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ABSTRACT

We benchmark seven global optimization algorithms by comparing their performance on 
challenging multidimensional test functions as well as a method of simulated moments estimation 
of a panel data model of earnings dynamics. Five of the algorithms are taken from the popular 
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Improved Stochastic Ranking Evolution Strategy (ISRES), (iii) Multi-Level Single-Linkage 
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with Cauchy distribution (ESCH). The other two algorithms are versions of TikTak, which is a 
multistart global optimization algorithm used in some recent economic applications. For 
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downhill simplex algorithm, the Derivative-Free Non-linear Least Squares (DFNLS) algorithm, 
and a popular variant of the Davidon-Fletcher-Powell (DFPMIN) algorithm. To give a detailed 
comparison of algorithms, we use a set of benchmarking tools recently developed in the applied 
mathematics literature. We find that the success rate of many optimizers vary dramatically with 
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1 Introduction
We benchmark the performance of seven global and three local optimizers by applying

them to several difficult multidimensional objective functions. We first apply the algo-
rithms to four test functions—named Levi, Griewank, Rastrigin, and Rosenbrock—which
are commonly used in the applied mathematics literature for benchmarking optimizers.
We choose these four functions out of a larger suite of commonly used test functions
because they were found to be particularly challenging to optimize.1

However, the characteristics of these test functions can differ substantially from the
calibration or estimation problems commonly encountered in economics. For example,
these test functions are continuous and differentiable (despite having many local min-
ima), which is not necessarily the case in economic applications where objective functions
are often based on moments that are based on data simulated from the numerical solution
of a complex model. Because of truncation and other approximation errors present in
numerical solutions, as well as the economic features inherent in some models (e.g., dis-
crete choice or binding constraints), the resulting objective function often displays kinks,
jaggedness, deep ridges, flat valleys, and even jumps, posing challenges to optimizers.

With these considerations in mind, we also assess the performance of these optimizers
using an economic application—a method of simulated moments (MSM) estimation of
a panel-data income dynamics model, taken from Busch et al. (2015), which has 297
moments and 7 parameters to estimate. This problem is not one of the more complex
ones we could have chosen, and this choice is intentional. Our goal is to show that
even such a relatively benign looking optimization problem commonly encountered in
economics can be very challenging for many global optimizers.

Five of the seven global optimizers are from the NLopt library, which is an open-
source library for nonlinear optimization that contains many state-of-the-art optimization
routines.2 These five optimizers are: (i) the Controlled Random Search algorithm with
Local Mutation (CRS), (ii) the Improved Stochastic Ranking Evolution Strategy (ISRES)
algorithm, (iii) the Multi-Level Single-Linkage (MLSL) algorithm, (iv) the Stochastic
Global Optimization (StoGo) algorithm, and (v) the Evolutionary Strategy algorithm
with Cauchy Distribution (ESCH).3

1Commonly used test function suites include CUTEr (Constrained and Unconstrained Testing En-
vironment, revisited) or COPS (Constrained Optimization Problem Set).

2See Johnson (2018) for an overview of the Nlopt library. Further documentation and codes are
available at http://ab-initio.mit.edu/wiki/index.php/NLopt.

3CRS belongs to the group of random search algorithms, ISRES and ESCH are Evolution Strategy
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The remaining two optimizers are variants of a newer global optimization algorithm,
named TikTak, which was developed by one of us (Guvenen) and refined with coauthors
through applications to various estimation/calibration problems.4 TikTak has been de-
veloped specifically for economic applications (medium- to large-scale structural estima-
tion and calibration problems) and has been improved over the years as it was applied to
a different problem in each paper. TikTak belongs to the class of multistart algorithms,
which conducts local searches from carefully selected points in the parameter space. The
algorithm starts with a broad exploration of the (parameter) space and uses the infor-
mation it accumulates to increasingly focus the search on the most promising region.
The two variants we benchmark differ only in the local optimization routine they use:
the Nelder-Mead downhill simplex algorithm (“TikTak-nm”) or the the Derivative-Free
Nonlinear Least Squares (DFNLS) algorithm of Zhang et al. (2010) (“TikTak-d”).

It is fairly common for researchers to use a local optimizer alone (not as part of a
global algorithm) even in large-scale estimation and calibration problems. One would
then restart the local optimizer several times and pick the best objective. While this
approach resembles multistart global algorithms, in practice, the number of restarts can
be fairly small, and there is no systematic procedure for selecting restart points; in fact, it
is not uncommon to do a single restart from the last local optimum. Given the popularity
of these approaches that rely on local optimizers alone, we include three widely-used
algorithms in the benchmarking analysis. These are Nelder-Mead and DFNLS mentioned
above, and a popular quasi-Newton based optimizer called DFPMIN taken from Press
et al. (1996).5

One notion that we have used so far without defining is the “performance” of an
optimizer. In practice, there are at least four practical considerations. The first consid-
eration, and arguably the most important, is an optimizer’s reliability—or the likelihood
that it will find the global optimum in the problem that a researcher faces. A proxy for

algorithms, MLSL and TikTak are multistart algorithms, and StoGo uses branch-and-bound techniques
to search for global optima. StoGo uses the derivative of the function in the optimization routine, but
all other algorithms are derivative-free.

4 See Guvenen (2011) for a description of an early version of the algorithm. The algorithm was used to
estimate a structural model of consumption-savings choice with Bayesian learning via indirect inference
in Guvenen and Smith (2014) and to estimate an equilibrium model of marriage/divorce, educational
attainment, and labor supply in Guvenen and Rendall (2015) with the method of simulated moments.
It was also used to estimate panel data econometric models of earnings dynamics in Guvenen et al.
(2014), Guvenen et al. (2015), and Busch et al. (2018) (with up to 1,200 moments and 35 parameters in
Guvenen et al. (2015)). In each case, the objective function displayed several challenging features such
as kinks, jumps, ridges, and so on.

5More precisely, DFPMIN implements the Broyden-Fletcher-Goldfarb-Shanno variant of the
Davidon-Fletcher-Powell minimization algorithm. For details, see Chapter 10.7 of Press et al. (1992).
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reliability commonly used in the benchmarking literature is the fraction of test problems
for which the optimizer successfully finds the global optimum (its “success rate”). A sec-
ond consideration is speed: in practice, researchers have a finite computational budget
that they can afford for a given problem, so what we really want to know is the success
rate of an optimizer for different computational budgets (e.g., measured in time or num-
ber of function evaluations). This trade-off is captured by a “data profile,” introduced
by Moré and Wild (2009), which plots the success rate of an optimizer as a function of
the computational budget.

A third consideration is how an optimizer’s speed compares to those of the other
available optimizers for different test problems. In other words, we would like to know
the fraction of test problems for which a given optimizer is the fastest among all available
optimizers, as well as the fraction of problems for which it is at least two times (or three,
four, and so on) slower than the fastest optimizer for each problem. A very useful plot
introduced by Dolan and Moré (2002) and called “performance profiles” provides exactly
this information, and we use it in our benchmarking analysis (see Ali et al. (2005) and
Zhang et al. (2010)).

To consider a minimization “successful,” we focus on two different metrics: the dis-
tance either between the function values of the returned and true minima or between
the parameter values of the returned and true minima. If the respective distance is
smaller than a given threshold, the minimization is considered a success for that met-
ric/threshold combination. Clearly, the choice of a threshold involves a judgement call,
so the fourth consideration is how well or poorly a particular optimizer does when it fails
to attain the specified threshold. As we shall see, some optimizers will technically fail
(sometimes on most problems) but end up coming very close to the threshold, whereas
others stop far away. To analyze such differences, we construct, what we shall refer to as,
“deviation profiles,” which is analogous to the data profiles, but rather than the success
rate it reports the average of the distance measure over all unsuccessful implementations
for a given algorithm at different computational budgets.

Using these three sets of benchmarking tools, we find that overall TikTak-d has
the strongest performance on both the test functions and the economic application—in
terms of both reliability and speed. The second-best optimizer is TikTak-nm, which
performs well on the test functions and on the income process for most but not all
success criteria. In addition, TikTak-nm is less efficient than TikTak-d as it requires a
larger computational budget. The relative performance of the NLopt algorithms varies
across different test functions and the economic application. MLSL and ISRES perform
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better on the economic application but are relatively less successful in minimizing the
test functions. On the other hand, CRS performs better on the test functions but is less
reliable on the economic application. StoGo performs well on the test functions.6 ESCH
performs less well on the economic application and the test functions. All local algorithms
(which we use only on the test functions) have low success rates under all success criteria,
and their performance does not improve as computational budgets increase. Among
the local algorithms, Nelder-Mead performs best, followed by DFNLS, and finally by
DFPMIN.

