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1. Introduction

We investigate the relationship between the extent of a city’s subway network and its population,

transit ridership and spatial configuration. To accomplish this investigation, for the 632 largest

cities in the world we construct panel data describing population, total light, measures of central-

ization calculated from lights at night data, and the extent of each of the 138 subway systems in

these cities. For a subset of these subway cities we also assemble panel data describing bus and

subway ridership.

These data suggest the following conclusions. First, while large cities are more likely to have

subways, subways have a precisely estimated near zero effect on urban population growth. Sec-

ond, subways cause cities to decentralize, although this effect appears to be small relative to the

decentralization caused by radial highways. Third, a 10% increase in subway extent leads to about

a 6% increase in subway ridership and does not affect bus ridership. A back of the envelope

calculation suggests that only a small fraction of ridership increases can be accounted for by

decentralized commuters. Together with the fact that little new ridership can be attributed to

population growth, this suggests that most new ridership derives from a substitution from other

modes of travel towards subways.

Subway construction and expansion projects range from merely expensive to truly breathtak-

ing. Among the 16 subway systems examined by Baum-Snow and Kahn (2005), construction costs

range from about 25m to 550m usd2005 per km. On the basis of the mid-point of this range,

287m per km, construction costs for the current stock are about 3 trillion dollars. These costs

are high enough that subway projects generally require large subsidies. To justify these subsidies,

proponents often assert the ability of a subway system to encourage urban growth.1 Our data allow

the first estimates of the relationship between subways and urban growth. That subways appear

to have almost zero effect on urban growth suggests that the evaluation of prospective subway

projects should rely less on the ability of subways to promote growth and more on the demand

for mobility. Our data also allows the first panel data estimates of the impact of changes in system

extent on ridership and therefore also make an important contribution to such evaluations.

Understanding the effect of subways on cities is also important to policy makers interested

in the process of urbanization in the developing world. Over the coming decades, we expect

an enormous migration of rural population towards major urban areas, and with it demands for

urban infrastructure that exceed the ability of local and national governments to supply it. In

order to assess trade-offs between different types of infrastructure in these cities, understanding

the implications of each for welfare is clearly important. Since people move to more attractive

places and away from less attractive ones (broadly defined), our investigation of the relationship

between subways and population growth will help to inform these decisions. In particular, if the

1A statement by the agency responsible for Toronto’s transit expansion is typical: “Expanding transportation can help
create thousands of new green and well-paid jobs, and save billions of dollars in time, energy and other efficiencies.”
(http://www.metrolinx.com/en/regionalplanning/bigmove/big_move.aspx) (accessed July 28, 2014).
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objective of policymakers is to increase a city’s population or to decentralize economic activity,

highways seem more promising. On the other hand, in a related companion paper, Gendron-

Carrier et al. (2017) show that if the objective is to reduce pollution, then subways can be effective.

Finally, an active academic literature investigates the effect of transportation infrastructure on

the growth and configuration of cities. In spite of their prominence in policy debates, subways

have so far escaped the attention of this literature. This primarily reflects the relative rarity of

subways. Most cities have roads so a single country can provide a large enough sample to analyze

the effects of roads on cities. Subways are too rare for this. A statistical analysis of the effect of

subways on cities requires data from, at least, several countries. An important contribution of this

paper is to assemble data that describe all of the world’s subway networks. In addition, with few

exceptions, the current literature on the effects of infrastructure is static or considers panel data

that is too short to investigate the dynamics of infrastructure’s effects on cities. Because our panel

spans the 60 year period from 1950 until 2010, we are able to investigate such dynamic responses

to the provision of subways.

To estimate the causal effects of subways on urban growth and urban form, we must grapple

with the fact that subway systems and stations are not constructed at random times and places.

This suggests two potential threats to causal identification. The first could occur if subway ex-

pansions systematically take place at times when a city’s population growth is slower (or faster)

than average. For example, if construction crews leave the city when new subway expansions are

complete or if subway expansions tend to occur when some constraint on a city’s growth begins

to bind. The second results from omitted variables. For example, suppose that cities expand their

bus networks in years when they do not expand their subway networks and that bus and subway

networks contribute equally to population growth. Then any regression of population growth

on subway growth that omits a measure of the bus network will be biased downward. Briefly,

we address the problem of confounding dynamics by showing that the null population growth

result is invariant to using first differences, instrumented first differences, second differences and

dynamic panel data models. The instrument we propose takes advantage of the fact that larger

subway systems grow more slowly and this allows us to predict subway growth using long lags

of subway system size. We address the omitted variables issue by showing that the null effect of

subways on population is not masking heterogenous effects by measures such as congestion, road

supply, bus supply, institutional quality, city size, or size of network, among others.

2. Literature

A Subways

With a few exceptions that we describe below, the literature that analyzes the effects of subways on

cities consists entirely of analyses of a single city. Nevertheless, this literature is large and we here

focus our attention on the small set of papers which attempt to resolve the problem of non-random
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assignment of subways. More complete surveys are available in Billings (2011) and Gibbons and

Machin (2005).

Gibbons and Machin (2005) examine housing prices in London during the periods 1997-1999

and 2000-2001, periods that bracket two expansions of the London underground. Gibbons and

Machin (2005) calculate various difference-in-differences estimates of the effect of these transit

expansions on housing prices and find that moving one km away from a subway station decreases

house values by about 2% for the first two km, and about zero thereafter. Billings (2011) conducts

a similar exercise for a new light rail line in Charlotte, North Carolina.2 Like Gibbons and Machin

(2005), Billings (2011) estimates the effect of subways on housing prices using a difference-in-

differences estimator. Despite differences in milieu and method, Billings (2011) arrives at estimates

quite close to those of Gibbons and Machin (2005): single family houses within 1.6km of the

transit line see their prices increase by about 4% while condominiums see their prices rise by about

11%. Like Gibbons and Machin (2005), Billings (2011) observes that changes result from subway

construction over the course of just a few years.3

Each of these papers makes a credible attempt to overcome the fact that subway systems are not

located randomly within cities. However, neither provides us with much information about the

relationship between subways and city-level growth. If subways affect the growth of cities, then

they may affect it everywhere, both near and far from a station. By construction, a differences-

in-differences methodology cannot measure such citywide effects. Therefore, while the existing

literature makes some progress on the problem of non-random assignment of subways to places,

it does so at a high cost. The difference-in-differences methodology cannot tell us about the effect

of changes in the overall level of activity within a city. Unless we are specifically interested in

reorganizing economic activity across neighborhoods within a city, it is changes in the overall level

which are of primary policy interest and which are the object of our investigation.

Finally, in an important contribution Ahlfeldt, Redding, Sturm, and Wolf (2015) estimate a

structural model of how a subway network can restructure a city, rather than just whether subways

attract development. Given this, it is closest in spirit to our decentralization exercise. With this

said, Ahlfeldt et al. (2015) use time series variation from just one city, so their ability to investigate

the effect of subways on urban growth relies heavily on the assumptions underlying their model.

There are few studies considering cross city or panel data on transit and city level outcomes.

Pang (2017) and Gendron-Carrier et al. (2017) are rare exceptions. Pang (2017) uses US data to

investigate the effect of public transit on employment rates for low-skilled workers, and finds

that low skilled workers are more likely to be employed as their access to subways improves.

Gendron-Carrier et al. (2017) is a companion paper to this one, and uses an event study methodol-

ogy to investigate the relationship between airborne particulates and subway system opening. In

2The Charlotte light rail system is not completely isolated from pedestrian and automobile traffic and so does not
appear in our data as a subway.

3Manelici (2017) investigates the interaction between terrorism and proximity to London subway stations and finds
that a terrorist attack in London in 2005 disproportionately affected real estate prices near subway stations.
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a sample of about 40 cities all over the world, it finds that subway openings cause economically

important reductions in pollution.

Apart from these two, the only studies to investigate the effects of subways on city level

outcomes are primarily or completely interested in ridership.4 On the basis of a single cross-section

of about 50 cities, Gordon and Willson (1984) conduct a city level regression to predict riders per

mile of track as a function of city population density and country level per capita gdp. They find

that these two variables are excellent predictors of ridership - the relationship being positive and

negative, respectively. Finally, Baum-Snow and Kahn (2005) provide evidence from 16 US cities

for a similar relationship between density and transit use, although their small sample size limits

the precision of their results. They also show that ridership shares in catchment areas for new

stations attain almost the same level as in the catchment areas of old stations over their 30 year

study period. Consistent with the finding in Gordon and Willson (1984) that ridership decreases

with income and increases with density, Baum-Snow and Kahn (2005) find that most US transit

expansions have only small effects on ridership, a conclusion echoed in Gomez-Ibanez (1996) for

time series data on the use of Boston’s transit system. Our results on the relationship between

subway extent and ridership are the first to exploit city level panel data. Barnes (2005) provides

evidence from a few cities in the US that people are more likely to take transit for trips to a central

business district than for trips to other locations.

B Other infrastructure

Redding and Turner (2015) survey the literature relating roads and highways to urban growth.

This literature has developed rapidly over the past several years and suggests the following

conclusions.

First, Duranton and Turner (2012) find that the stock of highways in a city contributes to the

growth in city population in the us between 1980 and 2000. This effect is small in an absolute sense,

though it is economically important as a share of the total growth rate. Using a similar research

design, Garcia-López, Holl, and Viladecans-Marsal (2015) finds that highways cause about the

same rate of population growth in Spanish cities.5

Second, that radial highways can have dramatic effects on the internal structure of cities. Baum-

Snow (2007) investigates the effect of radial highways on population decentralization for a sample

of large US cities between 1950 and 1990. He finds that, over the whole 40 year course of his

study period, a single radial highway causes about a 9% decrease in central city population. This

large decentralizing effect of highways is confirmed for China by Baum-Snow, Brandt, Henderson,

Turner, and Zhang (2017) and for Spain by Garcia-López (2012).

4We note the large literature on modal choice using individual level data. This important literature is only tangen-
tially related to our present inquiry. A survey is available in Small and Verhoef (2007).

5Related to this, Blonigen and Cristea (2015) and Campante and Yanagizawa-Drott (2018) investigate the role of
airports in urban growth and argue for a causal relationship between airport traffic and urban growth.
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Finally, Duranton and Turner (2011) and Hsu and Zhang (2014) find that vehicle kilometers

traveled increase about proportionately to increases in the extent a city’s road network, and that

increases to non-commute driving appear to be the most important contributor to this increase.

All of these responses, decentralization, growth and driving, can be detected over a 5-20 year time

horizon, much shorter than our 60 year study period.

In contrast, we find that the effects of subways on urban growth are tiny. We find a much larger

effect of subways on the configuration of cities. The effect of subways on ridership is large, though

probably smaller than the effect of roads on driving. Finally, we will present indirect evidence to

suggest that only a small fraction of the increase in ridership reflects decentralized commuters.

More likely, commuters shift their mode of transportation towards subways.

3. Results vs. Theory

Anticipating our results, our data indicate that marginal changes to a city’s subway network have

the following effects. First, subways have approximately zero effect on a city’s population. Second,

subways cause cities to decentralize in a way that is qualitatively similar to the way that roads

cause cities to decentralize. Third, the cities in our sample grow at about 2% per year. In addition,

from Gendron-Carrier et al. (2017), we know that subway openings cause reductions in air pol-

lution that have an estimated value that is of about the same order of magnitude as construction

costs (though the effects of expansions are probably smaller). Finally, what evidence we have on

the matter, e.g., Baum-Snow and Kahn (2005), suggests that subways are very expensive to build

and that fare revenue does not fully cover operating costs.

These facts are consistent with basic theory. To see this, consider a simple linear city. Each

identical agent consumes a unit of land at distance x from the center and commutes to x = 0

where she receives wage, wt. The unit cost of travel is τt and land rent, Rt(xt), varies with distance

to the center. Subscripts index two periods, t ∈ {0,1}, an initial period where the subway is smaller

or not present, and a later period when the subway is more extensive.

Denote the most remote occupied location as xt and suppose that land rent is zero beyond this

boundary. Because each agent consumes exactly one unit of land, xt describes both the physical

extent of the city and its population. Agents derive utility from consumption, ct, and from a city

specific amenity, At. They pay a tax Tt to fund the subway. Agents have the choice to reside in the

city of interest, or at some alternative that provides utility u∗t .

A representative agent solves the following problem,

max ct + At

s.t. wt = ct + τtx + Tt − R(x).

With free mobility, this implies that the boundary of the city is determined by the following
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condition,

xt =
wt + At − Tt − u∗t

τt
.

Our finding that subways do not change city population means that x0 = x1, and hence that

w0 + A0 − T0 − u∗0
τ0

=
w1 + A1 − T1 − u∗1

τ1
. (1)

Because cities decentralize with subways, we conclude that they drive down unit transportation

cost. In the context of this model, this means that τ1 < τ0. Together with equation (1), this requires

that

w0 + A0 − T0 − u∗0 > w1 + A1 − T1 − u∗1 . (2)

If our identification strategy is successful at isolating the effects of quasi-random variation, then

a city with a subway expansion faces the same outside option as a city without. That is, u∗1 = u∗0 .

In this case, our results suggest that whatever beneficial effects subways have on transportation

costs, wages and amenities are about offset by the local share of costs.6

On the other hand, if cities either invest in subways or in some substitute, then we might think

that u∗1 > u∗0 . In this case, our results need to be understood as relative, not to the status quo, but

to the improving outside option. This means that the benefits of subways minus the local share of

costs is no better that the alternative investment.

This model is deliberately stylized and so welfare interpretations should be regarded with care.

In particular, the model omits the possibility that people consume more space as transportation

costs fall. This is surely valuable, but statements about residential density are beyond the reach of

our data and so we omit this margin of adjustment from our model.

