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1. Introduction

In recent years there has been an extensive amount of economic re-

search devoted to deriving investment demand functions from stochastic

dynamic models of firm behavior.1 Two advantages of such derived

dmmid functions are related to economic policy and have motivated much

of this research. First, the parameters of the demand functions depend

explicitly on technological properties of the firmTs production process and

therefore can be assumed to be independent of economic policy which is

external to the firm. Second, the investment demand functions show how

*The statistical time series methodology that is used to derive the
optimal countercyclica]. stabilization rules in this paper was first taught
to me by Ted Anderson in his time series and econometrics lectures at
Stanford University in 1970 and 1971. I am indebted to him for his stimu-
lating and clear presentations, and for his patience and personal dedication
as a teacher and advisor in an area that has proved enormously useful in
my research.

The research reported in this paper has been supported by a grant
from the National Science Foundation at Princeton University and at the
National Bureau of Economic Research. Useful prograing assistance was
provided by Jungyoll Yun.



—2—

the firm's decisions depend on expected future variables, and thereby

permit one to investigate how anticipations of future policy actions might

influence the effectiveness of economic policy. Reduced—form functions

in which investment demand is written as a fixed distributed lag of past

variables, regardless of the stochastic process affecting these variables,

do not have these advantages.

.lthough policy questions have been investigated using dynamic

models of firm investment behavior, to date there has been little research

on the calculation or characterization of optimal policy using such

tuoda.ls.' In this paper we consider the problem of finding optimal

control rules to stabilize fluctuations in investment demand using such

a model. In the modal used here the dynamics of investment are generated

by heterogeneous gestation lags between the start and completion of capital

projects, rather than by adjustment costs in the installation of capital.

Gestation lags permit an analytic calculation of optimal stabilization

policy under a wide range of stochastic processes generating firms'

desired capital stock, and potentially can be estimated using technological

data on capital construction.

The paper is organized as follows. In Section 2 the dynamic invest-

ment modal is presented and an investment demand equation is derived. In

Section 3 a procedure for calculating the optimal stabilization policy

rules is derived for an arbitrary autoregressive process generating the

fluctuations in sales. In Section 4 the optimal rules are calculated for

the case of a second—order autoregressive business cycle model. In Section 5

we examine through stochastic simulation the effects of using certain subopti—

mal policy rules .which might be employed when there are practical constraints

on the design of the optimal rules.
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2. An investment model with heterogeneous gestation lags

Suppose that firms use ii different types of capital inputs. Let the

stock of capital of type i at the start of time period t be denoted by

i = 1,... ,n. The types of capital differ in their gestation times;
that is the time it takes to build a unit of capital. Capital of type i

is assumed to take i periods to build. Let s be the value of capital

projects of type i started at time t. Then we have

(1) k. = (1—h.)k. . + s.
it-h. i it+i—1 it'

where h. is a constant proportional depreciation rate for each type of

capital. According to equation (1) capital projects of type i started at

time t are completed and added to the capital stock at time t + i.

Depreciation of the amount h1k÷1_i is subtracted from gross completions

to get the net increase in capital.1

Invesient expenditure, or "value put in place," during the gestation

period of each project depends on the technology of construction. Let

be the value put in place on a capital project of type i during period t.

Let be the fraction of the project of type i put in place during the

th period following the start of the project. Then total investment

expenditures on projects of type i are given by the distributed lag

(2) x
j=l

1
for i = l,...,n. Note that Z w,. = 1 for each i = l,...,n and in

j=1
particular that w11 = 1. The fractions are determined by the construc-

tion technology. In some cases such weights can be obtained in surveys.
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In order to obtain an investment demand function we assume that firms

decide at each. time period T on a sequence of capital projects of each

type in order to minimize the expected value of the intertenporal

obj ective

n n
t(3) [.5E d.(v.Y — k.) + L

i=1 1=1

where is a discount factor, V. and d.,i = l,...,n are fixed positive

parameters, the c. are the costs of investment goods of type i, and

is a measure of gales. The variable y is assumed to follow a known

univariate stochastic process exogenous to the firm. As will be explained

below the variables c., -which are also exogenous to the firm, will be

policy determined as a function of y. The interpretation of (3) is

that a firmts production process calls for capital of each type in a

fixed ratio V. to total sales y, and that it is costly for the firm

to deviate from that amount of capital in either a positive or a negative

direction. This approach is similar to assuming a fixed coefficient

production function with capital input coefficients equal to

but it permits more flexibility in that the firm can deviate (at some cost)