The benchmarking results here are based on running each optimizer on a single CPU
core. However, an appealing feature of TikTak is that it can be run in parallel very
easily and without needing any special software or requiring any knowledge of parallel
programming (such as MPI, OpenMP, CUDA, and so on). Specifically, the optimiza-
tion routine can distribute its computations (i) across multiple CPUs (ii) that reside
in different machines possibly located in different physical locations, (iii) which could
be running different operating systems and/or different compilers of the same language.
Furthermore, in large scale high-dimensional problems, the speed gains (scaling) can be
close to linear with the number of CPU cores.7 We leave a fuller exploration of TikTak’s
parallel performance for future research.

As with any study of this kind, the conclusions we draw from our benchmarking anal-
ysis inevitably depend on some of the choices we made in the implementation. We have
made every effort to minimize the choices we needed to make and relied on the options
chosen by the most popular implementations whenever possible. Having said that, there
is always a chance that a different assumption can alter some of our conclusions. We hope
that these results spur further work that confirms, qualifies, or—if warranted—modifies
the conclusions of our analysis.

Related Literature. An active literature in applied mathematics benchmarks global
optimization algorithms using various collections of well-known test problems. For ex-
ample, Mullen (2014) compares the performance of different algorithms—including CRS,
MLSL and StoGo, as well as algorithms based on annealing and particle swarm optimiza-
tion methods—in optimizing 50 objective functions. Ali et al. (2005) test five different

6We do not use StoGo on the economic application because it is the only optimizer that uses the
gradient. The analytical gradient is unknown in most economic applications, and numerically computing
the gradient can be difficult and computationally demanding.

7In the previous applications cited in footnote 4, the algorithm has been run in parallel on a few
dozen to several hundred CPUs distributed across servers, clusters, and personal computers located in
Zurich, Minneapolis, New Haven, New York, and Washington DC.
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stochastic optimization algorithms on the same suite of 50 test problems. The con-
sidered algorithms are based either on simulated annealing methods (Hit-and-Run and
Hide-and-Seek) or on population sets (Controlled Random Search, Real Coded Genetic
Algorithm and Differential Evolution). Ali et al. (2005) show that the performance of
optimizers crucially depends on the computational budget (i.e., function evaluations or
FEs). CRS performs better with fewer FEs, whereas other algorithms (such as genetic
algorithms) perform better when more FEs are used. Kaelo and Ali (2006) compare
different versions of the CRS algorithm. They conclude that CRS with local mutation
(CRS-LM) performs best in terms of efficiency (number of FEs) and reliability (success
rates) among all versions of CRS.

Our paper makes the following contributions to the literature. First, we benchmark
the performance of optimizers not only for a collection of test problems but also for an
economic application, which can help applied economists select the best algorithm to
estimate structural economic models. Second, we benchmark a new global optimiza-
tion algorithm (TikTak), analyze its performance, and find that it outperforms most of
the other optimizers on both text functions and the economic application. Third, we
use “deviation profiles” (in addition to commonly used data and performance profiles)
throughout our benchmarking exercise to document how far away failed implementations
are from the true global optimum.

Section 2 describes the TikTak algorithm (omits the others since they are already
well known. Section 3 describes the tools that we use to compare the performance of
optimizers. Section 4 provides the benchmarking results for the test functions. Section
5 discusses the results for the economic application. Section 6 concludes.

2 Algorithms
The five global algorithms from the NLopt library and the three local algorithms are

widely used in different scientific applications and hence are well known. We therefore
omit their descriptions here for brevity but discuss them in more detail in Appendix A.8

TikTak is a new algorithm that is not well known, so we describe it in some detail here
as well as in Appendix A.

8Note that we also use either Nelder-Mead or DFNLS in the local stage (i.e., local searches) of
TikTak. Nelder-Mead is also used in the local stage of MLSL. Finally, we implement a “polishing phase”
at the end of all global optimizations, which consists of a final local search with a stringent convergence
criterion. For these polishing searches, we use DFNLS (see Section 3.3).
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2.1 The TikTak Algorithm

TikTak belongs to the class of multistart algorithms. A multistart algorithm first
picks a point in the parameter space at which it implements a local optimization until a
local optimum is found. The algorithm then picks the next starting point, implements
another local optimization, and finds a new local optimum. This procedure is repeated
many times. At the end, the algorithm returns the point with the lowest value function
among all local optima as the global optimum. The main distinguishing features among
multistart algorithms are how they choose the next starting point and how they use
the information that is provided by the history of local searches. These algorithms
typically have two stages: (i) a global stage, which selects the starting points for new
local searches, and (ii) a local stage, which implements local searches, by choosing a local
search algorithm and local stopping criteria.

TikTak aims to balance the need for reliability (high success rates) and efficiency
(low computational budgets). To achieve reliability, it is important to search broadly
over the entire parameter space. To achieve reliability and efficiency, it is important to
identify promising regions and to search more intensively in these regions. To search
broadly and uniformly early on, TikTak evaluates the objective function at points in the
parameter space that are drawn from quasi-random variables, which are deterministic
sequences that are designed to cover the parameter space as uniformly as possible.9 In
particular, TikTak uses the Sobol’ sequence (Sobol’ (1967)), which has several desirable
properties and is known to perform particularly well in high dimensions.10

The global stage of TikTak comprises two phases. The first phase is pre-testing,
which consists of drawing and evaluating N Sobol’ points and selecting among these
the N∗(� N) “seed” points that have the lowest (best) function values. (In practice,
N will be a large number that scales up with the dimensionality of the of the problem,
whereas N∗ is much smaller, for example, one to ten percent of N .) These seed points are
then sorted in ascending order, (s1, . . . , sN∗), with f(s1) ≤ · · · ≤ f(sN∗). The remaining
Sobol’ points are discarded, as the space in their immediate vicinity seems less promising.

In the second phase, the algorithm sequentially implements local searches from N∗

starting points, denoted (s̃1, ..., s̃N∗). Let z∗j denote the minimum found by the local
search that started from s̃j. The starting point for the next local search is chosen as a

9It is well known that random numbers drawn from a uniform distribution are not effective ways to
sample a space uniformly, especially in higher dimensions. See Zhigljavsky and Žilinskas (2008) for a
thorough discussion.

10For further details, see, e.g., Liberti and Kucherenko (2005) and Kucherenko and Sytsko (2005).
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convex combination of the next Sobol’ seed point, sj+1, and the best minimum found in
the previous j local searches up to that time, denoted Z∗j = min(z∗1 , z

∗
2 , ..., z

∗
j ):

s̃j+1 = (1− θj)sj+1 + θjZ
∗
j ,

where θj ∈ (0, 1] is the mixing weight. Early on in the second phase, θj is chosen to
be very small, possibly zero, to allow time for the algorithm to conduct a broad search
of the parameters space. As the algorithm progresses and the information accumulated
from past local searches grows, θj is gradually increased to concentrate local searches
around the space that includes the best local minima, so that the most promising parts
of the parameter space are explored more and more thoroughly. A useful heuristic is to
stop the algorithm when the absolute difference between the last two different values of
Z∗j are sufficiently close to each other. In other words, when a new best local minimum
is not too different from each other. This is the basic idea of the TikTak algorithm;
additional details are in Appendix A.

In the benchmarking analysis, we use four different variants of TikTak, which differ
in the way in which they implement local searches. In particular, local searches of
TikTak use either the Nelder-Mead or the DFNLS algorithm.11 In addition, an important
decision is the stopping tolerance of each local search. A high tolerance will lead to
shorter, and hence less costly, local searches but may stop too soon without fully exploring
the region it started in, and a lower tolerance implies the opposite trade-off (exhaustive
but slow). To explore these trade-offs, we consider two tolerance levels, 10−3 and 10−8,
for each local optimization algorithm.12,13 We refer to these four versions as TikTak-nm3
and TikTak-nm8 when Nelder-Mead is used in the local stage, and as TikTak-d3 and
TikTak-d8 when DFNLS is used.

3 Measurement Preliminaries
In this section, we discuss in more detail how we define and measure the performance

of an optimizer. We already mentioned two notions of performance: reliability and
11These local algorithms are described in more detail in the Appendix.
12As one could conjecture, the ideal approach would be to start with a high tolerance early in the

search process when most of the local searches are likely to take place far away from the global optimum,
and then gradually tighten the tolerance as the algorithm progresses and narrows down the search area.
We have not pursued this approach here to further improve the performance of TikTak.