In addition, this simple model is based on the assumption that improvements to the subway net-

work reduce transportation costs everywhere. In fact, as we will show, subways overwhelmingly

serve central cities. Since mode transfers are costly, one can therefore imagine that subways could

reduce the cost of commuting within their central service area, while leaving commute costs from

more remote locations more or less unchanged. In this case, changes to the subway system would

not affect the condition determining the edge of the city. Relative to the model articulated above,

such model has the advantage of greater realism and of predicting widely observed increases in

land rent in subway catchment areas. With this said, the same basic intuition holds. In order for

population to remain constant with increases in subways, we require that the increased tax burden

offset improvements in local wages or amenities.

6To our knowledge, there is little systematic evidence about subway funding arrangements. Official reports for
Mexico City’s subway system suggest that farebox revenue only accounts for about half of operating costs, the rest
being financed by subsidies from general city funds. In Toronto’s TTC a third of operating costs are covered by the
city’s property tax. Gomez-Ibanez (1996) reports that capital costs for Boston’s subway from about 1965-1990 on were
substantially funded by the federal government.
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4. Data

To investigate the effect of subways on the evolution of cities’ population, spatial structure and

transit ridership, we require data for a panel of cities. We construct such data from four principal

sources. Our population data are the un World Cities Data. Our subway data are the result of

primary data collection, as is our ridership data. Our description of urban spatial structure derives

from satellite lights at night data.

A Population data

Our data are organized around the un World Cities Data.7 Produced by the United Nations,

Department of Economic and Social Affairs, Population Division, these data describe population

counts for all cities whose population exceeds 750,000 at any time during 1950-2010.

Constructing international data describing city level population is subject to two difficulties.

First, population data are generally, but not always, available from decennial or quinquennial

censuses, but do not synchronize neatly across countries. To resolve this problem, the un World

Cities Data interpolate across available censuses to construct annual values. Therefore, because

few countries conduct censuses more often than every five years, successive annual population

changes must sometimes reflect linear interpolation of the same proximate census years. To avoid

making inferences from such imputed population changes, we restrict attention to observations

drawn every fifth year (e.g., 1950, 1955, ...) and refer to each such observation as a ‘city-year’. This

decreases the likelihood that sequential city-years are calculated by interpolation from the same

two underlying censuses. In fact, for some countries, census data is available less often than every

five years, so we also experiment with observations drawn every 10 years and with even longer

periods.

A second difficulty arises because metropolitan areas and census units are not defined at the

same scale in all countries. To overcome this problem, the un World Cities Data is based on

population counts at the most geographically disaggregated administrative unit available from

every country. Once equipped with these data, metropolitan areas are defined as a fixed set of

smaller administrative units — regardless of whether the smaller units were in the same state for

example. This allowed un researchers to use a consistent definition of metropolitan areas across

countries and over time, and captures what we think of as metropolitan areas.

The top panel of Table 1 describes our population data. The data consist of 632 cities, more than

half in Asia. In 2010, the mean population of a city in our sample is about 2.4 million. There is little

variation in mean population across continents, although cities in South America tend to be larger

while cities in Europe tend to be smaller. Between 1950 and 2010, the mean five year growth rate

of a city in our sample is about 18%. This rate falls by about 1 percentage point every five years.

Not surprisingly, cities in Africa, Asia and South America grow faster than in North America and

7Downloaded from http://esa.un.org/unup/GIS-Files/gis_1.htm, February 2013.
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Figure 1: Growth of world subway systems

O
pe

ra
ti

on
al

st
at

io
ns

C
it

ie
s

w
it

h
su

bw
ay

s

Years
Note: The dashed line indicates the number of cities with a subway system (right
axis) and the solid line indicates the total number of operational stations (left axis).

Europe. European cities are the obvious outlier and grow more slowly than cities elsewhere. The

growth rate of cities is declining on all continents and this decrease is somewhat slower in Europe.

The bottom panel of Table 1 describes our population data for the 138 cities in our sample with

a subway in 2010. At 4.7m people on average, these cities are about twice as large as non-subway

cities. Cairo is the single African city with a subway, and so the Africa column in the bottom panel

of table 1 is really a ‘Cairo column’.8 Asian and South American subway cities are larger than those

in North America and dramatically larger than those in Europe. The five year growth rate for an

average subway city is about 11%, slower than in the whole sample. As for the whole sample,

European subway cities are growing more slowly than other subway cities. Also similar to the

whole population of cities, growth rates between 1950 and 2010 are declining by about 1% every

five years and this decrease is somewhat slower in Europe.

B Lights data

Lights at night data are collected by earth observing satellites that measure the intensity of visible

light every night in 30 arc second cells (about one kilometer square) on a regular grid covering

8Australia contains few large cities and has no subways in 2010. To simplify the exposition, we have consolidated
Asia and Australia.
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Table 1: Descriptive statistics for the world’s cities and cities with subway systems in 2010

World Africa Asia Europe N. America S. America
All cities
N 632 71 347 57 99 56
Mean population 2,427 2,091 2,509 1,921 2,441 2,825
Mean log(Pop.) 14.3 14.3 14.3 14.2 14.3 14.4
Mean ∆t log(Pop.) 0.18 0.24 0.20 0.05 0.14 0.19
Mean ∆2

t log(Pop.) -0.010 -0.013 -0.008 -0.005 -0.013 -0.015
Mean light gradient -0.79 -0.85 -0.78 -0.72 -0.69 -0.96
Mean light intercept 11.0 10.5 10.8 10.8 10.8 12.7
Cities with subway in 2010
N 138 1 53 40 30 14
Total stations 7,886 51 2,977 2,782 1,598 478
Total route km 10,672 56 4,210 3,558 2,219 627
Mean stations 57 51 56 70 53 34
Mean route km 77 56 79 89 74 45
Mean subway lines 4.5 2.0 4.1 5.8 4.7 2.6
∆t Stations 3.5 3.9 4.2 3.8 2.5 2.2
Mean log(Stations) 3.60 3.95 3.55 3.90 3.38 3.30
Mean ∆t log(Stations) 0.23 0.30 0.26 0.22 0.21 0.23
Mean population 4,706 11,031 5,950 2,259 4,813 6,300
Mean log(Pop.) 14.93 16.22 15.15 14.37 15.05 15.34
Mean ∆t log(Pop.) 0.11 0.12 0.14 0.04 0.12 0.17
Mean ∆2

t log(Pop.) -0.011 -0.014 -0.012 -0.005 -0.013 -0.017
Mean light in 25km disk 122 212 117 95 170 109
Corr. lights & pop. 0.67 0.67 0.69 0.78 0.91
Mean light gradient -0.72 -0.62 -0.78 -0.71 -0.58 -0.80
Mean light intercept 11.2 11.0 11.8 11.0 10.2 11.9

Note: Population levels reported in thousands. Lights data are based on radiance calibrated lights
at night imagery. All entries describing levels report 2010 values. Entries describing changes are
averages over the period from 1950 to 2010.

the entire world. Most extant applications of the lights at night data in economics rely on the

"DMSP-OLS Nighttime Lights Time Series".9 These data are available annually from 1992 until

2012. Each of these lights at night images is a composite constructed from many raw satellite

images and the value for each cell reflects average light intensity, over all cloud free images, on a

scale of 0-62 with 63 used as a topcode. Since most large cities, particularly in the developed world

contain large topcoded regions near their centers, these data are of limited use for studying the

internal structure of the large wealthy cities where most subways are located. We instead exploit

‘radiance calibrated lights at night data’,10 collected during times when the satellite sensor was set

to be less sensitive. These data are less able to distinguish dim light sources, but are able to measure

variation in light within regions that are topcoded in DMSP-OLS version. Fewer cross-sections of

9Available from http://www.ngdc.noaa.gov/dmsp/downloadV4composites.html (October 2014).
10Downloaded in October 2014 from http://ngdc.noaa.gov/eog/dmsp/download_radcal.html. We are grateful to

Alexi Abrahms for drawing our attention to these data.
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the radiance calibrated lights are available but the available cross-sections (ca. 1995, 2000, 2005 and

2010) match up neatly with the last four cross-sections of our population data.

Lights at night data are of interest as a check on our population data. The lights at night data are

measured consistently across cities and we can calculate city level measures of total light without

reference to administrative boundaries. That is, the lights at night data are not subject to either

of the two problems that we are concerned about for our population data. Since people light the

places they live and work, more densely populated and more productive places are often brighter.

More concretely, Henderson and Storeygard 2012 use the topcoded version of lights at night data

to show that country level mean light intensities are a good proxy for gdp, a result that Storeygard

(2017) confirms at the regional level for China.

The bottom panel of table 1 shows the correlation of the mean 2010 light intensity within

25km of a city center and 2010 population in subway cities. It is clear that lights provide some

information about population, although this information is imperfect. Finally, we note that the

lights at night data are difficult to interpret. While we can be confident that lights at night data are

telling us something about the location of economic activity, we cannot know whether places are

brighter because the people living there are richer or because the place is more densely populated.

C Centralization

We also use the lights data to describe urban centralization. The resolution of the radiance cali-

brated lights data we use is about 1km square. This is small enough to provide information about

the way that cities are laid out, and inspection of figure 2 shows that the lights data reflect broad

patterns of urban density.

In order to describe the ‘centralization’ of each city, we follow a long tradition in urban eco-

nomics of calculating density gradients (e.g., Clark, 1951; Mills and Peng 1980). In our case, we

estimate a light intensity gradient for every city-year to measure the rate at which density decays

with distance from the center. To do this, we first calculate mean light intensity, for disks with ra-

dius 1.5km, 5km, 10km, 25km and 50k, around each city’s centroid. These disks describe a series of

doughnuts surrounding the center of each city. Let xi ∈ {0.75km, 3.25km, 7.5km, 17.5km, 37.5km}
be the radii of the circles lying halfway between the inner and outer border of these doughnuts.

For example, xi = 3.25 lies halfway between the inner and outer radius of the doughnuts that

extends from 1500m to 5km from a city’s center. For each such doughnut, let yi denote the average

light intensity in the doughnut.11 All together, for each city, we now have 5 pairs of light intensity

and distance, (yi,xi).

To characterize the centrality of each city, we estimate the following regression

ln yi = A + B ln xi + εi. (3)

11We note that we do not make any adjustments for geographic features such as mountains or surface water when
performing this calculation.
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The coefficient B in this regression is the rate at which light decays with a change in distance from

the center, and will be our measure of centrality for each city in each year. All else equal, a city with

a more negative value of B sees its density decrease more quickly with distance from the center,

and is therefore, ‘more centralized’.

Table 1 reports sample mean values of A and B for the sample of all cities and subway cities.

We see that the gradient for an average city is 0.79. Thus, density falls by 79% with a doubling

of distance. Not too surprisingly, cities in Africa and South America are more centralized, while

cities in North America are less centralized. Subway cities are slightly less centralized than cities

without subways. For these cities, density falls by 72% with a doubling of distance. Interestingly,

North American subway cities are particularly spread out, with a density gradient of 0.58.

D Subways data

We define a ‘subway’ as an electric powered urban rail that is completely isolated from interactions

with automobile traffic and pedestrians. This excludes most streetcars, because they interact with

vehicle traffic at stoplights and crossings, although we include underground streetcar segments. In

order to focus on intra-urban subway transportation systems, we also exclude heavy rail commuter

lines. We do not distinguish between surface, underground or aboveground subway lines as long

as the exclusive right of way condition is satisfied. For the most part, our subways data describe

public transit systems that would ordinarily be described as ‘subways’, e.g., the Paris metro and

the New York city subway, and only such systems. As with any such definition, the inclusion or

exclusions of particular marginal cases in our sample may be controversial.

On the basis of this definition, we assemble data describing the latitude, longitude and date

of opening of every subway station in the world. We compiled these data manually between

January 2012 and February 2014 using the following process. First, using online sources such as

http://www.urbanrail.net/ and links therein, together with links on wikipedia, we complied a

list of all subway stations worldwide. Next, for each station on our list, we record opening date,

station name, line name, terminal station indicator, transfer station indicator, city and country.

Latitude and longitude for each station were obtained from google maps. This process leads us to

enumerate subway stations in 161 cities. Of these, 138 are large enough to appear in the un World

Cities Data and are the main subject of our analysis.12

We use our data to construct three measures of subway extent for each city-year. First, we count

the number of operational stations in each year. Second, we count the number of operational

subway lines in each city in each year. Finally, by connecting stations on each subway line by the

shortest possible route, we approximate the route of each subway line. Taking the union of all such

lines in a city approximates each city’s network and calculating the length of this network gives us

12The 23 cities with subways in 2010 that do not occur in our population data because their population is too
small are: Bielefeld, Bilbao, Bochum, Catania, Dortmund, Duisburg, Dusseldorf, Essen, Frankfurt, Genova, Hannover,
Kitakyushu, Kryvyrih, Lausanne, Mulheim, Naha, Nuremberg, Palma, Perugia, Rennes, Rouen, Seville and Wuppertal.

12
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the length of each system. In this way we arrive at our three primary measures of subway extent

for each city-year; operational stations, operational lines and route kilometers.

Figure 2 illustrates our subway data for six cities. The figure shows all stations operational

prior to 2010 as dots. The network maps, on which the 2010 calculation of route km is based, are

shown as connecting lines. In each panel of the figure, the large(small) circle or ellipse describes a

circle of 25(5)km radius to show scale. This circle is distorted in Northerly cities as a consequence

of our map projection. To show the configuration of each city, the background shows lights at

night in 2010. In the top row, with 2010 populations of 1.1m and 0.9m Tibilsi (Georgia) and

Toulouse (France) are among the smallest cities in our sample to have subways. In 2010 their

subway systems consist of 21 and 37 stations, and 27 and 28 route km. In the middle row, Boston

and Singapore have populations of 4.7m and 5.1m, near the 4.7m mean for subway cities. Their

subway systems consist of 74 and 78 stations and of 88 and 111 route km, which makes both

systems somewhat larger than both world and the relevant continental averages. The bottom row

of figure 2 shows two of the largest cities in our sample, Mexico City and Beijing. The population

of Mexico City in 2010 was just over 20m against about 15m for Beijing. Their subway systems

contained 147 and 124 stations and consisted of 182 and 209 route kilometers.