from these input coefficients. Note that we assume that there are no

interaction affects in the costs of deviating from these input coefficients

for different types of capital: one type of capital deviating from its

appropriate level, neither increases nor decreases the costs of another

type of capital deviating from its appropriate level. The lack of

interaction makes possible a convenient analytical solution of the model,

and seems reasonable given the f.ixed coefficient production interpretation

of the objective function.
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By substituting equation (l) and (2) into (.3) and differentiating

with respect to the k. , noting that k. or equivalently s. is ait it+i it

decision variable at time t, the following optimal level of starts can

be obtained for each time period

(4) s. = vy1 — (.l_h)k+1

- d. O
w..÷i(c.+. -

where the hat over a variable represents its minimum mean square predictor,

or conditional expectation given information through period t. In the

case of y, for example, =
E(Yt+1Iyy_i ). Equation (4)

holds for each type of project from i = 1,... ,n and can be substituted
into (2) in order to obtain the demand for investment. Note that

equation (4) indicates that the resulting investment demand function

depends explicitly on technological parameters and on expectations of

future variables, a general property of demand functions obtained from

intertemporal investment models mentioned in the introduction.

In the special case where the depreciation rates h. = 0 and the

discount factor is equal to 1, the optimal level of starts depends on

a distributed lead in the expected changes in the cost of investment

goods. In the case where depreciation rates are h. = 1, the distributed

lead is in the level of the costs of investment goods.

3. Optimal Policy Rules

The model has been designed so that y is a correlated disturbance

that causes fluctuations in investment. We view as driven by an
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exogenous time series process representing, for example, business cycle

fluctuations. One objective of policy is to reduce the fluctuations in

investment by using investment incentives to offset the influence of this

disturbance. Investment incentives affect the actual cost paid by firms

for investment goods which we have represented by c. in the model.

Hence, the optimal control problem we consider is that of choosing a

sequence of policy instruments c. so as to minimize the fluctuations in

the target x. The optimal choice of c. depends on the stochastic

process for y. As with most optimal control or regulator problems the

effect of the disturbances can be completely offset if there are a

sufficient number of instruments. As indicated by (4), the number of

instruments needed for complete offset is equal the number of different

types of capital. In principle, therefore, it is necessary to have

investment incentives for each type of capital so 'that each of the

can be set independently. In practice, tax incentives have differed

for capital with different useful lives, but not for capital with

different gestation periods.-'

In order to offset the effects of demand fluctuations on investment

it is necessary that the cost variable c respond to y in such a way

that the forecasts of future values of c. exactly offset the forecasts

of future in equation (4). That is, c. needs to be set so that

i—l
(5) =

j=O

-

for i 1,...,n. It is clear from equation (4) that such a choice of c.

will eliminate the effect of the distrubance y on starts and thereby on

investment expenditures. Our objective is to calculate and characterize
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these optimal c.1.

Assume that y is determined by the following th order autoregressive

process.

(6) iT—i + + + Ut,

where u is an uncorrelated random variable with a zero mean. Equation

(6) can be used to generate predictions of the future values of y that

appear in equation (5) using results from prediction theory. See

Anderson (1971, ch. 5). In order to obtain the optimal rule for the

determination of the c. we start with the general linear form
it

(7) cit = + + ... +

where the coefficients g1 through g. are as yet undetermined. Predic-

tions of future c. can be obtained using (7) and the predictions of

generated by (6). The problem of finding the optimal rule is thus

reduced to the problem of finding the values of the coefficients that

satisfy equation (5) for all t. These values can be found by substituting

into (5) the forecasts of y and c. using (6) and (7), and finding the

values of g.1 through g. which bring the coefficients of through

to equality on both sides of (5). We now show how this procedure

results in a set of linear equations in g. through g. which are

straightforward to solve, even for fairly large values of ii and p.

The procedure has some similarities to the feedforward control schemes

proposed by Box and Jenkins (1970, ch. 12) for conventional linear

regulator problems.



8—

The forecasts of future y are given by

(8) 9t+s = 'slt + + ... + for s 1 1,

where the y—coefficients can be obtained recursively from the equations

Ysj
=

j1s—1,l + s—1,j+i' j = 1,.... ,p—1,

(9)

i
sp p s—1,l

The recursion starts at s=1 with 1j ., j1,. . . 'p . See Anderson

(1971, p. 168) for a derivation of the recursion relationships in (9).