13For Nelder-Mead, this stopping criterion corresponds to the distance between the function values
at all points of the simplex that is constructed in the optimization routine (see Press et al. (1996)). For
DFNLS, this stopping criterion corresponds to the smallest radius of the trust-region that is used in the
optimization routine (see Zhang et al. (2010)).
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speed. The reliability of an algorithm measures the success rate, that is, the percentage of
problems that the algorithm solves successfully. The efficiency (or speed) of an algorithm
measures the computational budget (i.e., the number of function evaluations or FEs) that
the algorithm requires to reach certain success rates.

We now define what it means to solve a problem successfully. The goal of an opti-
mization is to find the true global minimum of the objective function. For the standard
test functions, the true global minima are known. However, we do not know the true
minimum of the objective function of the economic application. We therefore consider
the “true” minimum to be the point with the lowest function value that is found by any
of the optimizers and with any of the computational budgets that we consider.14 Let
fs(x) denote the function we wish to minimize in a given problem p ∈ P , x∗p denote the
(unique) parameter vector at the minimum, and y∗p = fp(x

∗
p) be the minimized function

value. Finally, let x̂∗p,s be the global minimum returned by optimizer (or solver) s, and
ŷ∗p,s = f(x̂∗p,s) is the corresponding function value. We define two different success cri-
teria, one based on discrepancy in function values, the other based on discrepancy in
the parameter vector. Specifically, we say the optimizer s ∈ S solved the problem p

successfully according to the F-val criterion if

|y∗p − ŷ∗p,s| < τ,

where τ is the desired tolerance we choose. Similarly, it is said to solve the problem suc-
cessfully according to the X-val criterion if the maximum discrepancy across all elements
of the parameter vector is less than the chosen tolerance:

max|x∗p − x̂∗p,s| < τ.

We next describe the two tools—data profiles and performance profiles—we use to
benchmark the performance of optimizers along different dimensions.

3.1 Data Profiles

A data profile (Moré and Wild (2009)) plots the fraction of test problems a solver
success that are solved successfully (for a given success criterion) for a given computa-
tional budget—that is, the number of function evaluations or FEs, γ. Specifically, first
define the performance measure, tp,s > 0, as the number of FEs that optimizer s needs

14Note that we impose an upper bound on the considered number of function evaluations (FEs),
which is necessary because it can be very costly to evaluate the objective function.
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to solve problem p successfully. Higher values of tp,s imply worse performance, and if the
optimizer is not able to solve at any budget, we set tp,s = ∞. Next, define the “success
rate” of the optimizer for a given γ as

ds(γ) ≡ 1

|P|
size {p ∈ P : tp,s ≤ γ} ,

where |P| denotes the cardinality of the set of all problems considered in the bench-
marking study. To construct the data profile, we then plot each optimizers’ success rates
ds(γ) as a function of γ.

In addition to the success rate, we are also interested in measuring how poorly al-
gorithms perform when they do not satisfy given success criteria. That is, how far
away are failed implementations from the true optimum? To measure this, we define
a complementary tool, which we call “deviation profiles,” that reports the value of dis-
crepancies (e.g., |y∗p − ŷ∗p,s|) averaged over all failed problems. We compute this measure
for different FEs to measure how deviations evolve along the entire set of considered
computational budgets. This provides information about optimizers’ ability to get into
the close neighborhood of an optimum and about possible difficulties of optimizers in
locating the precise global optimum—at different computational budgets.

3.2 Performance Profiles

A performance profile (Dolan and Moré (2002) and Moré and Wild (2009)) provides
a more direct comparison of optimizers with each other. Whereas the data profile shows
how the success rate of a given optimizer varies with computational budgets, a perfor-
mance profile shows how the distribution of performance measures of a given optimizer
compares with those of other optimizers. To this end, first define the performance ratio
for solver s and problem p as

rp,s ≡
tp,s

min {tp,s′ : s′ ∈ S}
.

The denominator is the performance measure for the fastest solver for problem p

among all solvers, so the ratio expresses performance relative to the best available solver,
which naturally has rp,s = 1. For an optimizer who fails to solve problem p at any
considered budget, we set rp,s = ∞. The performance profile of an optimizer s ∈ S
measures the fraction of problems for which rp,s is smaller than or equal to α so that
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ρs(α) ≡ 1

|P|
size {p ∈ P : rp,s ≤ α} ,

where |P| denotes the cardinality of the set of all considered problems P . For example,
ρs(1) is the fraction of problems that optimizer for which optimizer s is the fastest (i.e.,
solves the problem with the smallest number of FEs among all optimizers considered).
More generally, ρs(α) is the cumulative distribution function of rp,s, showing the proba-
bility that solver s is within α factor of the best solver for problem s; hence, for a given
α higher values of ρs(α) means better performance.

3.3 Coding Language and Specifications

NLopt algorithms are programmed in C with the exception of StoGo, which is pro-
grammed in C++. We use a Fortran wrapper to use the optimizers from NLopt. The
TikTak optimization algorithm is written in Fortran. We used the gfortran compiler
with no additional optimization flags. The code was run on the cluster (unix machines)
at Yale University.

For all global algorithms, we implement a “polishing” local search as the very last
step of the optimization routine. To do this, we implement a local search with DFNLS
from the best (smallest) minimum that was found so far by the global algorithm. We
set the stopping tolerance of the last local search with DFNLS to 10−8 to give all global
algorithms the chance to come as close as possible to the true minimum.15

4 Benchmarking Results for Standard Test Functions
For the benchmarking analysis, we select four test functions—named Griewank, Levi,

Rastrigin and Rosenbrock—that are among the most challenging ones for global opti-
mization algorithms (see Ali et al. (2005)). Each function exhibits a combination of
challenging features, such as a large number of local minima, deep ridges, or very flat
valleys where algorithms can get stuck. They are well defined for any number of di-
mensions. In Section 4.2, where we benchmark performance via data profiles, we use
10-dimensional versions of each function. (In Appendix B, we also report the results for
the 2-dimensional case). In Section 4.3, where we analyze performance profiles, we use
both 2- and 10-dimensional versions of each function.

15The last polishing search is useful as we sometimes use lower tolerances as stopping criteria in
the local stages (i.e. 10−3) to increase the speed of the global algorithm. It is therefore possible that
the global algorithm comes into the close neighborhood of the true minimum, but it might require the
additional polishing search to find the exact minimum.
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Figure 1 – Griewank Function

(a) 3-D Plot (b) Contour Map
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4.1 The Test Functions
The first three test functions display a large number of local minima, whereas the

fourth one, Rosenbrock, is “valley-shaped” and therefore has a very flat surface near the
global minimum.

Griewank function. The Griewank function in n dimensions is

f(x) =
n∑
i=1

x2i
a
−

n∏
i=1

cos(
xi√
i
) + 2,

where we use the conventional choice of a = 200. We will focus on the hypercube
domain x ∈ [−100, 100]n. Its global minimum is at x = (0, ..., 0) with function value
f(0, ..., 0) = 1.

The left panel of Figure 1 plots the Griewank function in two dimensions. Globally,
it has a very clear bowl shape owing to the quadratic first term, so the general location
of the global minimum is hard to miss. However, thanks to the product of cosine terms,
the function also exhibits a large number of small “ripples,” which gives rise to a large
number of local minima spread throughout its domain. These ripples can be seen more
clearly in the right panel, which plots the contour maps of the function.16 Furthermore,
each closed circle on the map contains at least one local minimum, of which there are
many. Of course, keep in mind that these are the challenges that are already evident in 2

16To make the details visible, the contour map is plotted on a smaller domain: x ∈ [−50, 50]2.
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Figure 2 – Levi No. 13 Function

(a) 3-D Plot (b) Contour Map

dimensions; how these functions look and what further complications they may introduce
in three or more dimensions are impossible to visualize or even imagine.

Levi No. 13 function. The Levi function has several variants, and the one we use here
is a version—called Levi No. 13—that is commonly used for benchmarking optimizers.
In n dimensions, it is given by

f(x) = sin2(3πx1) + (xn − 1)2[1 + sin2(2πxn)] +
n−1∑
i=1

(xi − 1)2[1 + sin2(3πxi+1)] + 1,

and we focus on the domain x ∈ [−10, 10]n. The global minimum is located at x =

(1, ..., 1) with function value f(1, ..., 1) = 1.