Figure 2 reveals that in each of the six cities only a small portion of the city is within walking

distance of a subway and the catchment area of the subway is centrally located. This is typical. An

average city in our sample has about 57 stations. Of these, about 9% are within 1500m of the center,

about 29% are between 1500m and 5km of the center, about the same share lie between 5 and 10km

and between 10 and 25km. Just 7% of stations are beyond 25km from the center. Since the area to

be served expands quadratically, this means that subways per square kilometer decreases rapidly

with radial distance. In an average subway city, there are 0.67 stations per km2 within 1500m of

the center, 0.22 stations per km2 between 1500m and 5km from the center, 0.07 stations per km2

between 5 and 10km from the center, and 0.001 stations per km2 between 10 and 25km from the

center. Thus, in an average city, the preponderance of the subway system is located within 10km

of the center and station density decreases rapidly with distance from the center. This is consistent

with the argument that public transit preponderantly serves downtown cores in Glaeser, Kahn,

and Rappaport (2008).

Close inspection of the network maps in figure 2 suggests that our networks probably diverge

slightly from the actual network. The algorithm that we use to construct network maps connects

all open stations on a subway line by the shortest possible route. Therefore, our measure of length

is a measure of the route kilometers required to serve operational stations in each year rather than

a literal measure of the length of track in the system.13 While we regard the route kilometers

13Our algorithm will produce routes that diverge from the actual routes for four reasons. First, if pairs of stations
are connected with curving track, the actual route will diverge from our straight line network. Second, if intermediate
stations on a line open after the end points, then the algorithm will not include the intermediate stations on the network
until they open. Third, we may mis-attribute stations to subway lines. Fourth, if a route is served by two or more sets
of tracks — such as in New York city — then this replication is invisible to us.
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Figure 2: Lights and subways in 2010 for six cities

Tibilisi: 1.1m pop, 21 stations Toulouse: 0.9m pop and 37 stations

Boston: 4.7m pop, 74 stations Singapore: 5.1m pop, 78 stations

Mexico City: 20.1m pop and 147 stations Beijing: 15m pop and 124 stations

Note: Images show 2010 radiance calibrated lights at night, 2010 subway route maps, and all subway stations
constructed prior to 2010. The gray/green ellipses in each figure are projected 5km and 25km radius circles to
show scale and light gray/blue is water.

measure as being of considerable interest, we suspect it is a noisier measure of subway extent than

is the count of operational stations. Given this, our investigation relies primarily on the count

of operational stations to measure system extent, although our results are robust to the choice of

subway measure.

Table 1 describes the world’s subway systems in 2010. In 2010 in our sample of cities, there
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were 7,886 operational subway stations and 10,672 route kilometers of subways, divided across 138

operational systems. Of these 138 subway cities, 53 are in Asia, 40 in Europe, 30 in North America,

14 in South America and one in Africa. Asia, Europe, North America and South America account

for 38, 35, 20 and 6 percent of all operational stations in 2010. The corresponding percentages of

route kilometers are 39 for Asia, 33 for Europe, 21 for North America and 6 for South America.

Thus, Asia has more systems than Europe, but a typical system in Europe has more stations and

route kilometers. North America accounts for a small share of subway stations and route km, it

contains a small number of systems and the average extent of these systems is between that of

Asian and European systems.

Table 1 reveals substantial differences in the availability of subways across continents. Of the

347 large cities in Asia only 53, about 15%, have subway systems. In Europe, more than two thirds

of large cities have subways, while in North America it is just less than one third. South America is

a bit lower at 25%. Conditional on being in a subway city, the level of service also varies widely by

continent. Cities are smaller and subway systems larger in Europe where there are 25,000 people

per route km and 32,000 per station. These service levels are higher than those in North America

and Asia and higher still than those in Asian and South American subway cities. Interestingly,

although the share of North American cities with subways is much higher than in Asia, people per

station and people per route km in subway cities are close for the two continents.

Two features of table 1 stand out. First, the huge gap in subway provision between Europe and

the rest of the world. Second, the weak connection between mean city size and subway extent.

In particular, Asia is home to the preponderance of the world’s large cities while South America’s

cities are larger, on average, than those elsewhere. However, neither South America nor Asia is

well provided with subways relative to Europe and North America. Indeed, Europe’s cities are the

smallest and slowest growing, and it is by far the best provided with subways.

Figure 1 illustrates the expansion of the world’s subway systems over the past century. There

were four subway systems in operation prior to or during 1860; Liverpool, Boston, London and

New York. The "L" opened in Chicago in 1892 and The Paris Metro opened in 1900. Both the

aggregate world data and the continental data, except for Asia, show a first wave of subway con-

struction between the two world wars and a second wave beginning in the 1970s and continuing

to 2010. The growth of Asian subways begins in the 1970s and has accelerated since. Except for

North America, expansion of subway systems and increases in the number of subway cities track

each other closely. In 2010, the 1,169 subway stations operating in the us were spread across 21

cities. However, 489 of these stations were in New York. Chicago is the second largest system at

142 stations. On average, the remaining 19 us subway cities have just 29 stations each, just over

half the sample average.
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Table 2: Public transit ridership (2010)

Annual ridership Annual ridership per capita Population
(millions of rides) (rides per person per year) (millions)

Mean Std. dev. 0.10 0.90 Mean Std. dev. 0.10 0.90 Mean Cities Countries
Subway 377 640 18 1,110 69 76 8 127 5.6 77 34
Bus 242 343 26 697 67 80 12 170 4.0 40 17
Bus | Subways> 0 256 315 36 584 74 86 14 145 4.5 31 17

Source: American Public Transportation Association, public transit agencies, municipal and state-level statistics agencies,
and railway companies.

E Public transit ridership data

We collected panel data on public transit ridership for the cities in our database from publicly

available sources and reports. We were able to obtain data on 77 subway systems and 40 bus

transit systems.14 Table 2 shows ridership descriptive statistics for subways and buses in 2010.

Bus systems provide on average 240 million trips per year, whereas subways provide on average

380 million trips per year. In per capita terms (columns 5-8), subways and buses are about equally

important in terms of rides per person per year. This is true not only when comparing averages,

but also when comparing cities for which both types of ridership information are available.

5. The relationship between subways and population

We now turn to a description of the relationship between subways and population. Figure 3 shows

the relationship in 2010 between city size and the incidence of subway systems for all of the cities

in our sample excluding Tokyo.15 The horizontal axis gives city population by 0.5m bin and the

vertical axis gives the proportion of cities with subways for each bin. We split our sample of cities

into rich and poor country cities on the basis of the imf advanced economy list for 2012.16 Grey

squares and black triangles indicate the share of rich and poor country cities with subways. The

markers are spaced irregularly along the horizontal axis because some population bins are empty.

The solid line is a smoothed plot of subway frequency in rich country cities and the dashed line is

the corresponding plot for poor country cities.17

14Information on bus ridership by year is only reported by integrated transit systems, something that is not common
in developing countries. In particular, we have no bus ridership data for cities in Africa and South America.

15At 36 million people, Tokyo is nearly twice as large as the second largest city. We omit it from the figure to improve
legibility.

16These rich countries are: Australia, Japan, New Zealand, the United States, Canada, Austria, Belgium, Czech
Republic, Denmark, Finland, France, Germany, Greece, Ireland, Israel, Italy, Netherlands, Norway, Portugal, Singapore,
South Korea, Spain, Sweden, Switzerland and the United Kingdom.

17More specifically, both lines are kernel weighted local polynomial regressions.
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Figure 3: Proportion of cities with subways systems by population for two income classes
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Note: Gray squares correspond to rich country cities and black triangles to poor
country cities. See footnote 16 for the list of countries.

There are no rich country cities with population above 5m without a subway system and sub-

ways are common even among rich country cities with populations in the 1m-5m range. Subways

are relatively rare among developing country cities with populations less than about 5m and their

frequency increases more or less smoothly with city size.

Table 3 describes the largest 90 cities in our sample as of 2010. For each city, the table reports

population, the count of operational stations and the number of stations per 100,000 of population.

Despite the strong relationship between city size and the presence of a subway system that we see

in figure 3, table 3 suggests that the relationship between population and subways is nuanced. In

particular, none of the four cities larger than New York has even half as many subway stations.

Looking down the list, we see that such reversals are common and do not simply reflect rich and

poor country differences. Consistent with this, the raw correlation between operational stations

and population in 2010 is about 0.58. While subways are clearly more common in big cities, the

relationship between system extent and city size is noisy. Because some of the world’s largest cities

have no subway system to speak of, table 3 suggests that subway capacity may not be a binding

constraint on city size.
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Table 3: Population and subway stations for the world’s 90 largest cities as of 2010.

City Name Pop. Stations Stations pp. City Name Pop. Stations Stations pp.
Tokyo 36,933 255 0.69 Ho Chi Minh City 6,189 . .
Delhi 21,935 128 0.58 Miami 5,971 22 0.37
Mexico City 20,142 147 0.73 Santiago 5,959 93 1.56
New York 20,104 489 2.43 Baghdad 5,891 . .
Sao Paulo 19,649 62 0.32 Philadelphia 5,841 64 1.10
Shanghai 19,554 239 1.22 Nanjing 5,665 54 0.95
Mumbai 19,422 . . Haerbin 5,496 . .
Beijing 15,000 124 0.83 Barcelona 5,488 137 2.50
Dhaka 14,930 . . Toronto 5,485 69 1.26
Kolkata 14,283 23 0.16 Shenyang 5,469 22 0.40
Karachi 13,500 . . Belo Horizonte 5,407 19 0.35
Buenos Aires 13,370 76 0.57 Riyadh 5,227 . .
Los Angeles 13,223 30 0.23 Hangzhou 5,189 . .
Rio de Janeiro 11,867 35 0.29 Dallas-Fort Worth 5,143 . .
Manila 11,654 43 0.37 Singapore 5,086 78 1.53
Moscow 11,472 168 1.46 Chittagong 5,069 . .
Osaka 11,430 125 1.09 Pune 4,951 . .
Cairo 11,031 51 0.46 Atlanta 4,875 38 0.78
Istanbul 10,953 12 0.11 Xi’an, Shaanxi 4,846 . .
Lagos 10,788 . . Saint Petersburg 4,842 63 1.30
Paris 10,516 299 2.84 Luanda 4,790 . .
Guangzhou 10,486 123 1.17 Houston 4,785 . .
Shenzhen 10,222 47 0.46 Boston 4,772 74 1.55
Seoul 9,751 360 3.69 Washington, D.C. 4,634 86 1.86
Chongqing 9,732 . . Khartoum 4,516 . .
Jakarta 9,630 . . Sydney 4,479 . .
Chicago 9,545 142 1.49 Guadalajara 4,442 17 0.38
Lima 8,950 16 0.18 Surat 4,438 . .
London 8,923 267 2.99 Alexandria 4,400 . .
Wuhan 8,904 25 0.28 Detroit 4,364 12 0.27
Tianjin 8,535 36 0.42 Yangon 4,356 . .
Chennai 8,523 . . Abidjan 4,151 . .
Bogota 8,502 . . Monterrey 4,100 32 0.78
Kinshasa 8,415 . . Ankara 4,074 12 0.29
Bangalore 8,275 . . Shantou 4,062 . .
Bangkok 8,213 51 0.62 Salvador 3,947 . .
Hyderabad 7,578 . . Melbourne 3,896 . .
Lahore 7,352 . . Porto Alegre 3,892 17 0.44
Tehran 7,243 54 0.75 Phoenix 3,830 . .
Dongguan 7,160 . . Montreal 3,808 68 1.79
Hong Kong 7,053 54 0.77 Zhengzhou 3,796 . .
Madrid 6,405 239 3.73 Johannesburg 3,763 . .
Chengdu 6,397 16 0.25 Brasilia 3,701 27 0.73
Ahmadabad 6,210 . . Recife 3,684 28 0.76
Foshan 6,208 . . San Francisco 3,681 48 1.30

Note: Populations in thousands. Subway stations per person is per 100,000 residents.
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Figure 4: Subway system opening and population growth (constant sample)
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Note: The graph depicts mean change in city log population according to time to system opening. t = 0
which indicates the year in which a city’s subway system was inaugurated. We impose a constant sample
of cities on either side of t = 0. Graph based on constant sample of 61 cities.

Figure 5: Subway system opening and population growth (constant sample)
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Note: The graph depicts residuals from a regression of change in city log population against continent and
year fixed effects using the same sample of cities as Figure 4. Residuals from the regression are averaged
conditional on time from subway opening and shown in the graph. t = 0 indicates the year in which a city’s
subway system was inaugurated.
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Figure 6: Subway system opening and population growth (non-constant sample)
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Note:The graph depicts mean change in city log population according to time to system opening. t = 0
indicates the year in which a city’s subway system was inaugurated. Graph is based on a sample of 115

cities.

Table 4: Mean city-year population growth rates by time to a subway expansion

5 year period ∆log(population)
Event Two periods Period before Subway expansion Period after Two periods
type before expansion expansion period expansion after expansion N
Panel a: Raw growth rates
1 0.063 0.054*** 138
2 0.078 0.067** 0.064** 60
3 0.090*** 0.073 204
4 0.120** 0.107*** 0.083 141
5 0.075*** 0.061 0.052** 64
Panel b: Growth rates relative to expansion period controlling for continent and year fixed effects
1 −0.001 138
2 −0.001 −0.009 60
3 0.006* 204
4 0.013* 0.012* 141
5 0.009* −0.007 64

Notes: Each row in panel (a) shows growth rates of cities in consecutive time periods. Event type 1 is a period of subway
expansion (in the middle column) followed by a period with no expansion. Event type 2 is a period of expansion
followed by two consecutive 5 year periods with no expansion. Event type 3 is a period with no subway expansions
leading up to a period with expansions, and so on. Each row in panel (b) shows the difference in growth rates of cities
(relative to a period of expansion) in consecutive time periods from a regression controlling for continent and year fixed
effects. Stars indicate a significant difference of growth rate compared to period an expansion period. *** 1%, ** 5%, *
10% significance respectively.
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We now turn to an investigation of what happens to a city when its subway system is inaugu-

rated. Figure 4 presents three panels describing the relationship between changes in population

and the introduction of a subway system in a city using event study graphs.

