dynamic, recursive setting

like this one, could give us insights about how data changes firms’ dynamic competitive strategies.

Investing in data-savviness. The fixed data productivity parameter zi represents the idea that

certain industries will spin off more data than others. Credit card companies learn more than

barber shops. We could allow a firm to do more to collect, structure and analyze the data that

its transactions produce. It could choose its data-savviness zi, at a cost. Endogenizing this choice
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could imply changes in the cross-section of firms’ data, over time.

Data and product portfolio choice. We examined a model about how much data a firm produces

and accumulates. Just as important a question is what type of data that is. In the unknown state

is a vector, then different goods can be informative about different risks. In such a world, firms

could invest in a portfolio of products to diversify and learn some about each or could specialize

to become expert in producing one good with high quality. The choices, in turn, would shape the

forces of market competition.

Optimal data policy. A benevolent government might adopt a data policy to promote the growth

of small and mid-size firms. The policy solution to increasing return-growth traps is typically a form

of big push investment. In the context of data investment, the government could collect data itself,

from taxes or reporting requirements, and share it with firms. For example, China shares data

with some firms, in a way that seems to facilitate their growth (Beraja et al., 2020). Alternatively,

the government might facilitate data sharing or act to prevent data from being exported to foreign

firms.

This simple framework enables research on many data-related phenomena. It can be a founda-

tion for thinking about many more.
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of Big Data on Firm Performance: An Empirical Investigation,” Working Paper 24334, National

Bureau of Economic Research February 2018.

Beraja, Martin, David Y. Yang, and Noam Yuchtman, “Data-intensive Innovation and the

State: Evidence from AI Firms in China,” 2020. MIT Working Paper.
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A Appendix

A.1 Proof of Lemma 1: Belief Updating

The information problem of firm i about its optimal technique θi,t can be expressed as a Kalman filtering system, with
a 2-by-1 observation equation. We start by describing the Kalman system, and show that the sequence of conditional
variances is deterministic. Note that all the variables are firm specific, but since the information problem is solved
firm-by-firm, for brevity we suppress the dependence on firm index i.

At time, t, the firm takes as given its last-period beliefs, µ̂t−1 = E
[
θt | Ii,t−1

]
and Ωt−1 = V ar

[
θt | Ii,t−1

]−1
.

At the end of date t, each firm observes a signal derived from observing their own output. Date t output reveals
good quality Ai,t = yi,t/k

α
i,t. Since the g function is known, it can be inverted. Thus, quality Ai,t reveals g−1(Ai,t),

which is (ai,t− θt− εa,i,t)2. The action ai,t is known to agent i. For the purposes of information content, this is like a
constant that can be removed. That leaves a square of the sum of two unknown variables θt and εa,i,t. The square has
two roots, a positive and a negative one. Each root corresponds to a normal signal. That makes the signal inferred
from quality a mixture of normals. None of the results that follow depend on the nature of the information revealed
by output, as long as seeing one’s output does not fully reveal θt. However, updating with mixtures of normals is not
analytically tractable. Therefore, we use an approximation to solve the model. We replace the mixture normal signal
with a normal signal that has its mean and variance adjusted to be equal to the mean and variance of the mixture
variable. The variance of the mixture variable is what we call σ2

a. It is the variance of the two underlying normal
σ2
A, plus a non-negative term that captures the dispersion in the means. In many cases, prior beliefs will put a large

probability weight on either the positive or the negative root. In such cases, then this adjustment term will be small
and σ2

a ≈ σ2
A.

In short, at the end of date t, every firm receives a noisy signal about θt, derived from observed output. That
signal is approximated by

sai,t−1 = θt−1 + εa,t−1, (19)

where εa,i,t ∼ N (0, σ2
a).

Belief updating. We update the state variable sequentially, using the two signals. First, combine the priors with
sai,t−1:

E
[
θt | It−1, s

a
i,t−1

]
=

Ωt−1µ̂t−1 + σ−2
a sai,t−1

Ωt−1 + σ−2
a

V
[
θt | It−1, s

a
i,t−1

]
=
[
Ωt−1 + σ−2

a

]−1

Next, use the law of motion θt+1 = θ̄ + ρ(θt − θ̄) + ηt+1 and take the expectation on both sides of the equation
to get: E

[
θt | It−1, s

a
i,t−1

]
= θ̄ + ρ ·

(
E
[
θt−1 | It−1, s

a
i,t−1

]
− θ̄
)
. If we take the variance of both sides of the equation,

we get V
[
θt | It−1, s

a
i,t−1

]
= ρ2

[
Ωt−1 + σ−2

a

]−1
+ σ2

θ .
The other type of signal the firm observes is data points. These are different from the sa signal because they are

about next period’s state θt+1. Here, we introduce a new piece of notation: the number of new data points added to
the firm’s data set. ωi,t. For firms that do not trade data, this is ωi,t = ni,t = zkαi,t. More generally, for all firms, the
number of new data points depends on the amount of data traded:

ωi,t := ni,t + δi,t(1δi,t>0 + ι1δi,t<0).

The set of signals {st,m}m∈[1:ωi,t] are informationally equivalent to a single average signal s̄t such that s̄t = θt+1 +εs,t,

where εs,t ∼ N (0, σ2
ε/ωit).

Then, the final step is to use the mean and variance above as prior beliefs and use Bayes law to update them
with the average signal s̄t:

µ̂t = E
[
θt | It

]
=

[
ρ2
[
Ωt−1 + σ−2

a

]−1
+ σ2

θ

]−1

· E
[
θt | It−1, s

a
i,t−1

]
+ ωtσ

−2
ε s̄t[

ρ2
[
Ωt−1 + σ−2

a

]−1
+ σ2

θ

]−1

+ ωtσ
−2
ε

(20)

Ω−1
t = V ar

[
θt | It

]
=
{[
ρ2[Ωt−1 + σ−2

a

]−1
+ σ2

θ

]−1

+ ωtσ
−2
ε

}−1

. (21)

Equations (20) and (21) constitute the Kalman filter describing the firm dynamic information problem. Impor-
tantly, note that Ωt is deterministic.
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A.2 Proof of Lemma 2: Making the Problem Recursive

Lemma. The sequence problem of the firm can be solved as a non-stochastic recursive problem with one state variable.
Consider the firm sequential problem:

max

∞∑
t=0

(
1

1 + r

)t
E [PtAtk

α
t −Ψ(∆Ωi,t+1)− πtδi,t − rkt|Ii,t]

We can take a first order condition with respect to at and get that at any date t and for any level of kt, the optimal
choice of technique is

a∗t = E[θt|It].