The left panel of Figure 2 plots the Levi function in two dimensions. Like Griewank,
the Levi function is also globally bowl shaped, but it has another characteristic feature
that is easily seen here: a large number of deep ridges that run along the x2 direction,
each ridge showing a well-defined local minimum. These ridges are (somewhat) visible in
the contour map in the right panel. Because the function value changes sharply from the
sides of the ridge to the bottom, the contour map is dense in colors. The narrow bottom
between ridges can be seen as the vertical white strips, indicating the lower objective
values. The larger white circle in the middle is where the global minimum is located;
the function becomes flatter in that region, further complicating the task of finding the
optimum.
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Figure 3 – Rastrigin Function

(a) 3-D Plot (b) Contour Map
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Rastrigin function. The Rastrigin function in n dimensions is defined as

f(x) = An+
n∑
i=1

[x2i − A cos(2πxi)] + 1,

where we set A = 10 and focus on the (traditional choice of) domain x ∈ [−5.12, 5.12]n.
The global minimum is at x = (0, ..., 0) with function value f(0, ..., 0) = 1. Figure 3
plots the function values in two dimensions (left panel) as well as the contour map (right
panel). In some ways, Rastrigin combines the challenging features of Griewank and Levi
functions: like Griewank, it has a large number of local minima, each of which is buried
at the bottom of a deep bowl (or silo), making it hard to “see” around, similar to Levi’s
ridges. As we shall see, Rastrigin will prove to be an especially challenging test for many
of the optimizers we benchmark.

Rosenbrock function. The Rosenbrock function in n dimensions is defined as

f(x) =
n−1∑
i=1

[
100(xi+1 − x2i )2 + (1− xi)2

]
+ 1,

and we focus on the domain x ∈ [−100, 100]n. The global minimum is at x = (1, ..., 1)

with function value f(1, ..., 1) = 1.

Figure 4 plots the function values and contour map. Unlike the previous functions
we have seen, the challenge of Rosenbrock is not the proliferation of local minima but
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Figure 4 – Rosenbrock Function

(a) 3-D Plot (b) Contour Map

Note: The global optimum is marked with the red ∗ marker on the contour map.

rather the flat and long valley that contains the global optimum. The extremely large
range of variation in the function values (from 1 to 1012) makes it hard to see the shape
of this valley, which is where the contour map is useful. To make the contours visible,
we plot it only in the neighborhood of the global optimum, which lies not only on a flat
surface but also one that actually branches off into two near the global optimum. This
would make it easy for an optimizer to take the wrong branch and stop at a nearby point
without finding the optimum. Later, in Figure 9, we plot a different cut of the function
on a log scale, which further illustrates this point.

4.2 Results: Data and Deviation Profiles

Let us briefly restate the terminology and abbreviations of the algorithms that we
benchmark in this section. The five global optimizers taken from the NLopt library are
CRS, ISRES, ESCH, StoGo, and MLSL. For the local stage of MLSL, we use the Nelder-
Mead algorithm with two different convergence criteria—10−3 and 10−8—and we refer
to these versions as MLSL3 and MLSL8, respectively. For the TikTak algorithm, we
use either Nelder-Mead or DFNLS in the local stage, and we again use 10−3 and 10−8 as
different convergence criteria. We refer to the four versions as TikTak-nm3, TikTak-nm8,
TikTak-d3, and TikTak-d8, respectively. The three local optimization routines are the
Nelder-Mead simplex algorithm, DFPMIN, and DFNLS.
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Implementation Details and Definition of Success

We implement each minimization from 100 randomly drawn starting points (which
are the same for all algorithms). Each starting point is counted as a different problem
p, so that the set of problems P consists of 100 problems for each test function. To
construct the data profile for each test function and each optimizer, we implement all
minimizations at 30 different computational budgets. We then trace the data profiles by
linearly interpolating between these data points.17 For the 10-dimensional test functions,
we set an upper bound of 100k FEs.18 As mentioned above, we consider two success
criteria: one based on F-val and the other based on X-val, and report them both. For
the test functions, we set the tolerance level for success at τ = 10−6. We will report
both data and deviation profiles for each optimizer. Because a deviation profile is only
meaningful for failed searches, no values are plotted for an optimizer at FEs where the
success rate equals 100%. Figures 5-10 present the data profiles (top panel) and deviation
profiles (bottom) for each test function. The left and right panels report the results under
the F-val and X-val criteria, respectively. This section documents the results for the 10-
dimensional test functions. Appendix B shows the results for the 2-dimensional test
functions.

4.2.1 Griewank Function

The first main result from the top panel of Figure 5 is that the TikTak algorithm
has the strongest overall performance under both success criteria. For example, in the
left panel, it reaches a success rate of 100%—at budgets above 460 FEs for TikTak-d3
and above 710 FEs for TikTak-d8. The data profiles are very steep and both versions of
TikTak-d reach a success rate of 93% very quickly—at 270 for TikTak-d3 and at 400 for
TikTak-d8. The success rate reaches 100% above 1,300 FEs for TikTak-nm3 and above
2,600 for TikTak-nm8. It performs similarly well under the X-val criterion.

The second-best algorithm is CRS, which reaches high success rates but only at higher
computational budgets. CRS reaches F-val success rate of 96% at 4,700 FEs and near
100% above 9,000 FEs. Similarly, the X-val success rates are between 98% and 100% at

17For the NLopt algorithms, we can specify the number of FEs as explicit stopping criteria. For
TikTak, the number of FEs cannot be directly used as stopping criteria. Instead we increase the number
of Sobol’ points that are generated at the beginning, which increases the number of local searches and
the number of FEs. The last “polishing” local search adds additional FEs to the computational budgets,
which can vary across optimizers and problems p. To plot the data profiles, we therefore compute the
average number of FEs that are used by each optimizer and at each computational budget across all
100 problems that are minimized. These averages are then plotted on the x-axis of the data profiles.

18For the 2-dimensional test functions, documented in Appendix B, we allow up to 20k FEs.
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Figure 5 – Data and Deviation Profiles: Griewank, 10 Dimensions

(a) Data Profiles
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(b) Deviation Profiles
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Notes: This figure shows optimizers’ performance in minimizing the Griewank test function in 10 dimen-
sions. The x-axis (plotted in logs) shows all computational budgets, ranging from 500 to 100k. The left
and right panels show the data profiles under the F-val and X-val criteria, respectively. The bottom panel
shows deviation profiles, which document the average distance between the returned and true minimum
among all failed implementations, where failure is based on the F-val (X-val) criterion in the left (right).
For each optimizer, the reported deviation is the average across all problems for which the optimizer failed
at the corresponding computational budget. Therefore, no values are plotted if an optimizer has a success
rate of 100% at a given computational budget. Both axes are plotted in log10 scale to improve readability.
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budgets above 15,000. Notice that these are twice as many FEs as the slowest TikTak
algorithm (-nm8) and 10 times more than TikTak-d3. The performance of StoGo is good
as well but requires a closer inspection. Under the F-val criterion, it attains a 100%
success rate with 1,100 FEs and higher, only bested by TikTak-d versions. However, it
never attains the required tolerance level (τ = 10−6) under the X-val criterion for any
budget. That said, when it fails, the deviation profile (bottom left panel) shows that the
deviations are generally small, around 10−4. To the extent that this is acceptable in a
given application, its success would rank as the second best, behind TikTak.

Both ISRES and MLSL (both versions) require at least 10,000 FEs or more to reach
F-val success rates of 100%, similar to CRS. Under X-val, neither one successfully solves
a problem. Both versions of MLSL have small deviations (when they fail) from the
true parameter values (around 10−4) at budgets above 10k. The same is not true for
ISRES: for failed implementations, the deviations vary substantially (between 1 and
10−4), especially at large budgets. Finally, ESCH performs least well among the global
algorithms. The F-val success rate is low at small budgets and oscillates substantially
as the budget is increased, but never exceeds 88%. Under X-val, it is never successful,
and deviations among failed implementations are large.

Turning to the local algorithms, they all perform similarly under both success crite-
ria. The local DFNLS algorithm performs very well and reaches a success rate of 98%
at all considered budgets. It therefore performs better than many global algorithms.
DFPMIN reaches a success rate of 89% at all budgets. Although a success rate of 89%
may seem high, DFPMIN will not find the global minimum from 11% of the starting
points. Furthermore, because of their local nature, neither one improves its success rate
with more FEs. The Nelder-Mead algorithm performs less well with a success rate that
stagnates at 77%. Average deviations among failed implementations are very large for all
local algorithms (Panel B). It turns out that Griewank is one of the best test functions
for local algorithms. As we shall see in a moment, their performance is substantially
lower for the other test functions as well as for the economic application.