Note also that for s < 1. The forecasts of future c. are

S p
(10) c = E ' y + E g yit+s

j=l
t+s—j+l

j—s+l
t+s—j+l

where the values fory can be obtained from (8).

Starting with the case where i=l (the single period construction

projects) we substitute these forecasting equations into (5) as follows.

When i=1 equation (5) becomes:

(11) div1y+1 = w11(c1
-

which can be written as

(12) d1v1;+1 = w11(g11y
+ ... +

+ 12Y + ... + 1Y+2)
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after substitution of and from (10) with s=1 and i=1. Using

equation (.8) to substitute for
t+1

in (12), we obtain

(13) d1v1(11y + + = w11(g11Y + +

-
(1-h1)[g1111y+.. .+

+ + +

Equating the coefficients of
—1 — 1 j (13) results in at, t ,..., tp

set of linear equations in g11 through g. which will be useful to write

out in detail

=
w11(l-(1-h1)11)g11

-

d1v1y12
=

-w11(1—h1)y12g11
+

w11g12 - w11(l-h1)g13

d1v1y13 =
-w11(1-h1)13g11 + w11g13 -

w11(l-h1)g1,

(14)

=
-w11(1—h1)'11g + w11g1 -

$d1v1y1
=

-w11(1—h1)y1 g11 +

Although we have written (14) using the general notation introduced for an

arbitrary gestation lag, in this case we have that y.. ., j=1,...,p

and w11 = 1. The p equations in (.14) are clearly linear in the p unknowns

g11 through g1 and can be solved to obtain the optimal control rule for

cit. In the special case of full depreciation (h=1) the off—diagonal



terms in the system of equations in (14) are equal to zero, so that the

solution is given simply by g =
d1v1ci.. for j=l,.. .,p. In this

special case the optimal control coefficients are proportional to the

coefficients of the difference equation generating the disturbance y

The equations in (14) can alternatively be organized in matrix

form. Letting g. = and - = the equation

system becomes

(15) =

where A1 is a p x p matrix. Denoting the representative element of A1

by aP the non—zero elements of the matrix are given by

a11
=

(1)
a..

w11,
=

(l6)
=

-w11(1—h1), j = 2,..

a = -w11(1—h1)y1. , j =

and all other elements are equal to zero. The optia1 values for the

control rule coefficients for c1 are then written as

17) = i 'd1v1•

This same procedure can be used to compute the control rule

coefficients for the c variables corresponding to the longer gestation
it

lags. That is, the forecasting equations with values of i from 2 through
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ri can be substituted into (5), and equations in the control rule

coefficients can be obtained by equating coefficients of y,
For each value of i there will be p linear equations in p

unknowns. Before considering the results for the general case it is

useful to consider the equations for i = 2. In this two—period case

—l 2
(18) = 2 v2d2.

The non—zero elements of 2 are given by

(2) 2

a11
=

w21
+

(w22-(l—h2)w21)111
- S

w22(l-h2)'21

a = 5(w22-(1--h2)w21).
-

52w22(1-h2)y2.

(2) 2
a12

=
8(w22—(l—h2)w21)

— S
w22(1—h2)y11,

(2) 222 = 21 w22(l—h2)y12,
(19)

(2) 2
a.2

- w22(1-h2)i1. , J3,... ,p,

(2)
a.. =

w21,

S(w22-(l-h2)w21), j3,...,p,

(2) 2
a_2,= — w22(l—h2) , j=3,.. .,p.

The remaining elements of A2 are equal to zero. Note that with full

depreciation (h2=l) the matrix 2 does not become diagonal, unlike in the

one period projects. The development of the coefficients of A. as i increases

from 1 to 2, continues for i equal 3 and so on, establishing a general formula

which can be used for any value of i.
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In order to express the solution for g in the general case, some

additional notation is useful. Define a sequence b..
1J

b. w.iO 11

(20) b.. = &(w1+i
- (1h1)w), j=i,...,i—1 (for 1>2)

b. . —1(l—h.)w..11 1 11

for each i=i,... ,n. The b.. coefficients thus depend on the structural

parameters of the model and are easily computed.