Given the choice of at’s, using the law of iterated expectations, we have:

E[(at − θt − εa,t)2|Is] = E[V ar[θt + εa,t|It]|Is] = E[V ar[θt|It]|Is] + σ2
a,

for any date s ≤ t. We will show that this object is not stochastic and therefore is the same for any information set
that does not contain the realization of θt.

We can restate the sequence problem recursively. Let us define the value function as:

V ({st,m}m∈[1:ωt], yt−1, µ̂t−1,Ωt−1) =

max
kt,at

E
[
PtAtk

α
t −Ψ(∆Ωi,t+1)− πtδi,t − rkt +

(
1

1 + r

)
V ({st+1,m}m∈[1:ωt+1], yt, µ̂t,Ωt)|Ii,t

]
with ωi,t being the net amount of data being added to the data stock. Taking a first order condition with respect
to the technique choice conditional on It reveals that the optimal technique is a∗t = E[θt|It]. We can substitute the
optimal choice of at into At and rewrite the value function as

V ({st,m}m∈[1:ωt], yt−1, µ̂t−1,Ωt−1) = max
kt

E
[
Ptg
(
(E[θt|Ii,t]− θt − εa,t)2)kαt −Ψ(∆Ωi,t+1)− πtδi,t − rkt

+

(
1

1 + r

)
V ({st+1,m}m∈[1:ωt+1], yt, µ̂t,Ωt)|Ii,t

]
.

Note that εa,t is orthogonal to all other signals and shocks and has a zero mean. Thus,

E
[
(E[θt|It]− θt − εa,t)2

]
= E

[
(E[θt|Ii,t]− θt)2

]
+ σ2

a = Ω−1
i,t + σ2

a

E[(E[θt|It] − θt)
2|Ii,t] is the time-t conditional (posterior) variance of θt, and the posterior variance of beliefs is

E[(E[θt|It] − θt)2] := Ω−1
t . Expected productivity determines the within period expected payoff, which using Equa-

tion (8) depends on posterior variance. The posterior variance Ω−1
t is given by the Kalman system Equation (21),

which depends only on Ωt−1, nt, and other known parameters. It does not depend on the realization of the data.
Thus, {st,m}m∈[1:ωt], yt−1, µ̂t do not appear on the right side of the value function equation; they are only relevant
for determining the optimal action at. Therefore, we can rewrite the value function as:

V (Ωt) = max
kt

PtE[Ai,t|Ii,t]kαt −Ψ(∆Ωi,t+1)− πtδi,t − rkt +

(
1

1 + r

)
V (Ωt+1)

]
Next, we do a change of variables and optimize not over the amount of data purchased or sold δi,t, but rather

the closely related, net change in the data stock ωi,t. We also substitute in ni,t = zik
α
i,t and substitute in the optimal

choice of technique ai,t. The problem becomes

V (Ωi,t) = max
ki,t,ωi,t

Ptg
(
Ā− Ω−1

i,t − σ
2
a

)
kαi,t − π

(
ωi,t − zikαi,t

1ωi,t>ni,t + ι1ωi,t<ni,t

)
− rki,t

−Ψ (∆Ωi,t+1) +

(
1

1 + r

)
V (Ωi,t+1) (22)

where Ωi,t+1 =
[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1
+ ωi,tσ

−2
ε (23)

Since
∂Ωi,t,t+1

∂ωi,t
= σ−2

ε , the first order condition for the optimal ωi,t is

FOC[ωi,t] : −Ψ′(·)σ−2
ε − π̃ +

(
1

1 + r

)
V ′(Ωi,t+1)σ−2

ε = 0 (24)
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where π̃ ≡ π/(1ωi,t>ni,t + ι1ωi,t<ni,t) is the price of data, adjusted for non-rivalry. It is lower for data sales since less
data is lost per unit of data sold.

A.3 Lemma 3, 4, 5: Linearity of Data Depreciation

One property of the model that comes up in a few different places is that the depreciation of knowledge (outflows)
is approximately a linear function of the stock of knowledge Ωi,t. There are a few different ways to establish this
approximation formally. The three results that follow show that the approximation error from a linear function is
small i) when the stock of knowledge is small; ii) when the state is not very volatile; and iii) when the stock of
knowledge is large.

Lemma 3 Linear Data Outflow with Low Knowledge ∃ε > 0 such that ∀Ωi,t ∈ Bε(0), data outflow is approx-

imately linear and the approximation error is bounded from above by
ρ4σ2

θ

1+ρ2σ2
θ
σ−2
a

ε2

1+ρ2σ2
θ
(ε+σ−2

a )
. The approximation

error is small when ρ or σθ is small, or when Ωi,t is very close to 0.

Proof:
Recall that data outflows are dΩ−i,t = Ωi,t+σ

−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. Let g(Ωi,t) ≡

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1

be the nonlinear part of data outflows. Its first order Taylor expansion around 0 is g(Ωi,t) = g(0)+g′(0)Ωi,t+o(Ωi,t),

with g′(0) = ρ2

(1+ρ2σ2
θ
σ−2
a )2

. Thus
∂dΩ−i,t
∂Ωi,t

= 1 − g′(Ωi,t) ≈ 1 − g′(0) for Ωi,t in a small open ball Bε(0), ε > 0, around

0. And the approximation error is |o(Ωi,t)| =
ρ4σ2

θΩ2
i,t

(1+ρ2σ2
θ
σ−2
a )[1+ρ2σ2

θ
(Ωi,t+σ

−2
a )]

, which increases with Ωi,t and thus is

bounded from above by error term evaluated at ε, that is
ρ4σ2

θ

1+ρ2σ2
θ
σ−2
a

ε2

1+ρ2σ2
θ
(ε+σ−2

a )
.

Lemma 4 Linear Data Outflow with Small State Innovations ∃εσ > 0 such that ∀σθ ∈ Bεσ (0), data outflows

are approximately linear and the approximation error is bounded from above by
ρ4 ε̄2(Ωi,t+σ

−2
a )2

1+ρ2ε2σ(Ωi,t+σ
−2
a )

. The approximation

error is small when ρ is small, or when σθ is close to 0.