4.2.2 Levi Function

For the Levi function, Figure 7 shows the data and deviation profiles. As before,
TikTak performs best for both criteria, and all versions of TikTak reach success rates
of 100% already at low computational budgets. The fastest version is TikTak-d3, which
reaches that level at 776 FEs, followed by TikTak-nm3 at 1.5k FEs. TikTak-d8 and
-nm8 reach the same level at 1.5k and 3.5k FEs, respectively. CRS is the second-best
performing algorithm but requires substantially higher budgets: it has no F-val success
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Figure 6 – Levi No. 13 Function, Slices

(a) Values along x2 dimension
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(b) Values along x1 dimension
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until 3k FEs, but then gradually improves to reach success rates of 99% or higher with
budgets over 10k FEs. CRS has no X-val success at low budgets, only a 16% success rate
at 10k, before reaching values between 98% and 100% above 15k FEs. StoGo reaches an
F-val success rate of 100% at budgets above 10k. The F-val success rate below 10k is zero,
but deviations of failed implementations are decreasing toward the success threshold of
10−6 as the number of FEs increases (bottom right figure). Under X-val, StoGo is never
successful, but deviations among failed implementations decrease and remain at values
around 10−4 above 10k FEs. Notice that the performance of these three optimizers for
the Levi function are quite similar to what we saw for Griewank above.

ESCH, ISRES, and MLSL have F-val success rates that fluctuate, sometimes even
at larger budgets. MLSL3, for example, reaches F-val success rates between 87% and
99% between 11k and 15k FEs, but then the success rate drops again sharply to 1%–3%
at budgets between 20k–30k before reaching a stable success rate of 100% above 35k.
MLSL8 reaches an F-val success rate of 98%–99% at budgets above 21k. ESCH and
ISRES reach high F-val success rates, but these fluctuate moderately, even at larger
budgets.19 Deviations among failed implementations vary for ESCH, ISRES, and MLSL
(left graph of Panel B). Failed implementations of MLSL have large deviations from
the true function values at all budgets. ISRES has large deviations at most budgets,
with two exceptions where deviations decrease to values close to 10−6. ESCH has very

19For ESCH, the F-val success rate fluctuates between 91% and 99% at budgets above 11k. For
ISRES, it fluctuates between 93% and 100% at budgets above 30k.
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Figure 7 – Levi Function, 10 Dimensions: Data and Deviation Profiles

(a) Data Profiles
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(b) Deviation Profiles
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Notes: This figure shows optimizers’ performance in minimizing the Levi test function in 10 dimensions.
See the notes to Figure 5 for other details about the construction of these figures.

small deviations (between 10−4 and 10−6) at budgets above 15k, implying that failed
implementations of ESCH only miss the F-val success criterion by a small margin.

Under X-val, ESCH, ISRES, and MLSL are never successful at the computational
budgets that we consider. However, deviations from the true parameters among failed
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implementations are small (bottom right figure). For ESCH, deviations are close to 10−4

at budgets above 15k. For MLSL3, deviations are around 10−4 at budgets above 35k.
For MLSL8, deviations are larger with values around 10−2 at budgets above 21k. For
ISRES, deviations fluctuate between 10−2 and 10−4 at budgets above 30k.

The three local algorithms again perform poorly under both success criteria. Nelder-
Mead stagnates at a 32% success rate at budgets above 19.5k for both criteria. DFNLS
reaches 16% at budgets above 1.5k and 2k for F-val and X-val criteria, respectively.
DFPMIN never exceeds a success rate of 2%. Average deviations among failed imple-
mentations are very large in every case.

4.2.3 Rastrigin Function

Rastrigin proves to be much more challenging for optimizers than the previous two
functions. While four of the optimizers reach an F-val success rate of 100% at 10k FEs,
two others are between 10% and 30%, while the remaining six have less than a 2% success
rate. Overall, StoGo has the best performance (Figure 8); it reaches F-val and X-val
success rates of 100% for budgets above 1.1k FEs (which happens to be the lowest budget
that is feasible for the optimizer). TikTak-d3 is the second best, reaching a 100% success
rate (both F-val and X-val) above 3.8k FEs.20 It is closely followed by TikTak-d8, which
has a lower success rate at budgets below 4k, but reaches 100% around the same point
as the -d3 version. TikTak-nm3 and -nm8 perform very poorly up to about 10k FEs
but improve monotonically beyond that point. TikTak-nm3 reaches a 98% success rate
above 65k FEs, whereas the -nm8 version reaches only an 83% rate at 100k FEs.

ESCH arguably ranks fourth in performance, only behind StoGo and the two versions
of TikTak-d. It reaches an F-val success rate of 99% at 5k FEs and 100% for all larger
budgets. Although its X-val success rate is zero, as we have seen for some other optimiz-
ers before, the deviations are consistently small, around 10−5.3 (bottom right figure). The
remaining optimizers—CRS, ISRES, MLSL, and all three local algorithms Nelder-Mead,
DFNLS, and DFPMIN—perform very poorly and have no F-val or X-val success at any
of the computational budgets that we consider. In addition, failed implementations have
large deviations that go all the way up to 102 and 10 for F-val and X-val values, respec-
tively (bottom left figure). Overall, the deeply buried (many) local minima featured by
Rastrigin proves to be too much to overcome for many of the global optimizers.
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Figure 8 – Rastrigin Function, 10 Dimensions: Data and Deviation Profiles

(a) Data Profiles
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(b) Deviation Profiles
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Notes: This figure shows optimizers’ performance in minimizing the Rastrigin test function in 10 dimen-
sions. See the notes to Figure 5 for other details about the construction of these figures.

4.2.4 Rosenbrock Function

In many ways, Rosenbrock provides the toughest test to optimizers. Even the best
optimizers require large computational budgets to find the global optimum (Figure 10).

20At lower budgets, TikTak-d3 reaches an F-val success rate of 7% at 350 and success rates between
83% and 99% at budgets between 1.2k and 3k.
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Figure 9 – Rosenbrock Function, Different Perspectives, Log Scale

(a) Log Scale: Two Subtle Ridges
(b) Log Scale: Two Ridges Merge into One Near the
Global Minimum
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Overall, TikTak-d3 performs the best, reaching an F-val success rate of 100% above 12k
FEs. Four optimizers—TikTak-d8, TikTak-nm8, StoGo, and MLSL3—are effectively
tied for second place. TikTak-d8 reaches a 99% success rate at 14k FEs and 100% at
20k FEs. The other three have lower success rates below 20k FEs but then all reach
100% as well. As before, the success rates of all TikTak versions are similar under the
X-val criterion. The same is not true for StoGo and MLSL3, which have zero success
rates under X-val at all budgets; but again as before, beyond 20k FEs, the failed runs
have small deviations (10−4 to 10−5) from the true values.21 MLSL8 is slower than these
optimizers but eventually attains a 100% success rate—for budgets above 36k.

The remaining optimizers never get to a 100% success rate. CRS stagnates around
a 90% success rate (for both F-val and X-val) all the way up to the maximum budget
we consider. Failed implementations have large deviations. Similarly, ESCH and ISRES
fluctuate between 92% and 98% success rates, and the failed implementations never come
close to the true values under either success criterion. (ESCH has parameter deviations
between 1 and 10−4 and ISRES has between 1 and 0.1). Finally, local algorithms perform
poorly under both criteria. Nelder-Mead reaches F-val and X-val success rates of 70%
at budgets above 19.5k but then stagnates there. DFNLS never exceeds a success rate
of 12%. DFPMIN is never successful. Deviations from the true function and parameter

21TikTak-nm3 reaches F-val success rates between 98% and 100% above 35k FEs, but its success rate
is erratic (ranging from 9% to 90%) at smaller budgets.
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Figure 10 – Rosenbrock Function, 10 Dimensions: Data and Deviation Profiles

(a) Data Profiles
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(b) Deviation Profiles
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Notes: This figure shows optimizers’ performance in minimizing the Rosenbrock test function in 10 di-
mensions. See the notes to Figure 5 for other details about the construction of these figures.

values are large for all local algorithms and at all budgets.

Overall, Rosenbrock presented interesting challenges not present in previous test func-
tions. Despite the lack of many local optima and the apparent lack of deep ridges and
ripples, it turned out to be harder to locate the global optimum. The global optimum
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located on a flat valley and the branching off from the objective surface are features that
economists commonly face in real world applications.

4.3 Results: Performance Profiles

We now turn to performance profiles, which gives a complementary (and more direct)
perspective on how optimizers compare with the best one available for a problem. The
set of problems P consists of the four test functions, but this time we include both
2- and 10-dimensional versions of each. As before, we start each problem from 100
randomly selected starting points, yielding a total of 800 test problems. To trace the
performance profiles, we use implementations of each minimization p ∈ P at 30 different
computational budgets.

We saw in the previous section that success rates do not always increase monotonically
with higher computational budgets.22 We therefore compute the performance profiles
for two different notions of success. In the first case, if an optimizer solves a problem
successfully (say, under the F-val criterion) for budget level γ, we automatically define it
to be successful at all higher budgets. We call this definition the “first success” criterion.
The second case is more demanding: it defines success at a given budget γ only if the
optimizer solves the problem successfully at γ and all higher budgets considered. We
refer to this as the “permanent success” criterion. We report the performance profiles
with both definitions.