The top panel of figure 4 shows the average population growth rate of cities as a function of the

time since their subway system opened.18 This figure is based on data describing the 61 cities that

opened their subway between 1970 and 1990, the set of cities for which we can calculate population

growth rates both for 20 years before and after their subway opens. This figure shows that the

average population growth rate during the five years following the opening of a subway system

is about 8%. During the five year period preceding a subway opening by five years, the average

population growth rate is about 12%. During the 20 years before and after a subway opening, the

average city in our sample sees its growth rate decrease and there is no obvious change in this

trend around the opening of the subway system.

The decrease in population growth rates visible in the top panel reflects a sample-wide de-

crease in growth rates. It may be that this downward trend masks increases in growth rates

associated with subway system openings. Figure 5 investigates this possibility by controlling

for each period’s mean growth rate. Using the same sample as in the top panel, for each year

we calculate each city’s residual growth rate from a regression of growth rates on continent and

year dummies. We next calculate the average of these residuals conditional on time from subway

opening. Unsurprisingly, this process removes the downward trend that we see in the first three

panels. Perhaps more surprisingly, it still does not show a systematic change in growth rates

following subway system inaugurations.

Figures 4 and 5 show that city population growth rates do not increase during the 20 year period

following the opening of a subway system. As we discuss in section 2, the literature documents

effects of subways on within city outcomes over much shorter periods and the effects of other

types of infrastructure on city level outcomes over a 10-20 year horizon. Thus, the 40 year period

illustrated in Figures 4 and 5 should be long enough to reveal whether growth rates respond to a

subway system opening. Nevertheless, in figure 6 we use our entire sample of cities and investigate

population growth rates over the longest time period that our 60 year sample allows, 55 years. This

figure suggests that the pattern we see in figure 4 extends nearly 55 years before and after a subway

opening, although our estimates become noisier as the time from the subway opening approaches

55 years.

To check for differences across regions in the relationship between urban growth and subways,

we produce analogous figures continent by continent (not shown). Remarkably, each of the

continents shows a similar pattern. Urban population growth rates decrease in the period around

18The horizontal axis of each panel is time in years since a subway system in a city is inaugurated, with negative
values indicating years prior and conversely. The vertical axis indicates the mean change in log population — the
population growth rate — for all cities during the five year period ending t years before or after the subway opening.
The solid line plots the mean growth rate and dashed lines give upper and lower 95% confidence bounds. These are
local bounds constructed by connecting upper and lower 5% bounds at each year.
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subway openings and there is no obvious sign of a change in this trend at the time a subway opens.

The only qualification of this statement applies to Europe, where there is a statistically insignificant

positive deviation from trend around the opening of a subway system. We also produced analogs

to figures 4 and 5 where we restrict attention to cities with population above 1m in 1970. This

eliminates the small fast growing cities that qualify for the sample late in the sampling period. The

resulting figures are difficult to distinguish from those presented here in figure 4.

Figures 4, 5 and 6 describe population growth rates as time varies relative to the date of a

subway system opening. In Table 4 we turn our attention to the relationship between subway

expansions and growth rates. The top row of panel (a) describes 138 city-year pairs where a city-year

with a subway expansion is followed by a city-year without a subway expansion (recall that we

use observations every five years so technically the table reflects quinquennial city-periods). On

average, the growth rate in city-years with an expansion is 0.063, and in the subsequent city-year,

without an expansion, it is 0.054. A t-test of the difference between the two means indicates that

they are statistically different with high probability. In short, population growth rates are lower

following a subway expansion than during one.

The remaining three rows of panel (a) of table 4 perform similar calculations for slightly dif-

ferent sets of city-years. In row two we consider the 60 city-year triples for which we observe

a subway expansion followed by two city-years without an expansion. As for row 1, we see

that growth rates decrease following a subway expansion and that the decrease in growth rate

is statistically different from zero. In the third row we consider the 204 pairs of city-years where a

subway expansion follows a city-year without an expansion. The mean growth rate for city-years

preceding a subway expansion is larger than for city-years with an expansion, and this difference

is statistically different from zero. The fourth row of table 4 considers the 141 triples of city-years

where a subway expansion is preceded by two years without an expansion. Again, we see that

city growth rates decrease in the years leading up to a subway expansion. The last row of panel a

in table 4 considers the 64 triples of city-years for which a subway expansion follows and precedes

city-years without expansions. The pattern of the other rows is preserved. Population growth rates

are higher before a subway expansion and lower after, and this trend is statistically different from

zero.

Similarly to the middle of figure 4, panel (b) of table 4 replicates the results of panel (a), but

controls for continent and year fixed effects. Specifically, the values reported in panel (b) of table 4

are regression coefficients β from the regression,

∆log(Popit) = αt + φj +
2

∑
k=−2

βk · I(Time to Expansion Indicatorsit = k) + εit,

where φj refers to continent dummies and the excluded category for the time to expansion indica-

tors is k = 0. Standard errors are clustered at the city level, and we use the same samples as in the

top panel. We test whether the various time to expansion coefficients are different from the year

zero coefficient using a robust F-test. Panel (b) of the table shows that even after we control for
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year and continent fixed effects, subway expansions are not associated with a measurable increase

in population growth rates.

6. Econometric model

The descriptive evidence presented so far indicates a positive cross-sectional relationship between

the extent of a city’s subway network and its population. Larger cities have more extensive subway

networks. On the other hand, time series evidence suggests that changes to subway networks do

not affect the population of cities. These facts suggest that large cities build and expand subway

networks but that these networks do not cause changes in subsequent population growth. To

establish this causal interpretation of the patterns we see in the raw data, we must address two

main inference problems, confounding dynamics and omitted variables.

A The problem of confounding dynamics

Confounding dynamics arise if subway extent and population evolve such that subways open or

expand in years that are, on average, different from other years. Many examples are possible.

Cities may tend to build and open subways as some constraint to their growth begins to bind

and their growth is slowing. In this case, these cities might have seen a dramatic decrease in

growth had they failed to construct a subway but manage to maintain their growth by adding to

their networks. Alternatively, city population may naturally decrease when subways open and

construction workers leave, and positive effects of subways on growth just offset this loss.

More generally, this class of problems arises when there is some series of population shocks

that systematically precedes an expansion of the subway network and confounds naive estimates

of the relationship between subway expansion and growth. Describing the problem in this way

suggests two possible responses. The first is simply to control for the history of population growth

in the period leading up to a subway expansion. In this way, we can estimate the effect of subways,

holding constant their population growth during the preceding periods. The second is to find an

instrument that predicts subway expansions but is conditionally orthogonal to the hypothetical

sequence of confounding population shocks.

As we will see, subway systems grow along a predictable trajectory (see appendix figure A.1)

and so long lags of subway extent are good predictors of current subway growth (See figure A.2).19

19Indeed, the growth of subway systems is surprisingly predictable. We can only speculate as to why this might be.
One explanation that would lead to the pattern we observe is that every city’s administration tries to show competence
by adding a subway line to the system. Another possibility is suggested by Gomez-Ibanez’s (Gomez-Ibanez, 1996)
history of the Boston subway. In this history, Gomez-Ibanez documents a series of expansions, partly motivated by the
need to expand the tax base on which to draw for subsidies for the system.

23



By construction, long lags of subway extent pre-date the hypothetical confounding recent history

of population growth, and hence should satisfy the relevant exclusion restriction.20

In the remainder of this section we develop an econometric model that allows us to make this

intuition precise and will form the basis for subsequent estimations. To begin, index the set of

observed cities by i and the set of observed years by t. Let yit denote an outcome of interest for city

i in year t. Depending on context, y will be population, mean light intensity within 25km of the city

center, centrality or ridership. Let sit denote a measure of subway extent in city i in year t, usually

the number of operational stations but sometimes the number of operational subway lines or route

kilometers. Let xit denote a vector of time varying city level covariates, most often country level

population, gdp per capita and continent specific year indicators, and zi a time-invariant vector of

city level controls. The operator ∆ denotes first differences, ∆xt = xt − xt−1.

We do not have a strong prior over whether subways should affect city population levels or

growth rates additively or multiplicatively. However, plots of population growth against subway

growth in both logarithms and levels clearly suggest that the logarithmic forms better represent

the data. Given this, quantities are typically in logarithms and where necessary we add one to

variables to facilitate this transformation. This also allows us to interpret regression coefficients as

elasticities.

In light of the differences between the time series and cross-sectional relationship between sub-

ways and population growth, we are also concerned that cities have time invariant characteristics

correlated with size and subway extent. The following system, while too stark to be defensible,

formalizes this problem and allows a discussion of how our lagged subways instrument addresses

the problem of confounding dynamics.

yit = A1sit + ci + εit (4)

sit = B1sit−k + di + ηit, (5)

where A1, the "outcome elasticity of subway extent", is the parameter of interest and k is a positive

integer. In words, population depends on contemporaneous subways, a city specific intercept and

a random disturbance. Subways at t depend on subways at period t− k, a city specific intercept

and a random disturbance.

Written this way, it is natural to consider using sit−k as an instrument for sit. This is subject

to two objections. First, this system of equation commits us to a particular dynamic structure for

the relationship between subways and population. It is natural to wonder whether this dynamic

structure is correct. In our estimations we consider alternative dynamic structures for our data.

Second, unobserved time invariant determinants of subway construction are probably related to

unobserved time invariant determinants of growth. That is, cov(ci, di) 6= 0. It follows that, because

20It is worth pointing out that our use of long lags of subway system status as a source of quasi-random variation is
conceptually similar to the use of historical networks as instruments for highways, e.g., Duranton and Turner (2012).
The difference is that we here implement a panel data model, which looks quite different from the existing literature on
roads, and our ‘long lags’ are recent relative to the historical network variables used in Duranton and Turner (2012).
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sit−k also depends on di, we should not expect cov((ci + εit), sit−k) = 0. That is, the dynamic

structure described by equations (4) and (5) requires that sit−k be correlated with unobservables in

the population equation, and thus, that it is not a valid instrument in this context.

As a first response to this problem, first difference equations 4 and 5 to get

∆yit = A1∆sit + ∆εit (6)

∆sit = B1∆sit−k + ∆ηit. (7)

Differencing solves two problems. First, and as usual, it removes time-invariant unobservables

from the first equation.21 Second, after removing the city specific intercept from the population

equation, the validity of lagged subways as an instrument for current subways hinges on the

whether cov(∆sit−k, ∆εit) = 0, or in words, on whether lagged change in subways is uncorrelated

with current change in the time varying propensity to grow. This is simply a more technical

statement of the intuition that motivates this instrumental variables strategy.22

Since ∆sit−k = sit − sit−k and since the error term in equation 6 no longer includes ci, as is

standard in dynamic panel estimation, the same logic that justifies using ∆sit−k as an instrument

also justifies using the component levels. In fact, we find that the levels have much better predictive

ability in the first stage than do changes, and so we rely on lagged levels of log subways as our

instruments.

The discussion above describes an econometric strategy based around using old subway system

extent to instrument for current subway system growth. An alternative is to use lagged changes of

population to instrument for current changes in subways. The basic logic of this approach is similar

to that described above. However, lagged population levels and changes have less ability to predict

current changes to subways than do lagged subway variables, so we organize our discussion and

analysis around the lagged subways instruments.

The instrumental variable strategy articulated above responds to the possibility that subway

construction reflects recent trends in population. A more direct approach to this problem is to

simply control for lagged population, which we also do in the results section.

A related problem arises if both population growth and subway growth reflect some unob-

served city specific time-varying factor. For example, it may be that poor administrations cause

cities to grow slowly and build subway networks. In this case, our estimated effect of subways on

population growth confounds the effects of bad municipal government with the effects of subways.

To address this possibility, we would like to include fixed effects in the first differences regressions,

21While differencing solves one problem, it may create another. If k = 1 then both ∆sit−1 and ∆yit involve terms for
quantities for time t− 1. If we are concerned about contemporaneous correlation of errors in the population and subway
equations, then this creates an obvious problem. This is a classic problem in dynamic panel data and the conventional
approach is to substitute sit−2 for ∆sit−1 or to use longer lags.

22We note that the instrumental variables strategy described here is related to the one proposed by Olley and Pakes
(1991), while the exogeneity condition of equation 7 is related to ideas developed in Arellano and Bond (1991).

25



or equivalently, city specific trend in the levels regressions, equations (4) and (5). To implement

this estimator, we second difference equation (4).23

Summarizing, our econometric investigation will be organized around estimating the following

system,

yit = A1sit + A2xit + A3zi + ci + git + εit (8)

sit = B1sit−k + B2xit + B3zi + di + hit + ηit. (9)

This generalizes equations 4 and 5 in a number of ways. First, it allows for time-invariant control

variables, zi. Second, it allows for city specific trends and intercepts in both population and

subways equations. Third, it allows for time varying controls, lags of yi in particular. In practice,

we predict current changes in subways with 20 or 40 year old subway extent, so that k = 4 or 8.

B The problem of omitted variables

We are concerned that subway expansions and population growth are correlated with some un-

observable. For example, one can imagine that cities experiencing bouts of growth-inhibiting

automobile congestion decide to build subways. If this is indeed the case, then we should observe

different effects of subways on population growth in congested than in uncongested cities. In

particular, we should observe that subway expansions in cities with low levels of congestion attract

population but that subway expansions in congested cities do not (or conversely). If we find no

heterogenous effects of subways by city congestion levels, this suggests that this particular omitted

variable is not biasing our estimations.

A second possibility is that the effect of subways on growth may be heterogenous across fixed

city characteristics. For example, subway expansions may attract population to cities that already

have a substantial subway network coverage, such as Paris or New York, but not to cities such

as Miami with small systems. We can test for this by looking for heterogenous effects by subway

network coverage. If we find no heterogenous effects by subway network coverage, we interpret

this as suggestive that this type of consideration is not leading to the null result.