Proof:
Recall that data outflows are dΩ−i,t = Ωi,t + σ−2

a −
[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. The non-linear term g(Ωi,t) =

[(ρ2(Ωi,t+σ
−2
a ))−1 +σ2

θ ]−1 is linear when σθ = 0. Therefore, ∃εσ > 0 such that ∀σθ ∈ Bεσ (0), g(Ωi,t) is approximately
linear. The approximation error |g(Ωi,t) − ρ2(Ωi,t + σ−2

a )| is increasing with εσ and reaches its maximum value at

σθ = εσ, with value
ρ4ε2σ(Ωi,t+σ

−2
a )2

1+ρ2 ε̄2(Ωi,t+σ
−2
a )

.

Lemma 5 Linear Data Outflow with Abundant Knowledge When Ωi,t � σ−2
θ , discounted data stock is very

small relative to Ωi,t, so that data outflows are approximately linear. The approximation error is small when ρ is
small or when σθ is sufficiently large.

Proof:
Recall that data outflows are dΩ−i,t = Ωi,t+σ

−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. Let g(Ωi,t) ≡

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1

be the nonlinear part of data outflows. Since (ρ2(Ωi,t + σ−2
a ))−1 ≥ 0, we have g(Ωi,t) ≤ σ−2

θ . Since Ωi,t ≥ 0,
we have g(Ωi,t) ≥ (ρ−2σ2

a + σ2
θ)−1. That is g(Ωi,t) ∈ [(ρ−2σ2

a + σ2
θ)−1, σ−2

θ ]. For high levels of Ωi,t, Ωi,t �
σ−2
θ generally holds. And for low levels of Ωi,t, it holds when σθ is very large. The approximation error is

|σ−2
θ −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1 | and decreases with Ωi,t, reaching its minimum at Ωi,t = 0 with a value of
ρ2

(1+ρ2σ2
θ
σ−2
a )2

.

A.4 Deterministic Aggregate Output.

Why is there no expectation operator around aggregate output, profits or prices? Φt is not random at date t because
aggregate quality

∫
Ai,tdi converges to a non-random value, even though each Ai,t for each firm i is a random variable.

The reason is that the random shocks to Ai,t’s are independent and converge, by the central limit theorem.
Recall that quality is Ai,t = g((ait − θt − εa,i,t)2). The εa shocks are obviously idiosyncratic and independent.

That is not a cause for concern so we set those aside. However, one might think that shocks to θt would cause Ai,t to
covary across firms and create aggregate shocks to quality and output. The reason this does not happen is that the
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action choice ait is firm i’s conditional expectation of θt. So, ait − θt is a forecast error. The forecast errors are what
are independent. What ensures this is the noisy prior assumption made in the model setup. When the prior is noisy,
beliefs about θt are the true θt, plus idiosyncratic signal noise. Thus, forecast errors are idiosyncratic, or independent.
Since any function of an independent random variable or variables is independent, Ai,t = g((ait − θt − εa,i,t)2) is
independent across firms. Since the random component of Ai,t is independent, its integral over an infinite number of
firms, its mean, converges to a constant, by the central limit theorem.

Since we have a continuum of firms, then for any finite types of firms, like the H and L firms later, the quality
of each type of firm also has independent noise. Therefore, the type-specific quality averages AL,t and AH,t, that we
make use of later, will also be non-random variables.

A.5 Proof of Proposition 1: S-shaped Accumulation of Knowledge

We proceed in two parts: convexity and then concavity.

Part a. Convexity at low levels of Ωt. In this part, we first calculate the derivatives of data infow and outflow
with respect to Ωi,t, combine them to form the derivative of data net flow, and then show that it is positive in given
parameter regions for Ωi,t < Ω̂.

Since all other firms, besides firm i are in steady state, we take the prices πt and Pt as given. Since data is
sufficiently expensive, data purchases are small. We prove this for zero data trade. By continuity, the result holds
for small amounts of traded data.

Recall that data inflow is dΩ+
i,t = zi,tk

α
i,tσ
−2
ε and its first derivative is

∂dΩ+
i,t

∂Ωi,t
= αzi,tk

α−1
i,t σ−2

ε
∂ki,t
∂Ωi,t

. We then need

to find
∂ki,t
∂Ωi,t

.

Since we assumed that Ψ is small, consider the case where ψ = 0. In this case, the data adjustment term drops
out and the capital first-order condition reduces to

k1−α
i,t =

α

r

(
PtAi,t + ziσ

−2
ε

1

1 + r
V ′(Ωi,t+1)

)
. (25)

Differentiating with respect to Ωi,t on both sides yields

∂k1−α
i,t

∂Ωi,t
=
∂k1−α

i,t

∂ki,t
· ∂ki,t
∂Ωi,t

= (1− α)k−αi,t ·
∂ki,t
∂Ωi,t

Differentiating (25) with respect to Ωi,t and using the relationships
∂Ai,t
∂Ωi,t

= Ωi,t
−2 and

∂Ωi,t+1

∂Ωi,t
= ρ2[ρ2 + σ2

θ(Ωi,t +

σ−2
a )]−2, yields

∂ki,t
∂Ωi,t

= kαi,t
α

(1− α)r

(
PtΩi,t

−2 + ziσ
−2
ε

1

1 + r
V ′′(Ωi,t+1)ρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2

)
.

Therefore,

∂dΩ+
i,t

∂Ωi,t
= zi,tk

2α−1
i,t σ−2

ε
α2

(1− α)r

(
PtΩi,t

−2 + ziσ
−2
ε

1

1 + r
V ′′(Ωi,t+1)ρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2

)
= zi,tk

2α−1
i,t σ−2

ε
α2

(1− α)r
PtΩi,t

−2 + z2
i,tk

2α−1
i,t σ−4

ε
α2

1− α
1

r(1 + r)
V ′′(Ωi,t+1)ρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2.

(26)

Next, take the derivative of data outflow dΩ−i,t = Ωi,t + σ−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
with respect to Ωi,t:

∂dΩ−i,t
∂Ωi,t

= 1− 1

ρ2(Ωi,t + σ−2
a )2(σ2

θ + ρ−2(Ωi,t + σ−2
a )−1)2

. (27)

The derivatives of net data flow is then

∂dΩ+
i,t

∂Ωi,t
−
∂dΩ−i,t
∂Ωi,t

= zi,tk
2α−1
i,t σ−2

ε
α2

(1− α)r
PtΩi,t

−2 + z2
i,tk

2α−1
i,t σ−4

ε
α2

1− α
1

r(1 + r)
V ′′(Ωi,t+1)ρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2

+
1

ρ2(Ωi,t + σ−2
a )2(σ2

θ + ρ−2(Ωi,t + σ−2
a )−1)2

− 1. (28)
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For notational convenience, denote the first term in (28) as M1 = zi,tk
2α−1
i,t σ−2

ε
α2

(1−α)r
PtΩi,t

−2 > 0, the sec-

ond term as M2 = z2
i,tk

2α−1
i,t σ−4

ε
α2

1−α
1

r(1+r)
V ′′(Ωi,t+1)ρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2 ≤ 0 and the third term as M3 =

1

ρ2(Ωi,t+σ
−2
a )2(σ2

θ
+ρ−2(Ωi,t+σ

−2
a )−1)2

> 0. Notice that M3 − 1 < 0 always holds, and thus M2 + M3 − 1 < 0.