4.3.1 Results

Figure 11 plots the performance profiles for the F-val (top) and X-val (bottom) success
criteria, each requiring either first success (left graph) or permanent success (right graph).
The success of TikTak-d we have seen in the previous section is also manifested here:
the four versions of TikTak share the top four places in the performance profiles. Among
these, TikTak-d3 ranks at the top at all levels of α for three out of four success criteria
(all but the bottom left panel). In particular, it has the highest probability of being the
fastest algorithm for a randomly chosen problem, α(1) averaging about 0.5 across the
four panels. By the first success criterion (left panel), it is never more than three times
slower than the fastest optimizer for any problem (ρ(3) = 100%). By the permanent/F-
val criterion, it has only a 5% chance of being 10 times or more slower than the best,
which is only tied with TikTak-d8. For the permanent/X-val, TikTak-d8 takes it over for
α > 5 (the interpretation being that the chances for the -d8 version to be more than 5

22This can happen because optimization routines use different strategies depending on the total
budget that is allowed.
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Figure 11 – Performance Profiles (all Test Functions in 2 and 10 dim)

(a) Success: F-val Criterion
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(b) Success: X-val Criterion
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Notes: The figure plots the cumulative distribution function of ρ(α), which approximates (for large P) the
probability that an optimizer is within α factor of the best optimizer for a randomly chosen problem. P
consists of the four test functions (Levi, Griewank, Rastrigin, Rosenbrock), each in 2 and 10 dimensions,
and each minimization starting from 100 randomly chosen starting points. Panel A uses the F-val success
criterion, requiring either first success (left graph) or permanent success (right graph). Panel B uses the
X-val success criterion, again requiring either first success (left graph) or permanent success (right graph).
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times slower than the best optimizer is lower than for the -d3 version, which ranks second
best). These two are followed by TikTak-nm3 and -nm8 in third and fourth places.

Turning to NLopt, judging by the F-val criterion and combining the first and perma-
nent success performance (top panels), a few optimizers do better than others in best-case
scenarios (i.e., for α < 5 or so). In particular, StoGo, both versions of MLSL, and ESCH
all reach a 40%–50% probability of being within a factor of 5 of the fastest optimizer
(i.e, ρ(5) ≈ 04 − 0.5). CRS is also within this group by the first success criterion but
lags behind when performance is measured by permanent success. Although it is hard to
definitively rank the NLopt algorithms given that their performance profiles criss-cross
each other and their performance is somewhat sensitive to the particular criteria, StoGo
is arguable one of the better ones, ranking near the top among NLopt algorithms across
the various criteria. Also recall that when StoGo fails the X-val criteria it is usually
by not very much, so its performance in the bottom panel somewhat understates its
acceptable performance along that dimension.

CRS also does well, besting StoGo by the first/F-val measure but falling behind in
the permanent/F-val measure. By the X-val measure, it does not do as well as StoGo at
least for α values less than 20 or so. ESCH does better than CRS by the F-val criterion
but poorly by X-val, and from the previous section, we have seen that when it fails, it
typically displays large X-val deviations. Finally, despite not ranking at the top in any
category in Figure 11, we view MLSL’s performance as similar to or better than CRS,
mostly based on its performance profile by permanent success and the fact that when it
fails, it consistently comes very close to the true parameter values.

The performance rankings of local algorithms are similar under all four success cri-
teria: Nelder-Mead comes first, followed by DFNLS, with DFPMIN in last place. This
ordering is not surprising in light of extensive experience researchers have had with these
three algorithms over the years, where the same ranking typically emerges in real-life ap-
plications. Interestingly, Nelder-Mead does better than some of the NLopt algorithms,
although its performance is a long way from the TikTak algorithm. Furthermore, the
success rate of Nelder-Mead is boosted somewhat by the inclusion of 2-dimensional ver-
sions of test functions, where it does better than it does under 10-dimensional versions.
Furthermore, recall from Section 4.2 that deviations among failed implementations are
substantially larger for local algorithms, which serves as an important warning for their
use in global optimization problems.
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4.4 Taking Stock
Having examined the data and deviation profiles for each (10-dimensional) test func-

tion as well as the performance profiles for the entire set of problems, we can now
summarize the overall performance of each optimizer. Versions of the TikTak algorithm
performed the best across different evaluation criteria, with TikTak-d3 ranking at the
top more often than any other variant. TikTak-nm is typically in second place because
of the slower performance of Nelder-Mead in local search stage. That said, Nelder-Mead
has high reliability as a local algorithm, so in complex and higher-dimensional problems,
we believe that it would be prudent to use it in some of the local searches of TikTak.
(This is also consistent with the experience the authors report in the papers listed in
footnote 4.) The only exception to TikTak’s top performance was Rastrigin where StoGo
was the clear top performer.

Among NLopt algorithms, one can make a case for StoGo, and MLSL, as well as
CRS. The latter does well on relatively easier problems—such as Griewank and Levi
functions, but does poorly on harder ones such as Rastrigin and Rosenbrock. MLSL and
StoGo are somewhat slower on easier problems and can fail to achieve the strict tolerance
levels we imposed, but they do better in harder problems, and when they “fail,” they
typically come quite close to the true parameter values. For example, StoGo is the fastest
algorithm for Rastrigin (three times faster than the fastest TikTak version) and does well
for Rosenbrock for budgets above 10k FEs, whereas CRS fails Rastrigin completely and
gets stuck at a 90% success rate on Rosenbrock. And when it fails, parameter values are
far from the true values. In our view, this is an important drawback because an algorithm
that cannot eventually attain a 100% (or close) success rate is a very risky choice in real-
life applications, as increasing the computational budget does not get us closer to the
true minimum. MLSL is similar to StoGo along these lines but fails Rastrigin completely.

ESCH has high F-val success rates (between 80% and 100%) for all test functions;
however, the algorithm is never successful under X-val. Those failed instances have small
(parameter value) deviations for Griewank, Levi, and Rastrigin, but larger deviations for
Rosenbrock. ISRES never successfully solves a problem under X-val at budgets below
30k that we consider, and failed instances have relatively large deviations, especially
for Rastrigin and Rosenbrock. In addition, success rates of ISRES (as well as ESCH)
fluctuate substantially across computational budgets for several test functions.

In some cases, local algorithms reach higher success rates than some of the global
algorithms, but they all stagnate at levels below 100% even when the computational bud-
get is increased (with the minor exception of Griewank for Nelder-Mead). For reasons
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just discussed, algorithms that cannot reach a 100% success rate at any budget are not
reliable for solving global optimization problems. In addition, failed implementations of
the local algorithms always have large deviations. This implies that failed implementa-
tions of local algorithms return values that are far away from the true global minima
(possibly local algorithms are stuck at a local minima). In comparison, failed implemen-
tations of global algorithms are oftentimes able to come into a closer neighborhood of
the true minima.

5 Benchmarking: An Economic Application
We now turn to an economic application to benchmark these global optimizers.

A very common use of optimization algorithms in economics is in structural estima-
tion/calibration, where an objective function based on some distance measure between
model and data moments is minimized by the choice of model parameters. The specific
example we study in this section is a panel-data estimation of a stochastic process for
labor income. It is taken from a recent paper by Busch et al. (2015), who studied the
business cycle variation in higher-order labor income risk. We choose this particular
economic application because it involves the minimization of a nonlinear and relatively
high-dimensional (seven) function that shares many features and challenges that are
common to economic applications. We first briefly describe the income process that is
estimated and then present the benchmarking results.

5.1 A Stochastic Process for Individual Labor Income

Let Yt denote the labor income of an individual at time t, and define yt ≡ log Yt,
which evolves as follows:

yt = zt + θt (1)

zt = zt−1 + ζt, (2)

where θt is an i.i.d. transitory shock drawn from a Gaussian distribution, N (µθ, σθ), and
µθ is chosen such that E

(
eθ
)

= 1. The permanent shock, ζt, to the process zt is drawn
from a distribution whose properties vary over the business cycle, modeled as a mixture
of three normal distributions:

ζt ∼


N (µ1t,, σ1) with probability p1
N (µ2t, σ2) with probability p2
N (µ3t, σ3) with probability p3,

(3)
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with
∑3

j=1 pj = 1. The business-cycle variation in the means is captured by introducing
an indicator for the aggregate economy xt (which can be GDP growth, the unemployment
rate, and so on), which gets transmitted to the means by a factor φ. More specifically:

µ1t = µ̄t

µ2t = µ̄t + µ2 − φxt
µ3t = µ̄t + µ3 − φxt.

where µ̄t is normalized so that E(eζt) = 1 for all t. The business cycle is captured by
xt ≡ −(log GDPt+1

GDPt
), and GDP growth serves as an empirical measure of aggregate fluc-

tuations.23 Busch et al. impose p2 = p3, σ2 = σ3, leaving 7 parameters to be estimated:

Θ = (σθ, p1, µ2, µ3, σ1, σ2, φ) .