The solution in the general case can be written

—l i
(21) g. = A. 'y v.d.,

where the non—zero elements of the pxp matrix A., denoted by a,

are given by the following set of equations for i=1,... ,n,

1
a1) = b. + E b.
jrn i,m—i iq q—tn+1,, j=1,...,m,

(22) a = q biqYq_m+i j=l,.. ,p,

a1 . = b. . r=0,. . . ,i, j=i+l,. .. 'pj—i+r,j i,i—r,

Note the equations in (22) are equivalent to the equation in (16) for 1=1,

and to the equations in (19) for i2. These equations provide an easily

computable way to evaluate the matrix A. for an arbitrary i and p.

Hence, the entire set of optimal control coefficients g., i=1,. .. ,n can

be computed. Since the dimension of the matrix A. is equal to the

order of the autogressive model generating the disturbances (yhich will

usually be relatively small) and is not influenced by the length of the

gestation lag (which could be quite long), computation costs should be low

for this procedure.
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. Properties of Optimal Policy in a Second Order Cyclical Model

In this section we examine the properties of the optimal rules for the

case where sales disturbances y follow a second order process (.p=Z).

A second order model permits a fairly close approximation to the stochastic

properties of business cycles observed in most countries, if y
interpreted as proportional to detrended fluctuations in real GNP or

some other measure of the state of aggregate economic activity.

For the second order model the optimal policy rules have the

form

(23) cit = + i=l,...

which is a special case of equation (7). The control coefficients

and g.2 completely characterize the policy and of course are different

for each type of capital i.

The policy coefficients associated with i=l, the single period

projects, are obtained by solving equation (15) and are given by

(24) g11 = __________________

(25) g12 = vldll6(lh)(2+(lh
If depreciation occurs in one period (h1=l) then the policy rules can be

characterized easily. In that case the policy reaction coefficients

are proportional to the parameters of the autoregressive process and

For example if y is proportional to real GNP and = 1.4 and =

—.5, then the stabilization rules call for an increase in investment
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costs if real GNP is above normal levels, or if real GNP has been

growing. For parameter values =l and v1d1=l, (24) and (25)

imply

(26) Cit +

= .9y +

Note that it is never optimal to react only to current y unless

in which case the model is first—order model. As we show in the next

section failure to react to lagged y as in (26) can lead to

a policy rule which destabilizes output. According to equation (26)

invesent costs should be raised by an extra amount if the real GNP

has been growing.

The results are different if depreciation rates are smaller. The

proportionality of the g1. andcL. will no longer hold, and the size of

the reaction coefficients will be larger. Consider, for example the

opposite extreme where h0. The stabilization rule becomes

(27) ci = + 5(y—yl).

The reaction coefficients are much larger than in (26) and the size of

the coefficient on the first difference of y is larger relative to the

size of the coefficient on the level of y.

5. Stochastic Simulation Results with Suboptimal Policies

The optimal policy rules derived and examined in the previous two

sections have several features which are not usually characteristic of

investment stabilization policy in practice. First, the policy is dynamic:
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lagged values of y influence the optimal policy. In practice only the

current level of y seems to have been a- factor in the determination of

investment stabilization policy. Second, the policy instruments vary

tinuously with the values of y. In practice the policy instruments are
likely to be set discretely — they are either on or off depending on the

state of the business cycle. Third, the policy instrument must be targetted

at the components of investment, distinguishing between different types of

capital by gestation time. If the instrument is not targetted to each type of

capital-, perhaps because of the restriction that = c. for ij, then

there will be an insufficient number of instruments and a constrained opti—

mation approach is necessary. The methods developed in Chow (1980) might

be used in such a situation. In this section of the paper we examine through

the use of some simulation experiments what happens when policy is restricted

to be suboptimal either because lagged values are omitted or because the

instrument settings are limited to discrete values.

Omission of Lagged Variables

Consider the case where n1 and p2, and it is therefore optimal

for g12 to be nonzero. Suppose, however, that g12 is restricted to be

zero. In order to determine the possible impact of such a restricted

investment policy on the stability of investment, we performed stochastic

simulation for the set of parameter values for the intertemporal model

calculated in Taylor (1982). These values are v1=.2, d1=.07, h1=.026

and '.94. We also set al.4 and c2—.5 as in the previous section.

The variance of investment was then calculated by performing 1000

Monte Carlo simulations of 30 periods eacb, with the shocks u being

drawn from a normal distribution with mean 0 and variance 1 and with

the path of investment being determined by the model. The simulations
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were started from k1
0

= o The variance of investment was found to be

an increasing function of g11 for this set of autoregressive parameter

values. In the steady state (approximated at t=30), the variance of x1 was

equal to .00033 when g11 = 0, increased to .00047 at g11 = .002, and

increased further to .00076 when g11 = .004. Hence, this type of

suboptimal policy could actually lead to perverse destabilization of

investment.-1This particular suboptimal policy is worse than no policy

at all. Note that for this example the optimal values for g11 and

are .090 and — .048 respectively.