∂dΩ+
i,t

∂Ωi,t
−

∂dΩ−i,t
∂Ωi,t

> 0 only holds when Pt is sufficiently large so that M1 dominates. Pt is sufficiently large when

P̄ is sufficiently large.
Assume that V ′′ ∈ [ν, 0). Let h(Ωi,t) ≡M1(P̄ ) +M2(ν). Then

h′(Ωi,t) = (2α− 1)zi,tk
3α−2
i,t α

(
α

r(1− α)

)2

σ−2
ε

[
P̄Ωi,t

−2 + zi,tσ
−2
ε

1

1 + r
νρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2

]2

+zi,tk
2α−1
i,t

α2

(1− α)r
σ−2
ε

[
−2P̄Ω−3

i,t − zi,tσ
−2
ε

1

1 + r
νρ2 2σ2

θ

(ρ2 + σ2
θ(Ωi,t + σ−2

a ))3

]
.

The first term is positive when α > 1
2
, and negative when α < 1

2
. And the second term is positive when P̄ < f(Ωi,t),

and negative when P̄ > f(Ωi,t). To see this, note that

zitk
2α−1
it

α2

(1− α)r
σ−2
ε

[
−2P̄Ω−3

it − zitσ
−2
ε

1

1 + r
νρ2 2σ2

θ(
ρ2 + σ2

θ

(
Ωit + σ−2

a

))3
]

> 0 (29)

if and only if P̄ < f(Ωi,t), where

f(Ωi,t) := −zitσ−2
ε

1
1+r

νρ2Ω3
it

σ2
θ

(ρ2+σ2
θ(Ωit+σ

−2
a ))

3 (30)

Notice by inspection that f ′(Ωi,t) < 0.
Let Ω̂ be the first root of

h(Ωi,t) = 1−M3, (31)

then if α < 1
2
, when Ωi,t < Ω̂ and P̄ > f(Ω̂), we have that h(Ωi,t) is decreasing in Ωi,t and h(Ω) ≥ 1 −M3. Since

ν ≤ V ′′, we then have M1 +M2 ≥ 1−M3, that is
∂dΩ+

i,t

∂Ωi,t
−

∂dΩ−i,t
∂Ωi,t

> 0. By the same token, if α > 1
2

and P̄ < f(Ωi,t),

then
∂dΩ+

i,t

∂Ωi,t
−

∂dΩ−i,t
∂Ωi,t

< 0.

Part b. Concavity at high levels of Ωt. In this part, we first calculate limit of the derivatives of net data flow
with respect to Ωi,t is negative when Ωi,t goes to infinity and then prove that when Ωi,t is large enough,

∂dΩi,t
∂Ωi,t

is

negative.

For ρ ≤ 1 and σ2
θ ≥ 0, data outflows are bounded below by zero. But note that outflows are not bounded

above. As the stock of knowledge Ωi,t → ∞, outflows are of O(Ωi,t) and approach infinity. We have that
∂dΩ−i,t
∂Ωi,t

=

1− 1

ρ2(Ωi,t+σ
−2
a )2(σ2

θ
+ρ−2(Ωi,t+σ

−2
a )−1)2

. It is easy to see that limΩi,t→∞
∂dΩ−i,t
∂Ωi,t

= 1.

For the derivative of data inflow (26), note that
∂dΩ+

i,t

∂Ωi,t
≤ zi,tk

2α−1
i,t σ−2

ε
α2

(1−α)r
PtΩi,t

−2 because 0 < α < 1 and

V ′′ < 0. Thus limΩi,t→∞
∂dΩ+

i,t

∂Ωi,t
≤ 0.

Therefore, limΩi,t→∞
∂dΩi,t+

∂Ωi,t
− ∂dΩi,t−

∂Ωi,t
≤ −1. Since data outflows and inflows are continuously differentiable,

∃ ˆ̂
Ω > 0 such that ∀Ωi,t > ˆ̂

Ω, we have
∂dΩi,t+

∂Ωi,t
− ∂dΩi,t−

∂Ωi,t
< 0, which is the decreasing returns to data when data is

abundant.

A.6 Proof of Proposition 2: New Firms Earn Negative Profits

Without any production or any data purchased, Ω0 = σ−2
θ , because this is the prior variance of the state θ. This is

the case when the firm is entering.
Consider the approximation in Equation (9): Ei[Ai,t] ≈ g

(
Ω−1
i,t + σ2

a

)
+ g′′

(
Ω−1
i,t + σ2

a

)
·
(
Ω−1
i,t + σ2

a

)
. g(v) is

decreasing. When g′′(.) = 0 (the standing assumption of this part of the paper), then the second term is zero. Thus
E[Ai,0] = g(σ2

a + σ2
θ) < 0. The inequality is the assumption stated in the proposition.

If expected quality E[Ai,0] is less than zero, then expected profit is negative, for any positive level of production,
because the steady state price level for goods is positive P ss > 0. This can be seen in (11), noting that adjustment
cost Ψ, capital rental r and data prices π are all non-negative, by assumption or by free disposal.
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Of course, a firm can always choose zero production ki,t = 0 and zero data to achieve zero profit. A firm that
chose this every period, would have no profit ever and thus zero firm value.

Thus, the only way to get to positive firm value is to produce. Either the firm first buys data and then produces,
first produces, or does both together. If the firm first buys data, then profit is negative in the period when the
firm buys the data and is not yet producing. If the firm produces first, profit is negative because expected quality
is negative, as per the argument above. If the firm produces and buys data at the same time, then profit is more
negative because of negative expected quality and the cost of the data purchase. In every scenario, the firm must
incur some negative profit to achieve positive production and positive firm value.