The parameters are estimated using a method of simulated moments (MSM) es-
timator that minimizes the distance between 297 data moments and their simulated
counterparts. We take the data moments from Busch et al. (2015), who compute them
from panel data on individual-level earnings in Sweden.24 To construct the correspond-
ing model moments, we follow the same paper and simulate 10 panels, each containing
the income histories of 10, 000 individuals. The simulated moments are computed for
each panel and then averaged over the 10 panels. The objective function is the sum of
squared distances between the data and model moments. The distance measure is the
percentage difference, with a small scale adjustment to avoid moments with very small
absolute values dominating the objective function; see Busch et al. (2015) for further
details.

One particular challenge posed by this objective function is that a large number of
moments depend on the percentiles of a distribution. Because a percentile corresponds
to data from a single individual, when a finite number of individuals is simulated, these
percentiles are not continuous in the underlying parameters of the model. This introduces
jaggedness into the objective function, which often cannot be seen with the naked eye
but can quickly make the job of optimizers much harder. Of course, one can increase the
number of individuals simulated

23Note that log GDP changes are standardized in the estimation.
24Key moments include the 10th, 50th, and 90th percentiles of the distribution of earnings changes

over one, three, and five years during the 1979–2010 period, as well as the age profile of the cross-sectional
variance of log income between ages 25 and 60.
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5.2 Results

In this analysis, we only consider the global algorithms. We do not use StoGo as
it requires the gradient of the objective function, which does not have an analytical
expression and is costly to compute numerically. For all algorithms, we start the global
minimization at 10 randomly selected starting points (the same for all algorithms), which
provides us with the set P . We consider computational budgets up to 70k FEs.25 The
success tolerance, τ , is set to 10−2, which is a sufficiently tight tolerance that the variation
in parameter values within this neighborhood of the minimum is small as judged by
their potential economic effects. Unlike with the test functions above, here the true
global minimum is unknown. As is often done in the benchmarking literature, we take
the smallest objective as the minimum value found by any optimizer and across all
budgets. This smallest minimum was found by CRS and is equal to f(x) = 3.4863. The
corresponding parameter values are shown in Table C.1 in Appendix C.

To get a rough idea about how the objective function varies with each of the seven
parameter values, Figure C.5 in Appendix C plots the 1-dimensional slices of the objective
surface by varying each of the seven parameters over its entire domain while fixing the
remaining six parameters at their optimum.26 There are a few takeaways from this figure.
First, for six of the seven parameters (except x7), the minimum objective value lies close
to the bound of each parameter value. Further, for four of the parameters, (x1, x3, x5, x6),
the objective appears very flat near the boundary where the optimum lies. To get a
clearer picture, the next Figure (C.6) zooms in to the immediate neighborhood of the
minimum for each parameter. The local view looks much different. It becomes clear that
the optima for x1, x3, and x5 are clearly interior, whereas for x6 it is very close to the
boundary. Furthermore, the objective is quite jagged in the x3 and x6 directions near
the optimum, which suggests optimizers can get trapped in a local optimum nearby and
stop prematurely.

Data and Deviation Profiles

Figure 12 plots the data and deviation profiles. Overall, TikTak-d performs the
best, which is perhaps not surprising given the results so far. Among NLopt algorithms,

25For the NLopt algorithms, we implement minimizations at 16 different computational budgets using
the numbers of FEs as explicit stopping criteria. An exception is MLSL8 for which we only compute 6
steps. For TikTak, we again generate different numbers of Sobol’ points to implement minimizations at
different computational budgets.

26Although this is stating the obvious, we should stress that while visualizing an objective function
through these slices is informative, it is nowhere near a complete description of the objective function,
so it must be used with care.
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Figure 12 – Data and Deviation Profiles for the Income Process Estimation

(a) Data Profiles

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CRS ESCH ISRES MLSL3 MLSL8 TikTak-nm3 TikTak-d3 TikTak-nm8 TikTak-d8

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Deviation Profiles
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Notes: The x-axis (plotted in logs) shows computational budgets ranging from 1k to 70k FEs. See the
notes to Figure 5 for other details about the construction of these figures.

MLSL is arguably the top performer. A quick glance at the data profiles shows that all
optimizers struggle more than on test functions with many erratic fluctuations in success
rates. We now delve into the details.
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Both versions of TikTak-d perform well under F-val criterion, but their success rates
fluctuate substantially under the X-val one. In particular, TikTak-d3 reaches a 100%
F-val success rate at all computational budgets (the lowest budget we consider is 600),
but is more erratic under the X-val criterion.27 However, for budgets above 5k FEs,
failed implementations are very close to the success threshold, with deviations from true
parameter values between 10−1.9 and 10−1.98 (bottom right panel). TikTak-d8 is similar
in this respect and also comes as close to the parameter values as the -d3 version, so the
additional function evaluations it is allowed by the tighter local tolerance only serves to
slow down its performance without a clear benefit. The Nelder-Mead versions of TikTak
rank clearly behind the -d3 and -d8 versions when judged by the X-val performance.
Although the difference is often not substantial, the failed implementations are almost
always 3 to 5 times farther from the true values relative to the -d versions, and their
X-val success criteria are also quite a bit lower.

Turning to the NLopt algorithms, there are clear differences in performance, although
none of them come close enough to the true parameter values in a consistent fashion.
Arguably, the most successful one is MLSL (both versions). They both reach 100% F-val
success rates at relatively low budgets, although they do not reach high X-val success
rates until we reach very high budgets—60k FEs and beyond. That said, similar to what
we have seen with the test functions, the deviations from true parameter values are lower
than other NLopt algorithms and keep improving with higher FEs. For budgets beyond
20k FEs or more, MLSL attains X-val deviations of 10−1.9, very close to the success
threshold.

As for CRS, ESCH, and ISRES, none of them do a satisfactory job as judged by
their ability to come close to the true parameter values in a consistent manner. ISRES is
somewhat better than the other two, eventually reaching an F-val success rate of 100%
above 21k FEs, but stagnating between a 0% and 50% X-val success rate below 30k
FEs. Its success rate rises above 80% beyond this point, but for failed implementations,
it is farther from all TikTak versions at almost all budgets. CRS is further behind,
with inconsistent F-val success rates, never reaching above 60% X-val success rates, and
displaying large deviations from true values along both dimensions for failed implemen-
tations. Finally, ESCH ranks last with very poor performance across the board.
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Figure 13 – Performance Profiles for the Income Process Estimation

(a) Success: F-val Criterion
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(b) Success: X-val Criterion
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Notes: The figure plots the cumulative distribution function of ρ(α), which approximates (for large P)
the probability that an optimizer is within α factor of the best optimizer for a randomly chosen problem.
Here P consists of the income estimation problem from 10 randomly selected starting points. See notes to
Figure 11 for other details.

Performance Profiles

Figure 13 shows the performance profiles. The fast performance of TikTak versions
is also seen here, with the performance profiles of both TikTak-d versions always lying
above others (with the small exceptions of very large budgets and X-val criteria, bottom
right panel). One point to keep in mind is that performance profiles rely on success

27Specifically, TikTak-d3 reaches X2 success rates of 20% at 600 and 40% at 900. Then X2 success
rates vary between 70% and 100% at budgets between 2.3k and 32k; however, the success rate again
drops down to 10% at 43k, before increasing again to 90% at 64k (right graph of Panel A).
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rates, so they do not always capture the nuances of optimizers that technically fail but
come very close, as we have seen for TikTak-nm and MLSL, among others. This pushes
the performance profile of some optimizers, such as CRS, above others, even though the
data and deviation profiles clearly showed that it is one of the weakest performers. The
same feature also affects MLSL, which is the best performer behind TikTak under F-val
criteria but ranks low in X-val, the first success criterion.

6 Conclusion
In this paper, we have benchmarked the performance of seven global and three lo-

cal algorithms in optimizing difficult objective functions. In particular, we compare
optimizers’ performance in terms of reliability (success rates) and efficiency (required
computational budgets). We use the algorithms to optimize a small suite of multidimen-
sional test functions that are commonly used to benchmark algorithms in the applied
mathematics literature. As we are particularly interested in understanding optimizers’
performance in typical economic applications, we also use the same optimizers to solve
an estimation exercise that is commonly found in economics. We consider seven global
optimizers—CRS, ISRES, ESCH, StoGo, MLSL, TikTak-nm, and TikTak-d—as well as
three local algorithms—Nelder-Mead, DFPMIN, and DFNLS.