More formally, we estimate the following regression

∆yit = A1∆sit + A2(∆sit × xi) + ∆εit (10)

where xi denotes the terminal value of some control variable omitted from our main specification.24

The particular variables that we consider measure: topography; the terminal stock of roads; capital

23In principle, one could also implement our instrumental variables strategy in second differences. We experimented
with this but found that lagged subways and population variables do not have much ability to predict current second
differences of subways. Consequently, these regressions were not informative.

24We do not have a strong prior over whether or not the variable xi should occur independently in this equation. It is
conventional that it should do so, however, since this is a first difference regression and since the xi’s do not vary over
time, the first difference of a regression in levels that included an independent xi term would look like equation (10). As
a practical matter, we report estimates of equation (10), but corresponding estimates that include and independent term
in xi do not lead to important differences in our estimates of the effects of subways on population growth.
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status; post wwii subway system indicator; degree of centralization; road congestion levels; and an

ease of doing business index, among others. The data sources and definitions for these variables

are described in the data appendix.

7. Subways and population: Main estimation results

We proceed by estimating successively more complete and complex versions of equations (8) and

(9). To begin, in table 5 we estimate equation (8) using OLS on pooled cross-sections. Such

estimations result in unbiased estimates only if the time invariant determinants of subways and

population are uncorrelated. This condition seems implausible. We expect that unobserved factors

affecting the attractiveness of a city also affect its construction of subways, so we regard these

estimations as primarily descriptive.

In column 1 of table 5 we regress the log of population on log of the count of operational subway

stations. We use the entire sample of 632 cities for which we have population and subway data.

Since our panel is complete for these two variables, we have a sample of 13× 632 = 8,216 city-

years. The subway elasticity of population is large. A 10% increase in a city’s count of stations

is associated with a 4.8% increase in population. Column 2 replicates this result, but controls for

country level gdp and continent-by-year fixed effects, along with several time-invariant controls;

a capital city indicator, and distances to the ocean, international boundary and nearest navigable

river. We see that the coefficient on subways, while still large, decreases to 0.28. Our sample

size decreases to 7,374 in this regression, primarily because a number of the countries covered by

our sample, particularly those in the former Soviet Union, came into existence after 1950 and so

country level gdp is not available.

Column 3 considers the same regression as column 2 but restricts attention to cities that had

subways in 2010. This is the largest sample of cities that could possibly contribute to a first

differences estimate of the effect of subways. This reduces our sample to 1,565 city-years but leaves

the coefficient of subways almost unchanged. The sample of 137 cities used in column 3 includes

some cities that were small in 1950 and grew quickly to cross the 750,000 threshold for inclusion

in the un World Cities Data. To investigate the importance of this sampling problem in column

4 we restrict attention to cities that were already large in 1970 (above 1 million).25 The estimated

coefficient with the sample restricted to large cities changes very little. Columns 5 and 6 replicate

column 3, but consider alternative measures of subway extent, route kilometers and log subway

lines. Coefficient magnitudes change approximately in proportion to the changes in the standard

deviation of the subway measures.

Column 7 reports a regression similar to column 3, where our dependent variable is the log-

arithm of mean light intensity in a 25 km disk centered on the city. As in column 3, we restrict

25We experimented extensively with different sampling rules to investigate whether our results are driven by the
small cities that grow rapidly to get into the sample. We could find no evidence that this is the case.
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Table 5: Pooled cross sectional estimation

All cities Subway cities

(1) (2) (3) (4) (5) (6) (7)
ln(popt) ln(popt) ln(popt) ln(popt) ln(popt) ln(popt) ln(Lightst)

ln(subway stationst) 0.48∗∗∗ 0.28∗∗∗ 0.26∗∗∗ 0.22∗∗∗ 0.17∗∗∗

(0.02) (0.03) (0.03) (0.03) (0.03)

ln(route kmt) 0.23∗∗∗

(0.03)

ln(subway linest) 0.52∗∗∗

(0.06)

ln(GDPpct) 0.31∗∗∗ 0.02 -0.04 0.03 0.01 0.37∗∗∗

(0.04) (0.09) (0.08) (0.09) (0.09) (0.08)

ln(COUNTRY POPt) 0.17∗∗∗ 0.28∗∗∗ 0.22∗∗∗ 0.29∗∗∗ 0.27∗∗∗ 0.20∗∗∗

(0.03) (0.05) (0.06) (0.06) (0.06) (0.05)
Geographic controls No Yes Yes Yes Yes Yes Yes
YearXContinent dummies No Yes Yes Yes Yes Yes Yes
Mean of dep. variable 13.35 13.44 14.48 14.82 14.48 14.48 4.67
Mean of subways regressor 0.38 0.40 1.88 2.18 1.99 0.79 3.06
SD subways regressor 1.15 1.17 1.92 1.96 2.05 0.91 1.49
R-squared 0.18 0.49 0.53 0.58 0.52 0.53 0.54
Number of cities 632 627 137 99 137 137 137
Number of subway cities 138 137 137 99 137 137 137
Number of periods 13 13 13 13 13 13 4
Observations 8216 7374 1565 1155 1565 1565 548

Notes: Dependent variable: Log population of metropolitan area in quinquennial period t (except last column - see (7)
below). City-level clustered standard errors in parentheses. Stars denote significance levels: * 0.10, ** 0.05, *** 0.01.
Geographic controls are capital city dummy, log km to ocean, log km to land border, and log km to navigable river. (1)-
Pooled cross section. (2)- Geographic controls, GDP pc control, country population, and year-by-continent dummies.
(3)- Restrict sample to cities with subway by 2010. (4)- Restrict sample to large cities in 1970 (population > 1 million).
(5)- Log route km of subways as main regressor. Sample is cities with subway by 2010. (6)- Log subway lines in system
as main regressor. Sample is cities with subway by 2010. (7)- Dep. var. is log mean radiance calibrated lights in a 25km
circle around the centroid of the city in quinquennial period t.

attention to cities with subways in 2010. Our sample of city-years is smaller than for population

regressions because we have just four cross sections of lights data. We see that a one percent

increase in subways is associated with a 0.17 percent increase in lights. This is close to our results

for population and suggests that our population regressions are not driven by problems in the

un World Cities Data. In sum, table 5 confirms the conclusion of figure 3. Cities with more

subways tend to be bigger. This relationship is robust to controls, sampling, the particular measure

of subway extent and whether we measure city size with lights or population.

We now turn to first difference regressions. Table 6 presents first difference estimates of a

version of equation (8) without city specific trends. We note that both first difference and within es-
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timators are consistent estimators for equation (8) if the errors, εit, in each period are not correlated

with the regressors in any period conditional on the unobserved fixed effect. Because our approach

to estimating equations (8) and (9) revolves around differencing, we prefer the first differences

estimator.26

Columns 3-6 in table 6 use the same sample of cities as column 3 of table 5, while columns

1 and 2 use the slightly larger sample available when we do not control for changes in gdp. In

column 1, we report the results of regressing change in log population on change in the log of the

count of operational stations. In column 2 we repeat this regression with continent specific year

dummies. Like table 4 we see a negative relationship between subway expansions and population

growth when we do not control for continent specific year effects, but that the relationship between

subways and population is approximately zero once we include these controls. In column 3 we add

controls for country level changes in gdp and population and in column 4 we restrict attention to

large cities in 1970 (over 1 million). In every case, we estimate the effect of subways to be less than

0.01 with standard errors around 0.003. These are tiny effects, precisely estimated. In unreported

results we estimate these same specifications separately for each continent and find virtually no

heterogeneity across continents, indicating that these small coefficients are not masking across-

continent heterogeneity.

In column 5 we control for our measure of bus ridership. We do this to address the following

concern. Suppose that in every year that a city does not invest in subways, it invests in buses, and

that buses and subways substitute perfectly for each other. In this case, years with subway expan-

sions will be identical to years without, even though subways may be having an arbitrarily large

positive effect on population growth. Our data allows us to deal with this particular concern by

controlling for changes in bus ridership. Since the sample of cities and years for which we observe

bus ridership is much smaller than the sample for which we observe subways and population, our

sample of years and cities shrinks considerably. However, including this control does not lead to a

positive effect of subways on population. In fact, the relationship is slightly negative.

In columns 6 and 7 we measure subway extent using route km and counts of subway lines.

We still find very small and statistically insignificant effects. In column 8 we use the average

light intensity in a disk of 25km centered on the city as our dependent variable. As with our

other regressions, we find a much smaller effect than in the comparable cross-sectional regression,

column 7 of table 5, in this case not distinguishable from zero.

In column 9 we replicate column 3 but use 10 year rather than five year intervals to construct

our panel, while in column 10 we report a long difference regression where we conduct a cross-

sectional regression of long differences of population on long differences of subways. Both point

estimates are small negative numbers indistinguishable from zero at ordinary levels of confidence.

26The choice between the two estimators hinges on subtle differences in the errors. The first difference estimator is
more efficient if εit is a random walk, while the within estimator is more efficient if the εit are i.i.d. (Ch. 10, Wooldridge
2001).
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Columns 9 and 10 suggest that our first difference estimates are not an artifact of the frequency

with which we sample the data.27

Summing up, first difference estimates are dramatically smaller than cross-sectional estimates.

Not only are the estimates of the effect smaller than those in the cross-sectional estimates, but they

are small in an absolute sense, often well under 1% and precisely estimated.

We now investigate the possibility of confounding dynamics. Columns 1 and 2 of table 7

replicate column 3 of table 6 while controlling for the second and third lag of population change,

respectively. Our sample size drops slightly in these specifications because we observe lagged

population for fewer city years than contemporaneous population. Like the corresponding first

difference regression in table 6, these regressions indicate tiny and precisely estimated effects of

subways on population growth. Because the first lag of population is mechanically endogenous

in our first difference regressions, columns 1 and 2 of table 7 control for the second and third lags

of population. Column 3, instead reports second difference regressions. If there are city specific

trends, this regression will account for this. As in the first difference regressions, we see a tiny

precisely estimated relationship between subways and population.

In the remainder of table 7 we turn attention to the instrumental variables regressions described

in section 6. That is, we replicate the first difference regressions of columns 1 and 2, but use the

fourth or eighth lag of subways as an instrument for the current change in subways. The appendix

describes the first stage. As we see in appendix figure 1, subway systems grow predictably, and

at a decreasing rate. Thus, given the extent of a subway system in any period, we can forecast the

future, lower, growth rate quite accurately. This is demonstrated in table A.1 which presents first

stage results predicting current subway system growth rate as a function of lagged subway extent

and the controls that appear in the first two columns of table 7. We see that our instruments are not

weak, and behave as we would expect given the profile of system growth that we see in figures A.1

and A.2. Given that the instrument for subway growth in period t is subway extent 20 or 40 years

prior, our instrumented estimate provides a local average treatment effect for which identifying

variation is obtained from lower ranked expansions, as the instrument excludes variation from the

initial and usually highest priority subway stations. For example, subway stations built during the

first decade of a system are on average 6.4km from the city center, whereas this distance increases

to 7.6km and 8.5km in the second and third decades respectively.

In columns 4 and 5 of table 7 we replicate columns 1 and 2, but instrument for change in log

subways with the fourth lag of log subways. In column 6 we replicate column 1 but instrument

for change in subways with the eighth lag of log subways. The IV point estimates of the effect of

log subways are slightly larger than the first difference estimates, but never above 2% and never

27In fact, the long distance estimates are sensitive to the choice of time period. For example, if we conduct a
long difference regression from 1950-2010, we get a statistically significant positive relationship between subways and
population. This result is driven entirely by two cities which grew rapidly over the whole period and built large subway
systems between 2005 and 2010. Excluding these two cities restores a coefficient of about zero in this regression. For
this reason, we regard the long difference estimates as less reliable than other estimates.
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statistically distinguishable from zero.28 As a robustness check, in column 7 we take the specifi-

cation in column 4 but replace the control for lagged population growth with lagged population

level. This results in a negative but insignificantly different from zero instrumented coefficient of

subway expansions on city growth. The IV coefficient estimates are not uniformly positive and

suggest that the effect of subway expansions on city growth is small and not distinguishable from

zero. In sum, table 7 does not support the hypothesis that subways have a large positive effect on

population growth that is masked by some confounding dynamic process.

We next consider models that allow for a distributed lag structure in our data. In column 1 of

table 8, we replicate column 3 of table 6 and in columns 2-4 we substitute successively older lags of

change in subways for the current value. Like the effects of current subways, the effects of lagged

subways are tiny and precisely estimated. In column 5 we include the current change of subways

and three lags and see that coefficients are virtually identical to those we obtain when we include

subway variables one at a time. This suggests that our focus on the relationship between current

subway expansions and current population growth is not leading us to miss some longer term

effect of subways on population growth. These regressions also suggest that a subway expansion

does not affect current or future rates of population growth.

In table 9 we turn attention to the problem of omitted variables using the strategy described

in equation (10). In column 1 of table 9 we replicate the first difference regression from column 3

of table 6 for reference. In column 2 we include an interaction between subways and an indicator

for above median mean slope within 25km of the city center. If we think that cities build subways

when some topographical constraint on their development begins to bind, then we should expect

cities more subject to such topographical constraints to respond differently to changes in subways

than other cities. The results in column 2 do not support this intuition. Column 3 replicates column

2, but in place of the average slope, measures topographical constraints with the elevation range

within 25km of the city center. Like column 2, the results in column 3 do not suggest that subways

affect cities with difficult topography differently than flatter cities.