A.7 Proof of Proposition 3: Firms Sell Goods at Zero Price (Data Barter)

Proof: Suppose the price goods is Pt = 0. We want to show that an optimal production/ investment level Kt can be
optimal in this environment. Consider a price of data πt is such that firm i finds it optimal to sell a fraction χ > 0
of its data produced in period t: δi,t = −χni,t. In this case, differentiating the value function (10) with respect to

k yields (πt/ι)χziαk
α−1 = r +

∂Ψ(∆Ωi,t+1)

∂ki,t
. Can this optimality condition hold for positive investment level k? If

k1−α = πtχziα(
r+

∂Ψ(∆Ωi,t+1)

∂ki,t

)
ι
> 0, then the firm optimally chooses ki,t > 0, at price Pt = 0. �

A.8 Data Accumulation Can be Purely Concave

Data accumulation is not always S-shaped, only for some parameter values. For others, it can be that data accumu-
lation is purely concave. Instead, the net data flow (the slope) decreases with Ωi,t, right from the start.

Proposition 8 Concavity of Data Inflow ∃ε > 0 such that ∀Ωi,t ∈ Bε(0), the net data flow decreases with Ωi,t
if σ2

θ > σ2
a.

We proceed in two steps. In Step 1, we prove that data outflows are approximately linear when Ωi,t is small.
And then in Step 2, we first calculate the derivative of net data flow with respect to Ωi,t and then characterize the
parameter region where it is negative.

Step 1: Data outflows are approximately linear when Ωi,t is small.
This is proven separately in Lemma 3.

Step 2: Characterize the parameter region where the derivative of net data flow with respect to Ωi,t is negative.
A negative least upper bound is sufficient for it be negative.

Recall that the derivative of data inflows with respect to the current stock of knowledge Ωt is
∂dΩ+

i,t

∂Ωi,t
= ρ2

[
ρ2 + σ2

θ(Ωi,t + σ−2
a )
]−2

> 0 (see the Proof of Proposition 1 for details). Thus

∂dΩ+
i,t

∂Ωi,t
−
∂dΩ−i,t
∂Ωi,t

≈ ρ2 [ρ2 + σ2
θ(Ωi,t + σ−2

a )
]−2 − 1 + ρ2(1 + ρ2σ2

θσ
−2
a )−2. (32)

Since this derivative increases in ρ2 and decreases in Ωi,t = 0, so its least upper bound 2

1+σ2
θ
σ−2
a
− 1 is achieved when

ρ2 = 1 and Ωi,t = 0. A non-negative least upper bound requires σ2
a ≥ σ2

θ . That means, if σ2
θ > σ2

a, the supreme of
∂dΩ+

i,t

∂Ωi,t
−

∂dΩ−i,t
∂Ωi,t

is negative, so it will always be negative ∀Ωi,t ∈ Bε(0).

A.9 Proof of Proposition 4: Data Must Enable Infinite Output to Sustain
Growth

Suppose not. Then, for every firm i ∈ I, with
∫
i/∈I di = 0, producing infinite data ni,t →∞ implies finite firm output

yi,t < ∞. Thus My ≡ supi{yi,t} + 1 exists and is finite. By definition, yi,t < My, ∀i. If the measure of all firms is
also finite, that is ∃0 < N < ∞ such that

∫
i
di < N . As a result, the aggregate output is also finite in any period

t+ s, ∀s > 0:

Yt+s =

∫
i

yi,tdi < My

∫
i

di < MyN <∞. (33)
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On the other hand, given that the aggregate growth rate of output ln(Yt+1) − ln(Yt) > g > 0, we have that in
period t + s, ∀s > 0, output growth is ln(Yt+s) − ln(Yt) = [ln(Yt+s) − ln(Yt+s−1)] + · · · + [ln(Yt+1)− ln(Yt)] > gs.

This implies that Yt+s > Yte
gs.. Thus for ∀s > s ≡ d ln(MN)−ln(Yt)

g
e,

Yt+s > Yte
gs > Yte

gs > Yte
g

ln(MyN)−ln(Yt)

g = MyN, (34)

which contradicts (33).

A.10 Proof of Proposition 5: Data Growth Implies a Deterministic Future

We break this result into two parts. Part (a) of the result is that in order to have infinite output in the limit, an
economy will need (ai,t − θt − εa,i,t)2 to approach zero.

Part (b) says: For (ai,t − θt − εa,i,t)2 to approach zero, marginal utility relevant variables θt and εa,i,t must be
in the set Ξt−1.

Proof part a: From proposition 4, we know that sustaining aggregate growth above any lower bound g > 0 arises
only if a data economy achieves infinite output Yt → ∞ when some firm has infinite data ni,t → ∞. Since Yt is a
finite-valued function, except at 0, infinite output requires that the argument of g, which is (ai,t−θt−εa,i,t)2 becomes
arbitrarilty close to zero.

Proof of part b. Suppose not. The optimal action that can achieve infinite output when g is not finite-valued is
a∗t = θt+εa,i,t. If the optimal action is not in Ξt−1, then it is not a t-measurable action. There is some unforecastable
error such that E[(ai,t − θt − εa,i,t)2] > z > 0.

If it is not a measurable action, it cannot be chosen with strictly positive probability in a continuous action
space. Since the optimal action must be in Ξt−1, then θt + εa,i,t must be in Ξt−1 as well. Since θt and εa,i,t are
unconditionally and conditionally independent, for the sum to be perfectly predictable, each element must also be
perfectly predictable. Thus, θt and εa,i,t must be in Ξt−1.

A.11 Competitive Equilibrium

In order to prove our welfare result, we begin by characterizing competitive equilibrium. Then we characterize the
solution to the social planner problem. Finally, we compare the two solutions to determine the efficiency of the
equilibrium outcome.

Household Problem Let Γt denote the Lagrangian multiplier of the individual problem on his budget
constraint. Individual problem can be written as:

max
ct,mt

+∞∑
t=0

1

(1 + r)t
(u(ct) +mt) with u(ct) = P̄

c1−γt

1− γ

s.t. Ptct +mt = Φt ∀t

where Φt is the aggregate profit of all firms:

Φt =

∫
Φitdi = Pt

∫
i

Ai,tk
α
i,tdi−

∫
i

Ψ(∆Ωi,t+1)di− r
∫
i

ki,tdi.