Discrete Values for the Instruments

Consider the case where n=l and p=l. The optimal policy rule

then has the form c1 = 117. Suppose, however, that only discrete

changes in c1 are feasible in practice, and that c1 is therefore

set according to the rule

c* ify>0

(28) c 0

For this policy the forecasts of investment Costs are not linear functions

of as with the forecasting rules used in Section 2. Nevertheless

the forecast of c11 conditional on y, which is necessary for evaluating

the decision rule (4), can be evaluated for the case where u is normally

distributed. Using this conditional expectation for c11 and the rule

in (28) we stochastically simulated the model with the same parameter

values used for the previously described set of stochastic simulations.
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The results are shown in the first column of Table 1. (The other columns

in Table 1 marked by the parameter 3 signify a different discrete policy

rule described below). The results indicate that while there is some

reduction in the variance of investment with the discrete model, it is

very small. Moreover when the step size (c*) increases beyond some small

value the variance of investment begins to increase rapidly, indicating

the potential for some destabilization. The restriction of c1 to a

discrete set of values results in a serious deterioration of theperfor—

mance of the policy.

One of the reasons for the poor results with this suboptimal policy

is that c1 moves by a large amount when y.deviates only slightly from

0. An improvement would therefore be expected if the rule were modified

so that

(29) cit = if

if

With rule (29) small movements in will not trigger a large response

in c1. Clearly equation (29) reduces to equation (28) when 3=0. The

simulation results for this alternative are shown in Table 1 in the

columns marked with different values of 3. As expected there is some

reduction in the variance of x1 but not as much as would be possible

With the completely continuous optimal rule. Note also that Table 1

suggests that the best policy of the form (29) has 6 between .2 and

.3 and c* near .002. These values depend on the parameters used in
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the simulation experiment, but they indicate the advantages of choosing

the step—size and trigger points Optimally even if policy is restricted to

a discrete set of values. To the extent that such constraints are important

in practice, further research to characterize how the best step—size and

trigger values depend on the parameters of the model in this and more

complicated examples would be useful.

6. Concluding Remarks

This paper has considered the problem of obtaining optimal control

rules for stabilizing investment fluctuations in a model where investment

demand depends on expected future values of the policy instruments. Simple

expressions for evaluating the control rules were derived using results

from prediction theory. These expressions were used to characterize some

of the main properties of the control rules. In addition, the loss from

using certain suboptimal rules was investigated. While suboptimal rules

are clearly inferior to optimal rules, aiid in some cases inferior to no

feedback rule at all, practical constraints on economic policy could lead

to the use of such rules.

Although the formula for the control rule was derived for a particular

dynamic investment model, the prediction theory approach that was employed

could be used in other similar problems. The essential characteristic of

the control problem studied here is that the target variable depends on

forecasts of future values of the control instruments and on future exo—

genous variables. In the traditional control problem, the target variables

depend on current and lagged values of the control instruments and the

exogenous variables. This difference indicates why prediction theory is

particularly useful for the type of problem studied in this paper.
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FOOTNOTES

1. See, for example, Lucas and Prescott (1971), Sargent (1979), Ch. 14,

and Kydland and Prescott (1980).

2. Policy questions relating to investment in dynamic models have been

addressed by Sargent (1979, p. 344), Kydland and Prescott (1980),

Suiers (1981), Hayashi (1982), and Taylor (1982). Lucas (1976)

addresses similar policy issues in a more general setting.

3. This approach to investment demand which emphasizes heterogeneous

gestation lags was applied to a Swedish investment problem in Taylor

(1982).

4. Where confusion does not arise, we generally omit a coiia between the

different indices in the double subscripts. No multiplication of sub-

script indices appears in this paper.

5. For example, in the United States the investment tax credit depends

on the useful life of the capital equipment purchased.

6. Christiano (1982) has shown analytically that such perverse destabili-

zation can occur when follows an ARNA(1,l) process. Baumol (1961)

and Howrey (1966) have investigated similar problems with suboptimal

policy rules in models where anticipations of future policy do not

affect decisions explicitly.
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