In column 4 we interact subway growth with an indicator for above median kilometers of high-

ways in a 25km circle around the city. That the coefficients on the main effect and the interaction

are zero suggests that subway growth does not have a differential impact depending on whether

the city is well served by highways. In column 5 we include an interaction between an indicator

for above median traffic congestion and subways. If we think that cities tend to build subways as

traffic congestion begins to constrain their growth, then we should see congested and uncongested

28Although point estimates from IV and first difference estimates of the effect of subways are not distinguishable from
zero at conventional levels, they are close, e.g., compare columns 2 and 5 of table 7. To the extent that IV estimates are
larger than the first difference estimates, they suggests that subways assigned to city-years by the equilibrium process
are assigned to city-years that are growing slightly more slowly than city-years selected at random.
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Table 7: Robustness to confounding dynamics
Time periods: Quinquennial panel

Estimation: OLS IV

Dependent variable: ∆ ln (popt) ∆2 ln (popt) ∆ ln (popt)
(1) (2) (3) (4) (5) (6) (7)

∆ ln(subway stationst) -0.006 -0.006 0.018 0.016 0.014 -0.036
(0.004) (0.003) (0.011) (0.010) (0.015) (0.035)

∆2 ln(subway stationst) -0.003
(0.002)

∆ ln(popt−2) 0.553∗∗∗ 0.599∗∗∗ 0.545∗∗∗ 0.600∗∗∗ 0.546∗∗∗

(0.052) (0.113) (0.053) (0.119) (0.053)

∆ ln(popt−3) -0.059 -0.068
(0.082) (0.087)

ln(popt−2) -0.040∗∗∗

(0.012)

∆ ln(COUNTRY POPt) 0.465∗∗∗ 0.446∗∗∗ 0.434∗∗∗ 0.415∗∗∗ 0.438∗∗∗ 0.868∗∗∗

(0.058) (0.045) (0.061) (0.049) (0.061) (0.123)

∆ ln(GDPpct) 0.128∗∗∗ 0.124∗∗∗ 0.126∗∗∗ 0.122∗∗∗ 0.126∗∗∗ 0.204∗∗∗

(0.025) (0.023) (0.024) (0.022) (0.024) (0.045)

∆2 ln(COUNTRY POPt) 0.301∗∗

(0.100)

∆2 ln(GDPpct) 0.067∗∗

(0.022)
YearXContinent dummies Yes Yes Yes Yes Yes Yes Yes
Mean of dep. variable 0.098 0.091 -0.010 0.098 0.091 0.098 0.106
Mean of subways regressor 0.29 0.31 0.02 0.29 0.31 0.29 0.27
SD subways regressor 0.74 0.77 1.01 0.74 0.77 0.74 0.72
R-squared 0.61 0.60 0.11 0.59 0.58 0.60 0.46
Number of cities 137 137 137 137 137 137 137
Number of subway cities 137 137 137 137 137 137 137
Number of periods 10 9 11 10 9 10 11
F-stat excluded instrument 132.36 147.51 153.49 216.75
Observations 1235 1124 1291 1235 1124 1235 1344

Dependent variable: Change in log population of metropolitan area in a 5 year period. Sample is subway
cities. City-level clustered standard errors in parentheses. Stars denote significance levels: * 0.10, ** 0.05,
*** 0.01. (1)- First differences controlling for ∆ ln(popt−2). (2)- First differences controlling for ∆ ln(popt−2)
and ∆ ln(popt−3). (3)- Second differences regression. (4)- Instrument ∆ ln (st) with ln(st−4) controlling for
∆ ln(popt−2). (5)- Instrument ∆ ln (st) with ln(st−4) controlling for ∆ ln(popt−2) and ∆ ln(popt−3). (6)- Instru-
ment ∆ ln (st) with ln(st−8) controlling for ∆ ln(popt−2). (7)- Instrument ∆ ln (st) with ln(st−4) controlling for
ln(popt−2).
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Table 8: First Differences - Distributed Lag Models
Time periods: Quinquennial panel
Dependent variable: ∆ ln (popt)

(1) (2) (3) (4) (5)
∆ ln(subway stationst) -0.002 -0.002

(0.003) (0.004)

∆ ln(subway stationst−1) -0.002 -0.002
(0.003) (0.003)

∆ ln(subway stationst−2) -0.003 -0.003
(0.003) (0.003)

∆ ln(subway stationst−3) -0.005 -0.006
(0.003) (0.004)

∆ ln(GDPpct) 0.201∗∗∗ 0.201∗∗∗ 0.200∗∗∗ 0.200∗∗∗ 0.200∗∗∗

(0.042) (0.042) (0.042) (0.042) (0.042)

∆ ln(COUNTRY POPt) 0.951∗∗∗ 0.948∗∗∗ 0.946∗∗∗ 0.945∗∗∗ 0.944∗∗∗

(0.118) (0.119) (0.119) (0.119) (0.118)
YearXContinent dummies Yes Yes Yes Yes Yes
Mean of dep. variable 0.11 0.11 0.11 0.11 0.11
Number of cities 137 137 137 137 137
Number of subway cities 137 137 137 137 137
Number of periods 12 12 12 12 12
Observations 1428 1428 1428 1428 1428

Notes: Dependent variable: Change in log population in a 5 year period. Sample
is cities with subway in 2010. City-level clustered standard errors in parentheses.
Stars denote significance levels: * 0.10, ** 0.05, *** 0.01.
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cities respond differently to subways. Column 5 does not support this intuition.

In column 6 we include an interaction of subways with a capital city indicator. If we think, for

example, that capital cities are more likely to be the beneficiary of public expenditure than other

cities, then we might expect such spending to have a lower return in capital cities than elsewhere.

Column 6 does not support this intuition. In column 7 we interact an indicator of an index of

institutional quality with subways. If we think that a city’s response to subways depends on its

ability to reorganize private sector employment, then we might expect cities with a low score on

this index to respond differently to subways than those with a high score. The data also do not

support this idea.

In column 8 we interact subways with an indicator for whether the subway system predates the

second world war — the time when cars became ubiquitous. If we think that older cities are laid

out in a way that is more conducive to public transit, then we might expect to see such older cities

respond differently to subways than other cities. We do not. In column 9 we interact subways with

a measure of city centralization defined as the absolute value of the city light gradient in 1995. The

point estimate on main effect is positive and marginally significant at the 10% level and suggests

that subways have slightly larger effects on population in more decentralized cities — since the

interaction coefficient is negative and of about same magnitude.

Column 10 investigates whether the subway network extent is important. To accomplish this,

we calculate the share of all light within 25km of the center that is within 2km of a station. If

cities respond differently to subways that serve a larger fraction of their economic activity and

population, then we should expect to see a significant coefficient on the interaction of this variable

with subways. Our data do not support this intuition. Column 11 investigates whether cities that

were large in 1950 respond differently to subways. They do not. In column 12 we see that coastal

cities grow slightly less fast in response to subways than do other cities, but this effect is tiny.

Finally, in column 13 we ask whether cities with an effective bus network respond differently

to subways than those that do not. The data suggest that they do not. This is consistent with the

first difference regression in column 9 of table 6, where we see that controlling for bus ridership in

a first difference regression does not lead to a positive estimated effect of subways.

We have now presented five types of results, cross-sectional, first difference, IV, second differ-

ence and first differences including a variety of interaction effects. Consistent with descriptive

evidence presented in section 1, cross-sectional estimates are much larger than first differences

estimates. Results based on metropolitan area light intensity are qualitatively similar to those

based on population. Once we add continent specific year effects in column 3 of table 5 the

cross-sectional estimate of the effect of doubling subway stations is a 26% increase in population.

In first differences, the corresponding estimate is less than 1% and is indistinguishable from zero.

Our attempts to deal with confounding dynamics and with omitted variables do not change this

conclusion.

Broadly, formal econometric results support the conclusion suggested by the descriptive evi-
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dence. That is, that big cities build subways and that these subways subsequently have little or no

effect on the population in these cities. Our most favorable IV regressions indicate that doubling

a subway system will increase population by less than 2%, although these estimates are never

distinguishable from zero and first difference estimates of the effect of subways on population are

often an order of magnitude smaller.

8. Subways and urban form

In this section, we use the lights data to investigate the relationship between urban centralization

and subway extent. We are interested in determining if the light gradient changes with subway

expansions. We follow our previous empirical approach using the light gradient and light intercept

in a city-year as our dependent variables. These variables describe, respectively, the rate at which

light decays with distance from the center, and brightness at the center.

More specifically, we regress our estimate of the light slope B and the intercept A in equation (3)

respectively for each city-year on a measure of subways using the various regression specifications

employed previously to analyze subways and population.

Table 10 reports our results. Panel (a) shows results using the light gradient B as the dependent

variable, while panel (b) shows results using A as the dependent variable. We first discuss panel (a)

at the top of the table. Column 1 shows the pooled OLS estimate. In the cross section, the elasticity

of light gradient to subway extent is 0.034. Given that the light gradient is negative, this indicates

that cities with larger subway systems have a flatter light gradient and are less centralized. Column

2 presents the first difference regression result in which we find an elasticity estimate of 0.023.

In column 3 we control for the second lag of population growth, and find virtually the same

coefficient as in column 2. Columns 4 and 5 present our instrumented first difference estimates and

show that we find a statistically significant elasticity of 0.060. We experimented with a number of

different indexes of centralization, for example, the ratio of light within 5km of the center to light

between 5 and 25km. Our estimates of the effects of subways on decentralization are broadly

similar across indexes.

The bottom part of the table, panel b, shows results using the light intercept A as the dependent

variable. Mean light at the origin is 12.1 log points and is 0.17 log points lower in cities with

subways (column 1). Column 2 shows the first difference regression result in which the elasticity

of light at the origin to subways is -0.20. Controlling for lagged population growth does not change

the estimated coefficient (column 3). Columns 4 and 5 show our instrumented estimates which are

also negative but larger and statistically significant at the 5% level in column 6 which controls for

lagged population growth. Taking together the results in panels (a) and (b) suggests that subways

decentralize activity (flatter light slopes and lower intercept) from the center to the peripheral areas

of the city, and are consistent with the absence of population growth documented in section 7.
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These results allow us to reject the claim that subways lead to a concentration of activity in

the downtown core. While this may seem surprising, decentralization in response to a decrease

in transportation costs is an almost universal feature of theoretical descriptions of cities. It is also

consistent with established empirical results about the effects roads (Baum-Snow (2007), Baum-

Snow et al. (2017) and Garcia-López (2012)) and with Ahlfeldt and Wendland (2011) who find that

commuter rail contributes to the decentralization of Berlin. In our data, we observe that 72% of

subway cities have subway stations beyond 10 kilometers from the city center, and 16% of them

have stations beyond 25 kilometers. These statistics suggest that subways are built to have some

radial capacity that can contribute to decentralization.

One of the most robust findings of the literature using within city variation to study the effects

of subways. e.g., Gibbons and Machin (2005) and Billings (2011), is that economic activity becomes

relatively concentrated near subways. To confirm that this feature is present in our data, we

restricted attention to areas with 2km of a subway station and recalculated light density gradients

for each city on the basis of these areas. As expected, density declines much more slowly along

subway lines than it does along other rays out from the city center. That is, our lights data confirm

the main pattern seen in studies of subways that exploit within city variation.

9. Ridership

Previous literature has provided wide-ranging predictions about travel mode substitution pat-

terns. For example, the Los Angeles subway expansion was opposed by groups representing

residents of poor neighborhoods under the argument that funding (and hence the supply) of buses

serving these neighborhoods would decrease as a consequence of large operating subsidies to the

subway (Grengs, 2002). If this argument holds in general, we should observe that bus ridership

decreases when subways expand. On the other hand, some authors have argued that overall public

transit ridership should be positively affected by subway expansions since buses and subways

complement each other in providing public transportation (c.f. Hensher, 2007). As an example

of why this would occur they point out that bus lines are redesigned after subway expansions to

feed passengers into the subway system. Under this argument bus ridership should increase when

subway systems expand. Finally, studies of rail expansions have argued that most subway users

were previously bus users (Baum Snow and Kahn, 2005), suggesting that the net effect on overall

ridership of rail expansions should be small.

Table 11 shows pooled cross sectional estimates relating subway extent to ridership. Cities with

larger subway systems have more transit riders (the elasticity is 0.90 in column 2). Similarly, cities

with larger subway systems have more subway riders (the elasticity in column 4 is 1.19) as well as

bus riders (the elasticity in column 6 is 0.61). As with Table 5, we view these pooled ols estimates

as mainly descriptive.
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Table 12 presents our first difference estimations. In Column 3 we find that the total transit

ridership elasticity of subway extent is 0.68 (significant at the 5% level). This suggests that subway

expansions lead to increases in total transit ridership.

In columns 4-6 we show that subway ridership elasticity to subway extent is 0.61 and is distin-

guishable from zero. On the other hand, the effect of subway expansions on bus ridership is close to

zero in columns 7-9. This echoes Duranton and Turner (2011) who find that increase to the stock of

highway kilometers in a city lead to large increases in driving, and that only a little of this increase

reflects diversion of traffic from other roads. The results in columns 4-6 also suggest that subway

ridership increases less than proportionally with system extent (e.g., one-sided test p-value=0.044

for column 6). This is interesting for two reasons. First, it suggests that increases in subway extent

elicit smaller increases in ridership than the increases in driving that follow from increases in the

road network (Duranton and Turner, 2011). Second, it suggests that subway networks may be

subject to decreasing returns to scale. This is consistent with findings of decreasing returns to scale

in the road network in Couture, Duranton, and Turner (2018).

10. Discussion

A Subways and growth

On the basis of figure 3, it is natural to conjecture that subways are important for the growth of

cities. Our cross-sectional estimates support this conjecture. With 4.5 lines in an average system,

adding a subway line is about a 23% increase in system extent. Using our cross-sectional estimate

of the relationship between subway lines and population we have that a new subway is associated

with a population increase of about 12%.29 This is close to a back of the envelope calculation of the

population growth that would occur if a new subway line operated at capacity and all of its riders

migrated to the city because of the new subway line.30 Thus, if we compare the cross-sectional

estimates with the technical capabilities of subways, the cross-sectional estimates seem feasible,

but only barely.