The first order conditions for optimal household choices of consumption of ct and the numeraire good mt are

ct :
1

(1 + r)t
u′(ct) = PtΓt,

mt : Γt =
1

(1 + r)t
,

The first order conditions imply that agents equate their marginal utility of c to its price: Pt = u′(ct).
Firm Problem Firms’ sequential optimization problem is

max
{ki,t,δi,t}∞t=0

V (0) =

+∞∑
t=0

1

(1 + r)t
(
PtE[Ai,t|Ii,t]kαi,t −Ψ(∆Ωi,t+1)− πδi,t − rki,t

)
.
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Equivalently, in recursive form

V (Ωi,t) = max
ki,t,δi,t

PtE[Ai,t|Ii,t]kαi,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t +
V (Ωi,t+1)

1 + r
(35)

s.t. Ωi,t+1 =
(
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

)−1
+
(
zik

α
i,t +

(
1δi,t>0 + ι1δi,t<0

)
δi,t
)
σ−2
ε (36)

The profits of the firm at time t are Φi,t = PtAi,tk
α
i,t −Ψ(∆Ωi,t+1)− πδi,t − rki,t.

Market Clearing (Resource Constraint)

retail good : ct =

∫
i

Ai,tk
α
i,tdi,

numeraire good : mt +

∫
i

(
rki,t + Ψ(∆Ωi,t+1)

)
di = 0

data :

∫
i

δi,tdi = 0.

The adjustment cost Ψ is incorporated in the market clearing/resource constraint for the numeraire good so that it
shows up in the planner’s objective function.

Steady State In equilibrium, households (HHs, hereafter) maximize utility by choosing ct and mt, firms maxi-
mize profits by choosing {ki,t, δi,t}i=L,H , and markets clear.

In this section we focus on steady state equilibrium outcomes with two types of firms, i = L,H. HH budget
constraint simplifies to

P eqceq +meq = Φeq

Φeq = P eq
(
λE[AeqL ](keqL )α + (1− λ)E[AeqH ](keqH )α

)
− r
(
λkeqL + (1− λ)keqH

)
where HH optimization implies P eq = u′(ceq). In steady state, the market clearing conditions simplify to

retail good : ceq = λE[AeqL ](keqL )α + (1− λ)E[AeqH ](keqH )α,

numeraire good : meq + r
(
λkeqL + (1− λ)keqH

)
= 0

data : λδeqL + (1− λ)δeqH = 0.

Firms’ optimal capital choices. There are two equations for first order condition (FOC) with respect to ki,
i = L,H. We will use the sequential problem to get this first order condition. Consider FOC of firm i with respect
to ki,t:

1

(1 + r)t

(
αPtE[Ai,t|Ii,t]kα−1

i,t −
∂Ψ(∆Ωi,t+1)

∂ki,t
− r
)

+
1

(1 + r)t+1

(
Pt+1

∂E[Ai,t+1|Ii,t]
∂ki,t

kαi,t+1 −
∂Ψ(∆Ωi,t+1)

∂ki,t

)
= 0.

Substitute
∂E[Ai,t+1|Ii,t]

∂ki,t
= αziσ

−2
ε kα−1

i,t Ω−2
i,t+1g′.

Multiply both sides by 1
(1+r)t

. Steady state implies a stable level of knowledge (∆Ω = 0). With a quadratic adjustment

cost function that is 0 at 0, Ψ′(0) = 0. Thus, in the steady state
∂Ψ(∆Ωi,t+2)

∂ki,t
=

∂Ψ(∆Ωi,t+1)

∂ki,t
= 0. Imposing this

condition simplifies the firm’s FOC:

αPkα−1
i

(
E[Ai] +

ziσ
−2
ε

1 + r
Ω−2
i g′kαi

)
= r. (37)

Firm’s optimal data choices. In the steady state, where the adjustment cost is zero, the firm’s FOC with
respect to data purchases/sales is πt = 1

1+r
V ′(Ωi,t+1)σ−2

ε (1δi,t>0 + ι1δi,t<0), which can be rearranged as

V ′(Ωi,t+1) =
(1 + r)πt

σ−2
ε (1δi,t>0 + ι1δi,t<0)

(38)
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Next, differentiate the value function of the firm with respect to Ωi,t and use the envelope condition to hold the
choice variables constant:

V ′(Ωi,t) = Ptk
α
i,tΩ

−2
i,t +

1

1 + r
V ′(Ωi,t+1)

∂Ωi,t+1

Ωi,t
, (39)

Differentiating Equation (36) with respect to Ωi,t,

∂Ωi,t+1

∂Ωi,t
=

ρ2(
ρ2 + σ2

θ(Ωi,t + σ−2
a )
)2 . (40)

Substitute Equation (38) for V ′(Ωi,t) = V ′(Ωi,t+1) (in steady state) in (39):(
1− 1

1 + r

∂Ωi,t+1

∂Ωi,t

)
V ′(Ωi,t) = Ptk

α
i,tΩ

−2
i,t

Next substitute for V ′(Ωi,t) in Equation (38), using the expression for
∂Ωi,t+1

∂Ωi,t
from Equation (40). Then, multiply

through by 1 + r, and re-arrange. This yields one condition for the optimal capital-knowledge ratio for L firms and
one for H firms: (

1 + r − ρ2

(ρ2 + σ2
θ(Ωi + σ−2

a ))2

)
π

Pσ−2
ε (1δi>0 + ι1δi<0)

= kαi Ω−2
i i = L,H (41)

If we guess and verify that H firms will sell data and L firms will buy it, then we can simplify (1δi>0 + ι1δi<0), by
equating it to 1 for L firms and ι for H firms. Taking the ratio of the L and H optimality conditions allows us to
cancel out Pt, which delivers Equation (44).

Thus the 6 equilibrium steady state real variables, (ΩeqL ,Ω
eq
H , k

eq
L , k

eq
H , δ

eq
L , δ

eq
H ) are determined by the following

system of 6 equations. Note that (42) and (43) represent two equations each.

Ωeqi =
[
ρ2(Ωeqi + σ−2

a )−1 + σ2
θ

]−1
+
(
zi(k

eq
i )α + δeqi (1δeqi >0 + ι1δeqi <0)

)
σ−2
ε i = L,H (42)

r = αP̄ (ceq)−γ(keqi )α−1

[
E[Aeqi ] +

ziσ
−2
ε

1 + r
(keqi )α(Ωeqi )−2

]
i = L,H (43)

(k
eq
L

)α

(Ω
eq
L

)2

ι
(k
eq
H

)α

(Ω
eq
H

)2

=
1 + r − ρ2

(ρ2+σ2
θ
(Ω
eq
L

+σ−2
a ))2

1 + r − ρ2

(ρ2+σ2
θ
(Ω
eq
H

+σ−2
a ))2

(44)

λδeqL + (1− λ)δeqH = 0. (45)

Equation (42) represents the two law of motions for stock of knowledge, one for each type of firm i = L,H. Equa-
tion (43) comes from (37) with P ′ = u(c) and u′(c) = P̄ c−γ substituted in. It represents the two first order conditions
for capital choice, one for each type of firm i = L,H. (44) is a single equation, the ratio of first order conditions
for the data choice for the two types of firm. Taking the ratio enables us to eliminate the steady state data price
πeq from the system of equations. Finally, Equation (45) is the resource constraint for the total traded data, which
should be zero.

A.12 Social Planner Problem

The planner maximizes HH total discounted utility, taking the resource constraints into account. Thus planner’s
problem can be written as

max
{ki,t,δi,t}i=L,H

∞∑
t=0

1

(1 + r)t

(
u(ct)− r

∫
i

ki,tdi−
∫
i

Ψ(∆Ωi,t+1)di

)
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or in recursive form

V P ({Ωi,t}i) = max
{ki,t,δi,t}i

u(ct)− r
∫
i

ki,tdi−
∫
i

Ψ(∆Ωi,t+1)di+
1

1 + r
V P ({Ωi,t+1}i)

s.t. ct =

∫
i

Ai,tk
α
i,tdi ( with multiplier Ξt) ∀t∫

i

δi,tdi = 0 ( with multiplier ηt) ∀t

Ωi,t+1 =
[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1
+
(
zi(ki,t)

α + δi,t(1δi,t>0 + ι1δi,t<0)
)
σ−2
ε ∀i, t

E[Ai,t] ≈ g
(
Ω−1
i,t + σ2

a

)
∀i, t.

Similar to equilibrium, as the household consumption equal the aggregate production of a continuum of firms, it
is deterministic at each time t.

Social Planner’s optimal capital choice. The planner’s first order condition with respect to ki,t is

rλi =
∂u(ct)

∂ki,t
+

1

1 + r

∂u(ct+1)

∂ki,t
for i = L,H (46)

Again, focus on two types of firm i = L,H where the firms in each group are identical. Then λi = λ when i = L and
λi = 1− λ when i = H. The planner objective simplifies to

V P (ΩL,t,ΩH,t) = max
{ki,t,δi,t}i=L,H

u(ct)− r
(
λkL,t + (1− λ)kH,t

)
−
(
λΨ(∆ΩL,t+1) + (1− λ)Ψ(∆ΩH,t+1)

)
+

1

1 + r
V P (ΩL,t+1,ΩH,t+1)

Furthermore, ct = λE[AL,t]k
α
L,t + (1− λ)E[AH,t]k

α
H,t.Thus

∂ct
∂ki,t

= αλiE[Ai,t]k
α−1
i,t

∂ct
∂Ωi,t

= λi
∂E[Ai,t]

∂Ωi,t
kαi,t = λiΩ

−2
i,t g′k

α
i,t (47)

In steady state, substitute in the expressions above into (46),

r =αP̄ (copt)−γ(kopti )α−1

[
E[Aopti ] +

ziσ
−2
ε

1 + r
(kopti )α(Ωopti )−2g′

]
i = L,H (48)

This is the same as Equation (43). Thus the capital FOCs are the same between optimum and equilibrium.

Social Planner’s optimal data choice. Let V Pi denote the derivative of the social planner value function with
respect to Ωi,t, i = L,H. To solve for V Pi in steady state, differentiate the value function and apply the envelope
condition to get:

V Pi (Ωi,t,Ω−i,t) =
∂u(ct)

∂Ωi,t
+

1

1 + r
V P
′

i (Ωi,t+1,Ω−i,t+1)
∂Ωi,t+1

∂Ωi,t

The data first order condition reveals that the Lagrange multiplier ηt on the data constraint is

λiηt =
1

1 + r
V Pi (ΩL,t+1,ΩH,t+1)σ−2

ε (1δi,t>0 + ι1δi,t<0). (49)

In steady state, V pi (Ωi,t,Ω−i,t) = V Pi (Ωi,t+1,Ω−i,t+1). Use this equality and Equations (40) and (49) to replace

for
∂Ωi,t+1

∂Ωi,t
and V Pi (Ωi,t+1,Ω−i,t+1) to get(

1 + r − ρ2

(ρ2 + σ2
θ(Ωi,t + σ−2

a ))2

)
ηtλi

σ−2
ε (1δi,t>0 + ι1δi,t<0)

=
∂u(ct)

∂Ωi,t
i = L,H (50)

which in steady state can be written as(
1 + r − ρ2

(ρ2 + σ2
θ(Ωopti + σ−2

a ))2

)
ηλi

P̄ (copt)−γσ−2
ε (1

δ
opt
i >0

+ ι1
δ
opt
i <0

)
= λi(k

opt
i )α(Ωopti )−2g′ i = L,H (51)
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In steady state, H firms sell data. For them, (1
δ
opt
i >0

+ ι1
δ
opt
i <0

) = ι. In steady state, L firms buy data. For them,

(1
δ
opt
i >0

+ ι1
δ
opt
i <0

) = 1. Next take the ratio of the H and L conditions from (51). (copt)−γ and the Lagrange

multiplier η both drop out of the resulting equation, thus we have

(k
opt
L

)αg′
(Ω
opt
L

)2

ι
(k
opt
H

)αg′
(Ω
opt
H

)2

=
1 + r − ρ2

(ρ2+σ2
θ
(Ω
opt
L

+σ−2
a ))2

1 + r − ρ2

(ρ2+σ2
θ
(Ω
opt
H

+σ−2
a ))2

, (52)

which is the same as Equation (44).
Finally, the planner’s first order conditions with respect to consumption choice tells us that the Lagrange multi-

plier on the consumption resource constraint is Ξt = u′(ct).

A.13 Proof of Proposition 6: Efficient Equilibrium

The decentralized equilibrium is characterized by Equations (42) for i = L,H, (44), (45), and (43) for i = L,H.
The social planner’s optimum is characterized by Equations (42) for i = L,H and (45) (all for optimum variables),

Equation (48) for i = L,H, and Equation (52).
The resulting capital first order conditions for each form i = L,H, as well as the ratio of the data first order

conditions across two types of firms, for both problems are the same. Thus, the equilibrium is efficient because the
decentralized economy and the social planner end up making the same choices.