Other estimation strategies tell a different story. Our first difference estimates suggest that

doubling the extent of a subway network causes at most a tiny increase in population. While these

estimates are consistent with patterns seen in the raw data, the possibility of confounding dynam-

ics or omitted variables are obstacles to a causal interpretation of these estimates. To investigate the

29From table 5 column 6, the subway line elasticity of population is 0.52. Thus we have, 0.52× 0.23 = 0.12.
30Ten car subway trains can carry about 35,000 people per hour (Transit Capacity and Quality of Service Manual

(1999)(ch. 1, part 1, p1-22), Transit Cooperative Research Program) or 87,500 over the course of a 2.5 hour morning
commute. Thus, a single new subway line could allow 87,500 new commuters to reach a central city. With a 50% labor
force participation rate such a migration could increase a city’s population by 175,000. This is 3.7% increase to the 4.7m
population of an average subway city in our sample. Since an average subway system has 57 stations and an average
subway line has 13.2 stations, adding a new subway line is a 23% increase in the extent of an average subway network.
Dividing, this suggests that doubling the extent of an average subway network could lead to a population increase of
about 0.037

0.23 × 100 = 16.1%.
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possibility that subway expansions systematically occur in periods of low population growth, we

control for the recent history of population growth, conduct second difference and instrumental

variables estimates. These estimates also yield tiny elasticities. To investigate the role of omitted

variables we consider a large set of possible control variables. These estimates fail to find evidence

for a big hidden effect of subways on growth. The weight of evidence hence suggests that big cities

build subways, but that subways have at most a tiny effect on urban population growth.

B Subways and ridership

We also investigate the effect of subway expansions on transit ridership. Somewhat surprisingly,

we find that subway expansions do not decrease bus ridership. We also find that doubling the

extent of a subway network leads to about a 60% increase in ridership. Our estimates are precise

enough to allow us to reject the hypothesis of no-effect and also to reject the hypothesis of a 100%

effect. Thus, our point estimates are suggestive of a large ridership response to subway expansions,

and also of modest decreasing returns to subway extent.

To understand the relationship between our findings for ridership and population, we first cal-

culate the number of immigrant subway commuters that would be required to completely account

for the increase in ridership associated with a subway expansion.31 This calculation suggests that

the increases in ridership that follow subway expansions are far too large to consist of immigrant

commuters. This suggests, in turn, that increases in ridership must primarily reflect an increase in

commute or non-commute trips by current residents.

C Subways and decentralization

Our investigation of the effect of subways on urban form finds that subway expansions cause cities

to spread out. Our first difference and IV estimations in table 10 indicate that a doubling of the

subway network causes the light density gradient to flatten by between 0.02 and 0.06. Using the

larger of these two estimates, we can calculate that a doubling of the subway network causes the

share of all light within 5km of the center to decrease by about 2.2% in an average city, holding

total light constant. At 13.2 stations per line and 57 stations per system, adding an average radial

subway line increases system capacity by about 23% and should lead to about 0.5% decrease in the

central share of a city’s light.

Although this decentralization effect is also seen for radial highways, the effect of subways

seems to be smaller. Baum-Snow (2007) finds that a single interstate highway causes about 9% of

the population of a us city to decentralize, while Baum-Snow et al. (2017) find that a radial highway

31An average subway network serves about 377m riders per year. If a dedicated subway commuter rides the subway
twice per day, 250 days per year, then an average subway system could serve about 0.75m such commuters. This means
doubling the extent of a subway network would require about 0.6× 0.75m = 0.45m new dedicated subway commuters.
With 50% labor force participation and average city population of 4.7m, if, hypothetically, new ridership resulting from
an expansion is provided by new migrants to the city who are dedicated subway commuters, then city population
would increase by about 19% in response to a doubling of system extent.
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causes about 5% of the population of a Chinese city to decentralize. These effects are about 10 times

as large as those we find for subways. The relative size of the subway effect seems even smaller if

we compare the capacity of a subway line with that of a radial highway.32

To understand the relationship between our decentralization results and those for population

and ridership, suppose that changes in light are exactly proportional to changes in residential

population. In this case, doubling the extent of an average city’s subway network would lead to a

2.2% decrease in lights within 5km of the center. If changes in lights and changes in population are

perfectly proportional, this requires that about 94,000 people move in an average city with pop-

ulation 4.7m. Again assuming 50% labor force participation, this means moving 47,000 workers.

If all of these workers use the subway to commute to immobile jobs from their newly remote

residences, this subway induced decentralization will give rise to about 47,000 new dedicated

subway commuters.

We saw above that the increase in ridership that follows from a doubling of the subway network

could serve about 450,000 new dedicated subway commuters. Even under our extreme assump-

tions, this is about 10 times as many as are implied by the amount of decentralization. Thus, we

probably cannot account for the increase in ridership that follows a subway expansion with an

increase in commuting by newly decentralized existing residents.

Since we also cannot account for the increase in ridership with new city residents, we conjecture

that subways either displace other modes of transport while keeping travel constant, or induce

new trips by subway. The evidence provided in Gendron-Carrier et al (2017) that subways lead to

lower levels of pollution is consistent with this kind of transport mode substitution.

11. Conclusion

Subway expansions appear to have little or no effect on population growth, they lead to modest

increases in ridership, and they have small effects on the configuration of cities. New ridership is

unlikely to primarily consist of new commuters and subway expansions probably lead to increases

in aggregate city land rent that are small relative to construction costs. These results do not seem

to provide a basis for justifying the large subsidies that subway construction and operation often

requires.

While we have addressed the effects of subway expansion on population, urban form and

ridership, we have not addressed the effect of subway expansions on air pollution - although this

is taken up in a companion piece (Gendron-Carrier et al. 2017). With this said, our results so far

suggest that the evaluation of subway projects ought to rest on the demand for mobility, farebox

revenue, and not on the ability of subways to promote city growth.

32As we note in footnote 23, a subway line can carry about 35,000 people per hour at peak capacity. A limited access
highway lane carries about 2,200 cars per hour at peak capacity. Thus, a four lane radial highway consisting of two
lanes in each direction can carry about 4,400 cars per hour each way, about 12% of the capacity of a subway line (in the
US, interstate highways are most often two lanes in each direction).
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Table 10: Decentralization - Radiance calibrated light gradient
Panel a - Light gradient

Dependent variable: Light gradient ∆Light Gradient

Estimation: OLS OLS OLS IV IV
(1) (2) (3) (4) (5)

∆ ln(subway stationst) 0.023∗∗∗ 0.024∗∗∗ 0.047∗ 0.060∗∗

(0.0062) (0.0062) (0.025) (0.024)
ln(subway stationst) 0.034∗∗∗

(0.010)
∆ ln(GDPpct) -0.078 -0.079 -0.100∗ -0.11∗

(0.053) (0.053) (0.056) (0.058)
∆ ln(COUNTRY POPt) -0.0051 -0.0014 -0.091 -0.13

(0.17) (0.17) (0.21) (0.22)
ln(GDPpct) 0.043∗

(0.024)
ln(COUNTRY POPt) 0.048∗∗∗

(0.014)
ln(popt−2) control Yes Yes
Mean of dep. variable -0.811 0.041 0.041 0.041 0.041
Mean of subways regressor 3.06 0.36 0.36 0.36 0.36
SD subways regressor 1.49 0.82 0.82 0.82 0.82
R-squared 0.35 0.19 0.19 0.17 0.15

Panel b - Light intercept

Dependent variable: Light intercept ∆Light intercept

Estimation: OLS OLS OLS IV IV
(1) (2) (3) (4) (5)

∆ ln(subway stationst) -0.20∗∗∗ -0.20∗∗∗ -0.33 -0.46∗∗

(0.056) (0.056) (0.20) (0.20)
ln(subway stationst) -0.17∗

(0.085)
∆ ln(GDPpct) 1.36∗∗ 1.37∗∗ 1.48∗∗ 1.61∗∗

(0.47) (0.48) (0.50) (0.52)
∆ ln(COUNTRY POPt) 0.14 0.10 0.62 1.03

(1.20) (1.21) (1.58) (1.59)
ln(GDPpct) 0.030

(0.22)
ln(COUNTRY POPt) -0.23∗

(0.13)
ln(popt−2) control Yes Yes
Mean of dep. variable 12.135 -0.367 -0.367 -0.367 -0.367
Mean of subways regressor 3.06 0.36 0.36 0.36 0.36
SD subways regressor 1.49 0.82 0.82 0.82 0.82
R-squared 0.27 0.30 0.30 0.30 0.28
Number of cities 137 137 137 137 137
Number of subway cities 137 137 137 137 137
Number of periods 4 3 3 3 3
Observations 548 411 411 411 411
Notes: For each city-year, a linear regression was estimated between the log mean radiance
calibrated light intensity in successive rings at 0-1.5km, 1.5-5km, 5-10km, 10-25km and 25-
50km and log distance from the city center centroid. Panel a column 1 dependent variable is
the slope of the light gradient. Columns 2-5 use as dependent variable the change in slope
over a 5 year period. Panel b column 1 dependent variable is the intercept of the light gradient.
City-level robust standard errors in parentheses. All regressions include geographic controls
and year by continent dummies. Stars denote significance levels: * 0.10, ** 0.05, *** 0.01.

42



Ta
bl

e
1
1
:L

og
ri

de
rs

hi
p

-P
oo

le
d

cr
os

s
se

ct
io

n
Ti

m
e

pe
ri

od
s:

Q
ui

nq
ue

nn
ia

lp
an

el
D

ep
en

de
nt

va
ri

ab
le

:
ln
(A

ll
ri

de
rs

hi
p t)

ln
(S

ub
w

ay
ri

de
rs

hi
p t)

ln
(B

us
ri

de
rs

hi
p t)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

ln
(s

ub
w

ay
st

at
io

ns
t)

0
.6

6
∗∗
∗

0
.9

0
∗∗
∗

1
.0

9
∗∗
∗

1
.1

9
∗∗
∗

0
.5

4
∗∗
∗

0
.6

1
∗∗
∗

(0
.1

6
)

(0
.1

5
)

(0
.1

3
)

(0
.1

5
)

(0
.1

4
)

(0
.1

1
)

ln
(G

D
P

pc
t)

-1
.3

1
∗∗
∗

-0
.2

5
-1

.7
6
∗∗
∗

(0
.3

1
)

(0
.2

8
)

(0
.3

7
)

ln
(c

o
u

n
t

r
y

p
o

p
t)

-0
.1

2
-0

.0
9

-0
.0

4

(0
.1

7
)

(0
.1

5
)

(0
.1

5
)

G
eo

gr
ap

hi
c

co
nt

ro
ls

N
o

Ye
s

N
o

Ye
s

N
o

Ye
s

Ye
ar

X
C

on
ti

ne
nt

du
m

m
ie

s
N

o
Ye

s
N

o
Ye

s
N

o
Ye

s
M

ea
n

of
de

p.
va

ri
ab

le
1

9
.7

7
1

9
.7

7
1

8
.8

2
1

8
.8

2
1

8
.6

0
1

8
.6

0

M
ea

n
of

su
bw

ay
s

re
gr

es
so

r
4

.0
4

4
.0

4
3

.8
7

3
.8

7
3
.6

7
3
.6

7

SD
su

bw
ay

s
re

gr
es

so
r

0
.9

8
0

.9
8

1
.0

4
1
.0

4
1
.1

7
1
.1

7

R
-s

qu
ar

ed
0

.3
2

0
.7

8
0

.5
7

0
.7

4
0
.2

3
0
.7

0

N
um

be
r

of
ci

ti
es

3
4

3
4

7
8

7
8

4
5

4
5

N
um

be
r

of
su

bw
ay

ci
ti

es
3

4
3

4
7

8
7

8
4

5
4

5

N
um

be
r

of
pe

ri
od

s
1

0
1

0
1

0
1

0
1

0
1

0

O
bs

er
va

ti
on

s
8

8
8

8
2

2
5

2
2

5
1

1
7

1
1

7

N
ot

es
:D

ep
en

de
nt

va
ri

ab
le

:L
og

ri
de

rs
hi

p
of

su
bw

ay
s

an
d

bu
se

s
in

m
et

ro
po

lit
an

ar
ea

in
pe

ri
od

t.
C

it
y-

le
ve

l
cl

us
te

re
d

st
an

da
rd

er
ro

rs
in

pa
re

nt
he

se
s.

St
ar

s
de

no
te

si
gn

ifi
ca

nc
e

le
ve

ls
:*

0
.1

0
,*

*
0
.0

5
,*

**
0
.0

1
.G

eo
gr

ap
hi

c
co

nt
ro

ls
ar

e
ca

pi
ta

lc
it

y
du

m
m

y,
lo

g
km

to
oc

ea
n,

lo
g

km
to

la
nd

bo
rd

er
,a

nd
lo

g
km

to
m

aj
or

na
vi

ga
bl

e
ri

ve
r.

(O
dd

co
lu

m
ns

)-
Po

ol
ed

cr
os

s
se

ct
io

n.
(E

ve
n

co
lu

m
ns

)-
A

dd
ge

og
ra

ph
ic

co
nt

ro
ls

,
G

D
P

pc
co

nt
ro

l,
co

un
tr

y
po

pu
la

ti
on

,a
nd

ye
ar

X
co

nt
in

en
td

um
m

ie
s.