A.14 Proof of Proposition 7: Inefficiency with Business Stealing

With business stealing externality, i.e. when b = 1, the only difference is that Ai is determined by Equation (18).
Thus in a symmetric allocation, with 2 types, where all firms of type i are the same, in equilibrium we have

E[Ai,t] =
(
Ā− (Ωi,t)

−1 − σ2
a

)
+
(
λi
(
Ω−1
i,t + σ2

a

)
+ (1− λi)

(
Ω−1
−i,t + σ2

a

) )
= Ā− (1− λi)(Ω−1

i,t − Ω−1
−i,t).

By construction, aside from the change in the equilibrium steady state value of E[Aeqi ], the business stealing
externality does not change the firm optimization problem. In particular, it does not affect any of the first order

condition, such as
∂E[Ai,t+1]

∂ki,t
. Thus the equilibrium is still characterized by Equations (42) for i = L,H, (44), (45),

and (43) for i = L,H.
For the optimum, Equations (42) for i = L,H and (45) clearly remains the same. The other optimum equations

change as the quality of every firm is affected by the capital and data choices of each individual firm i.
Planner’s Optimal Data with Business Stealing Observe that the amount of data traded by firm i at time

t, δi,t does not affect the stock of knowledge of firm j at t+ 1, Ωj,t+1 conditional on δj,t. Furthermore, Ωi,t does not
affect Ωj,t+1, j 6= i. However, ∂ct

∂Ωi,t
is adjusted to reflect data used for business stealing:

∂ct
∂Ωi,t

= λik
α
i,t
∂E[Ai,t]

∂Ωi,t
+ (1− λi)kα−i,t

∂E[A−i,t]

∂Ωi,t
= λi(1− λi)kαi,tΩ−2

i,t − (1− λi)2kα−i,tΩ
−2
i,t

= (1− λi)Ω−2
i,t

(
λik

α
i,t − (1− λi)kα−i,t

)
. (53)

Comparing Equations (47) and (53) clarifies that data with business stealing, data is less useful to increase the
consumption level. The firms do not internalize that selling data ot others decreases their quality. Thus, there is an
over-supply of data on the data market, and too much data trade. With business stealing, Equations (51) and (52)
change to(

1 + r − ρ2

(ρ2 + σ2
θ(Ωopti + σ−2

a ))2

)
ηλi

P̄ (copt)−γσ−2
ε (1

δ
opt
i >0

+ ι1
δ
opt
i <0

)

= (1− λi)(Ωopti )−2 (λi(kopti )α − (1− λi)(kopt−i )α
)
∀i (54)(

1− λ
λ

)2
λ(k

opt
L

)α+(1−λ)(k
opt
H

)α

(Ω
opt
L

)2

ι
(1−λ)(k

opt
H

)α+λ(k
opt
L

)α

(Ω
opt
H

)2

=
1 + r − ρ2

(ρ2+σ2
θ
(Ω
opt
L

+σ−2
a ))2

1 + r − ρ2

(ρ2+σ2
θ
(Ω
opt
H

+σ−2
a ))2

, (55)

Equation (55) is different from equilibrium Equation (44).
This is the first externality. With business stealing, the planner internalizes that the data that a firms sells on

the data market, decreases its own quality. Since firms do to internalize this effect, they sell more data on the data

45



market than what is efficient. There is excessive data trade.
Planner’s Optimal Capital with Business Stealing The first order condition for the planner’s capital choice

becomes rλi = ∂u(ct)/∂ki,t+
1

1+r
∂u(ct+1)/∂ki,t for i = L,H. Substituting in the same expressions for marginal utility

as before yields

r =αP̄ (kopti )α−1(copt)−γ
[
E[Aopti ] +

ziσ
−2
ε (1− λi)
1 + r

(
(kopti )α − 1− λi

λi
(kopt−i )α

)
(Ωopti )−2

]
. i = L,H (56)

Equation (56) is different from Equation (43).
This is the second externality. With business stealing, the planner internalizes that an increase in capital of firm

i, increases data production, which decreases the quality of every other firm in the sector. Since firms do to internalize
this effect, they over-invest in capital to get more data than what is efficient. There is excessive production.

A.15 Numerical Examples

Parameter Selection The results below are not calibrated. However, the share of aggregate income paid
to capital is commonly thought to be about 0.4. Since this is governed by the exponent α, we set α = 0.4. For
the rental rate on capital, we use a riskless rate of 3% , which is an average 3-month treasury rate over the last
40 years. The inverse demand curve parameters determine the price elasticity of demand. We take γ and P̄ from
the literature. Finally, we model the adjustment cost for data ψ in the same was as others have the adjust cost of
capital.This approach makes sense because adjusting one’s process to use more data typically involves the purchase
of new capital, like new computing and recording equipment and involves disruptive changes in firm practice, similar
to the disruption of working with new physical machinery.

Finally, we normalize the noise in each data point σε = 1. We can do this without loss of generality because
it is effectively a re-normalization of all the data-savviness parameter for all firms {zi}. This is because for normal
variables, having twice as many signals, each with twice the variance, makes no difference to the mean or variance of
the agent’s forecast. As long as we ignore any integer problems with the number of signals, the amount of information
conveyed per signal is irrelevant. What matters is the total amount of information conveyed.

To calibrate the model, one could match the following moments of the data. The capital-output ratio tells us
something about the average productivity, which would be governed by a parameter like Ā, among others. The
variance of GDP and the capital stock, each relative to its mean, var(Kt)/mean(Kt) and var(Yt)/mean(Yt), are
each informative about variance of the shocks to the model, such as σ2

θ and σ2
a.

Computational Procedure Figure 4 solves for the dynamic transition path when firms do not trade data.
Value Function Iteration: To solve for the value function, make a grid a values for Ω (state variable) and k (choice

variable). Guess functions V0(Ω) and P0(Ω) on this grid. Guess a vector of ones for each. In an outer loop, iterate
until the pricing function approximation converges. In an inner loop, given a candidate pricing function, iterate until
the value function approximation converges.

Forward Iteration: Solving for the value function as described above also gives a policy function for k(Ω) and
price function P (Ω). Linearly interpolate the approximations to these functions. Specify some initial condition Ω0.
For each t until T : Determine the choice of kt and price at this state Ωt. Calculate Ωt+1 from Ωt and kt.

Trade Value Function Approximation: Figure 2 solves for dynamic transition path when firms are allowed to
buy/sell data for fixed final goods and data prices. We take the same steps as written above, but now optimize over
ω rather then k.
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