43



Ta
bl

e
1
2
:L

og
ri

de
rs

hi
p

-F
ir

st
di

ff
er

en
ce

s
Ti

m
e

pe
ri

od
s:

Q
ui

nq
ue

nn
ia

lp
an

el
D

ep
en

de
nt

va
ri

ab
le

:
∆

ln
(A

ll
ri

de
rs

hi
p t)

∆
ln
(S

ub
w

ay
ri

de
rs

hi
p t)

∆
ln
(B

us
ri

de
rs

hi
p t)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

∆
ln
(s

ub
w

ay
st

at
io

ns
t)

0
.7

2
8
∗∗

0
.7

3
4
∗∗

0
.6

7
8
∗∗

0
.5

7
2
∗∗

0
.6

6
0
∗∗

0
.6

1
3
∗∗

-0
.0

0
1

0
.0

0
5

-0
.0

1
1

(0
.2

3
8

)
(0

.2
6

1
)

(0
.2

9
9

)
(0

.2
1

3
)

(0
.1

9
8

)
(0

.2
2

4
)

(0
.0

4
4

)
(0

.0
6

0
)

(0
.0

5
0

)

∆
ln
(G

D
P

pc
t)

0
.0

6
9

0
.1

5
8

0
.2

7
1

(0
.2

2
9

)
(0

.2
2

8
)

(0
.2

7
6

)

∆
ln
(c

o
u

n
t

r
y

p
o

p
t)

1
.2

3
8

1
.1

1
6

3
.1

8
1
∗∗

(1
.3

0
2

)
(1

.1
5

4
)

(1
.1

8
6

)
Ye

ar
X

C
on

ti
ne

nt
du

m
m

ie
s

N
o

Ye
s

Ye
s

N
o

Ye
s

Ye
s

N
o

Ye
s

Ye
s

C
on

ti
ne

nt
du

m
m

ie
s

N
o

Ye
s

Ye
s

N
o

Ye
s

Ye
s

N
o

Ye
s

Ye
s

M
ea

n
of

de
p.

va
ri

ab
le

0
.0

6
4

0
.0

6
4

0
.0

6
4

0
.1

5
0

0
.1

5
0

0
.1

5
0

0
.0

1
4

0
.0

1
4

0
.0

1
4

M
ea

n
of

su
bw

ay
s

re
gr

es
so

r
0

.0
6

0
.0

6
0
.0

6
0
.1

1
0
.1

1
0
.1

1
0
.1

0
0

.1
0

0
.1

0

SD
su

bw
ay

s
re

gr
es

so
r

0
.1

5
0
.1

5
0
.1

5
0
.2

3
0
.2

3
0
.2

3
0
.3

8
0

.3
8

0
.3

8

R
-s

qu
ar

ed
0

.3
9

0
.5

6
0
.5

7
0
.2

0
0
.4

1
0
.4

2
0
.0

0
0

.3
5

0
.3

9

N
um

be
r

of
ci

ti
es

2
4

2
4

2
4

6
3

6
3

6
3

3
1

3
1

3
1

N
um

be
r

of
su

bw
ay

ci
ti

es
2

4
2

4
2

4
6

3
6

3
6

3
3

1
3

1
3

1

N
um

be
r

of
pe

ri
od

s
8

8
8

9
9

9
8

8
8

O
bs

er
va

ti
on

s
4

8
4

8
4

8
1

4
3

1
4

3
1

4
3

6
3

6
3

6
3

N
ot

es
:D

ep
en

de
nt

va
ri

ab
le

:C
ha

ng
e

in
lo

g
ri

de
rs

ip
of

m
et

ro
po

lit
an

ar
ea

in
a

5
ye

ar
pe

ri
od

.S
am

pl
e

is
su

bw
ay

ci
ti

es
.C

it
y-

le
ve

l
cl

us
te

re
d

st
an

da
rd

er
ro

rs
in

pa
re

nt
he

se
s.

St
ar

s
de

no
te

si
gn

ifi
ca

nc
e

le
ve

ls
:

*
0
.1

0
,*

*
0
.0

5
,*

**
0
.0

1
.

(1
)-

N
o

co
nt

ro
ls

.
(2

)-
A

dd
ye

ar
X

co
nt

in
en

td
um

m
ie

s
(3

)-
A

dd
lo

g
gd

p
an

d
lo

g
co

un
tr

y
po

p.
co

nt
ro

ls
.

44



References

Ahlfeldt, Gabriel, Stephen Redding, Daniel Sturm, and Nikolaus Wolf. 2015. The economics of
density: Evidence from the Berlin wall. Econometrica 83(6): 2127–2189.

Ahlfeldt, Gabriel and Nicolai Wendland. 2011. Fifty years of urban accessibility: The impact of
the urban railway network on the land gradient in Berlin 1890-1936. Regional Science and Urban
Economics 41: 77–88.

Arellano, Manuel and Stephen Bond. 1991. Some tests of specification for panel data: Monte carlo
evidence and an application to employment. Review of Economic Studies 58(2): 277–297.

Barnes, Gary. 2005. The importance of trip destination in determining transit share. Journal of Public
Transportation 8(2): 1–15.

Baum-Snow, Nathaniel. 2007. Did highways cause suburbanization? The Quarterly Journal of
Economics 122(2): 775–805.

Baum-Snow, Nathaniel, Loren Brandt, J. Vernon Henderson, Matthew A. Turner, and Qinghua
Zhang. 2017. Roads, railroads, and decentralization of chinese cities. Review of Economics and
Statistics 99(3): 435–448.

Baum-Snow, Nathaniel and Matthew E. Kahn. 2005. Effects of urban rail transit expansions:
Evidence from sixteen cities, 1970-2000. Brookings-Wharton Papers on Urban Affaires: 2005 1(4):
147–197.

Billings, Stephen B. 2011. Estimating the value of a new transit option. Regional Science and Urban
Economics 41(6): 525–536.

Blonigen, Bruce and Anca D. Cristea. 2015. Air service and urban growth: Evidence from a quasi-
natural policy experiment. Journal of Urban Economocs 86: 126–146.

Campante, Filipe and David Yanagizawa-Drott. 2018. Long-range growth: Economic development
in the global network of air links. The Quarterly Journal of Economics 133(3): 1395–1458.

Clark, Colin. 1951. Urban population densities. Journal of the Royal Statistcal Society 114(4): 490–496.

Couture, Victor, Gilles Duranton, and Matthew A. Turner. 2018. Speed. Review of Economics and
Statistics Forthcoming.

Duranton, Gilles and Matthew A. Turner. 2011. The fundamental law of road congestion: Evidence
from US cities. American Economic Review 101(6): 2616–2652.

Duranton, Gilles and Matthew A. Turner. 2012. Urban growth and transportation. Review of
Economic Studies 79(4): 1407–1440.

Garcia-López, Miquel-Ángel. 2012. Urban spatial structure, suburbanization and transportation in
Barcelona. Journal of Urban Economics 72: 176–190.

Garcia-López, Miquel-Ángel, Adelheid Holl, and Elisabet Viladecans-Marsal. 2015. Suburbaniza-
tion and highways: When the Romans, the Bourbons and the first cars still shape Spanish cities.
Journal of Urban Economics 85: 52–67.

Gendron-Carrier, Nicolas, Marco Gonzalez-Navarro, Stefano Polloni, and Matthew Turner. 2017.
Subways and urban air pollution. NBER Working Paper (24183).

45



Gibbons, Stephen and Stephen Machin. 2005. Valuing rail access using transport innovations.
Journal of Urban Economics 57(1): 148–1698.

Glaeser, Edward L., Matthew E. Kahn, and Jordan Rappaport. 2008. Why do the poor live in cities?
the role of public transportation. Journal of Urban Economics 63(1): 1 – 24.

Gomez-Ibanez, Jose A. 1996. Big-city transit, ridership, deficits, and politics. Journal of the American
Planning Association 62(1): 30–50.

Gordon, Peter and Richard Willson. 1984. The determinants of light-rail transit demand - an
international cross-sectional comparaison. Transportation Research Part A: General 18(2): 135–140.

Grengs, Joseph. 2002. Community-based planning as a source of political change: The transit
equity movement of Los Angeles’ bus riders union. Journal of the American Planning Association
68(2): 165–178.

Henderson, J. Vernon, Adam Storeygard, and David N. Weil. 2012. Measuring economic growth
from outer space. American Economic Review 102(2): 994–1028.

Hensher, David. 2007. Bus transport, economics, policy and planning. JAI Press.

Hsu, Wen-Tai and Hongliang Zhang. 2014. The fundamental law of highway congestion: Evidence
from national expressways in Japan. Journal of Urban Economics 81: 65–76.

Manelici, Isabela. 2017. Terrorism and the value of proximity to public transportation: Evidence
from the 2005 london bombings. Journal of Urban Economics 102: 52–75.

Mills, E. S. and J. Peng. 1980. A comparison of urban population density functions in developed
and developing countries. Urban Studies 62(3): 313–321.

Olley, G. Steven and Ariel Pakes. 1991. The dynamics of productivity in the telecommunications
equipment industry. Econometrica 64(6): 1263–1297.

Pang, Jindong. 2017. Do subways improve labor market outcomes for low-skilled workers? work-
ing paper, Syracuse University .

Redding, Stephen J. and Matthew A. Turner. 2015. Transportation costs and the spatial organiza-
tion of economic activity. In Gilles Duranton, William Strange, and J. Vernon Henderson (eds.)
Handbook of Urban and Regional Economics Volume 5. New York: Elsevier, 1339–98.

Small, Kenneth A. and Erik T. Verhoef. 2007. The economics of urban transportation. New York (ny):
Routledge.

Storeygard, Adam. 2017. Farther on down the road: Transport costs, trade and urban growth in
Sub-Saharan Africa. Review of Economic Studies .

Wooldridge, Jeffrey M. 2001. Econometric Analysis of Cross Section and Panel Data. First edition.
Cambridge ma: mit press.

46



Appendix: Supplemental results

While figure 1 shows the growth of the world’s subways, figure A.1 traces out the extent of

individual systems as a function of the time since they opened. Each marker in this figure describes

a city year, so that there is one marker for each of the city-years in our data where at least one

subway station is open. Consistent with figure 1, most of the observations are in the left portion

of the graph. This reflects the fact that many subways systems have opened in the past 30 years.

On the other hand, markers in the right hand portion of the graph describe the handful of subway

systems that date back to the 19th century. The solid line in the figure describes a locally weighted

regression of system extent on system age. This figure suggests that the expansion of a city’s

subway network is predictable. Expansion is rapid during the first 30-40 years after a system opens

and slows thereafter. Figure A.2 illustrates the variation that identifies our first stage regression

more explicitly. The horizontal axis is the fourth lag of log system extent and the vertical axis

is change in current log extent. The negative relationship we would expect from figure A.1 is

clear. Table A.1 presents our first stage regressions. These regressions show that the clear negative

relationship between lagged level and change that we see in figure A.2 is robust to the inclusion of

controls.

Figure A.1: Stations in a subway system by time since system opening
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Note: Vertical axis is log of subway stations in a system. Horizontal axis is years
since system opening. Dots indicate individual city-years.
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Figure A.2: Growth of subways and 20 year lagged subway level
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Note: Vertical axis is change in log stations in a system over five years. Horizontal
axis is log stations 20 years prior (t− 4). Linear fit overlaid.
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Table A.1: Subways first stage: First difference – lagged subway instruments
(1) (2) (3)

Dependent variable: ∆ ln (st) ∆ ln (st) ∆ ln (st)
ln(subway stationst−4) -0.094∗∗∗ -0.100∗∗∗

(0.008) (0.008)

ln(subway stationst−8) -0.067∗∗∗

(0.005)

∆ ln(popt−2) 0.084 -0.121 0.199
(0.151) (0.526) (0.151)

∆ ln(popt−3) 0.251
(0.585)

∆ ln(GDPpct) 0.024 0.001 0.057
(0.160) (0.170) (0.167)

∆ ln(COUNTRY POPt) 0.905 0.980 1.156∗

(0.660) (0.662) (0.613)
YearXContinent dummies Yes Yes Yes
Mean of dep. variable 0.29 0.31 0.29
R-squared 0.13 0.12 0.10
Number of cities 137 137 137
Number of subway cities 137 137 137
Number of periods 10 9 10
Excluded instruments F-stat 132.36 147.51 153.49
Observations 1235 1124 1235
Notes: Dependent variable is the change in log subway stations in a
five year period. Stars denote significance levels: * 0.10, ** 0.05, ***
0.01. Sample is subway cities. City-level clustered standard errors in
parentheses.
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Appendix: Data description

In this subsection we describe the data sources and variable definitions for each of the interaction

variables used in Table 9.

Digital elevation maps (DEM) were obtained from the publicly available Shuttle Radar To-

mography Mission (NASA-SRTM). The DEM dataset contains elevation as well as land slope at

3 arc-second resolution (about 90 meters) worldwide. The mean slope was calculated within a 25

km disk around the city center. Cities were then partitioned at the median value of the average

slope to generate the interaction used in column 2.

The elevation range variable was defined using the SRTM DEM data as the maximum minus the

minimum value for terrain elevation within a 25km disk around the city center. Cities were then

partitioned at the median value of the elevation range to generate the interaction used in column

3.

Digital data on worldwide highways was obtained from ESRI’s roads and highways layer. We

used rank 1 roads (highways) and calculated total kilometers of roads within a 25km disk of a

city’s center. Cities were then partitioned at the median value of kilometers of highways in a city

to generate the interaction used in column 4.

Congestion data was downloaded from TomTom (http://www.tomtom.com/en_ca/

trafficindex/#/list, accessed July 2015) which ranks city traffic conditions in 219 major

cities worldwide. Cities were partitioned at the median value of congestion to generate the

interaction used in column 5.

Capital city refers to being a country capital. This variable was obtained from the UN cities

dataset.

For institutional quality we used the World Bank’s Doing Business ranking (http://www.

doingbusiness.org/rankings, accessed may 2013). The ‘Good for doing business’ variable used

in column 7 indicates that the country is among the top half for ease of doing business, which

means the regulatory environment is conducive to the starting and operation of a local firm. The

rankings are determined by sorting the aggregate distance to frontier scores on 10 topics, each

consisting of several indicators, giving equal weight to each topic.

The centralization variable used in column 9 is defined the absolute value of the city light

gradient in 1995. Larger values hence correspond more centralized cities.

The subway coverage variable used in column 10 is a measure of whether the subway system

in 1995 provided an above median coverage of total city lights. To create this variable, we first

defined 2km radius disks around subway stations operational in 1995. We then calculated the sum

of lights within the subway disks in 1995 and proceeded to take the ratio of this value to the sum of

lights in a 25km disk around the city center. Cities were partitioned at the median value of subway

coverage to generate the interaction used in column 10.
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In column 11, a city was classified as coastal if its centroid is located within 20km of the ocean.

To provide a concrete example of this, Houston is the city closest to the limit of the cutoff for being

coastal using this definition.
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