We find that TikTak-d has the strongest performance overall, for both the test func-
tions and the economic application in terms of reliability and efficiency. The second-best
optimizer is TikTak-nm, which performs well on the test functions and on the economic
application for most but not all success criteria. In addition, TikTak-nm is less efficient
than TikTak-d as it requires larger computational budgets to solve problems successfully.
The relative performance of the NLopt algorithms differs across different test functions
and the economic application. MLSL and ISRES perform better in solving the eco-
nomic application, but they are relatively less successful in minimizing (some of) the
test functions. However, even when MLSL fails, it manages to come very close to the
success threshold under both the F-val and X-val criteria. Based on this performance,
we find MLSL to be one of the better NLopt algorithms that we tested. StoGo is another
strong performer, arguably the best NLopt algorithm for test functions, but we have not
included it in the economic application for reasons explained earlier.

The performances of CRS, ESCH, and ISRES are a step behind the others. For
real-life applications, the minimum that we should expect from a global optimization
algorithm is that it finds the true global optimum reliably even if this requires a large
computational budget. These algorithms fail this test too often, which raises questions
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about their suitability for the complex and high-dimensional problems found in economic
applications.

Local algorithms display a similarly unreliable performance, with low success rates,
large deviations in failed implementations, and stagnant performance that does not im-
prove with higher computational budgets (especially for DFPMIN and DFNLS). Al-
though this result should not be surprising given that they are not designed for global
optimization, these local optimizers are widely used for that purpose in real-life applica-
tions. Our analysis sounds a strong cautionary note to discourage that practice.
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A Appendix: Detailed Description of Algorithms
This section provides a description of the global optimization algorithms used in the paper.

A.1 Controlled Random Search with Local Mutation (CRS2-
LM)

Controlled Random Search (CRS) algorithms were first introduced by Price (1977). An
advantage of these algorithms is that they do not require much knowledge about the properties
(e.g. differentiability) of the objective function that is minimized. The basic CRS algorithm
has been modified and improved over time in several ways. More details on all variants of CRS
can be found in Kaelo and Ali (2006). We will now describe the basic CRS algorithm and a
variant of CRS with local mutation (CRS2-LM). CRS2-LM was developed and benchmarked
by Kaelo and Ali (2006), and the authors find that CRS2-LM performs better than all other
CRS variants. In this paper, we therefore use the CRS2-LM algorithm from the NLopt library
in our benchmarking exercise.

The basic CRS algorithm The CRS algorithm (Price (1977)) is a direct search technique.
Convergence results are purely based on heuristics. Given a bounded n-dimensional objective
space X, the algorithm progresses as follows to minimize an objective function on this search
space:

1. Initialize. Generate N uniformly distributed random points from the search space X and
store them in an array S.

2. Rank the N points in S from best (xb) to worst (xw) where the best point is associated
with the smallest function value f(xb).

3. Generate trial points x̃:

(a) Randomly select n+ 1 points x1, x2, ..., xn+1 with replacements from S.

(b) Randomly select one vertex of the simplex (say, xn+1) as a pole and reflect it through
the centroid of the remaining points in the simplex to obtain the trial point x̃:

x̃ =
1

n

n∑
i=1

(2xi − xn+1) .

(c) If x̃ lies outside of the bounds (x̃ /∈ X), return to Step 3 (a).

(d) If the new trial point is worse than the worst point (f(x̃) ≥ f(xw)), return to Step
3 (a).

4. Update S. If this step is reached, then the new trial point x̃ must be better than the
worst point, that is, f(xw) > f(x̃). Therefore, xw is replaced by x̃. The algorithm then
returns to Step 2.

5. Repeat Steps 2 to 4 until a stopping rule is met. Usually stopping criteria are based on
the distance between the best and worst points, (e.g., f(xw)− f(xb) ≤ τ).
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Given this basic structure, several modifications aimed at improving the selection of trial points
by suggesting changes to Step 3. Kaelo and Ali (2006) develop a new version of CRS which is
referred to as CRS2 with local mutation (CRS2-LM). CRS2-LM modifies Step 3(a) (i.e., the
way in which the algorithm selects the n+ 1 points that form the simplex) and Step 3(b) (i.e.,
the rules for finding new trial points x̃) of the basic CRS algorithm. We will now describe the
CRS2-LM algorithm in more detail as we use this version of CRS in our benchmarking exercise.

The CRS2-LM algorithm (based on NLopt) The CRS2-LM algorithm changes the
method of generating the n+1 points that form the simplex. Now, the algorithm generates only
n points randomly and always uses the smallest function value in S as the (n+ 1)-st point. The
second change affects the rules for updating and discarding unsuccessful trial points. Recall
that the basic CRS algorithm discards a new trial point x̃ if its function value f(x̃) is not better
than the current worst point in the sample S. In the CRS2-LM version, the unsuccessful trial
point x̃ is not discarded but is instead used to obtain another trial point ỹ by coordinate-wise
reflecting x̃ through the current best point xb. The CRS2-LM algorithm can be summarized by
the following steps:

1. Initialize. As in basic CRS.

2. Rank points. As in basic CRS.

3. Generate trial points x̃:

(a) Randomly select n points x2, x2, ..., xn+1 with replacements from the search space
X. Let xb = x1.

(b) Obtain the next trial point x̃ as in CRS given the n+ 1 simplex vertices selected in
3 (a).

(c) If x̃ lies outside of the bounds (x̃ /∈ Ω), return to Step 3 (a).

(d) If the new trial point is worse than the worst point (f(x̃) ≥ f(xw)), then go to Step
4; otherwise go to Step 5.

4. Local mutation of x̃:

(a) Generate another trial point ỹ using the “unsuccessful” trial point x̃ and the best
point xb by coordinate-wise reflecting x̃ through the current best point xb according
to the following equation:

ỹi = (1 + ωi)xbi − ωix̃i,

where i denotes the i-th coordinate of each point and ωi is a random number in
[0,1] drawn for each i.

(b) If f(ỹ) ≥ f(xw), then no replacement is done and the algorithm returns to Step 3.

5. Update S. If this step is reached from Step 3, the new trial point x̃ is better than the worst
point (e.g., f(xw) ≥ f(x̃)). Therefore, xw is replaced by x̃. If this step is reached from
Step 4, the new trial point ỹ is better than the worst point (f(xw) > f(ỹ)). Therefore,
xw is replaced by ỹ instead. The algorithm then returns to Step 2.
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6. Repeat Steps 2 to 5 until a stopping rule is met. Usually stopping criteria are based on
the distance between the best and worst points, (e.g., f(xw)− f(xb) ≤ τ).

In our implementation, we use N = 10(n+ 1).

A.2 Improved Stochastic Ranking Evolution Strategy (ISRES)
Both ISRES and ESCH (see below) are Evolution Strategy (ES) algorithms. ES algorithms

are based on the evolution of a population (set of individuals) along generations. The population
is composed of two distinct groups: µ parents and λ offsprings. During each generation, the
population size changes from µ to µ+ λ individuals. After the selection, the population again
reduces to µ individuals. ES algorithms differ in the way in which offspring is generated and in
the selection of surviving individuals.

The Improved Stochastic Ranking Evolution Strategy (ISRES), developed in Runarsson
and Yao (2000, 2005), proposes a novel approach to balance objective and penalty functions
stochastically and to rank candidate solutions to the minimization accordingly. The new ranking
strategy is tested in Runarsson and Yao (2000) on a suite of 13 benchmark problems using a
(µ, λ) evolution strategy. The authors furthermore point out that the new constraint-handling
technique (which is based on the stochastic ranking scheme) can be used in any evolutionary
algorithm and is not limited to the evolution strategy. The evolution strategy in the NLopt
application is based on a combination of a mutation rule (with a log-normal step-size update and
exponential smoothing) and differential variation (a Nelder-Mead-like update rule). Overall, the
authors find that using the suitable ranking method improves the performance of the algorithm
significantly. The main advantage of the ISRES algorithm is therefore the constraint handling.
ISRES supports arbitrary nonlinear inequality and equality constraints, in addition to bound
constraints, and it performs well in problems with nonlinear constraints (shown in Runarsson
and Yao (2000)).

A.2.1 Basic evolution strategy ((µ, λ)−ES algorithm)
The basic (µ, λ)−ES algorithm can be summarized by the following steps:

1. Initialize. Generate λ individuals (x′i, σ
′
i), where x′i are uniformly distributed random

points from the search space X, and σ′ij = (x̄j − xj)/
√
n , where xj and x̄j are the lower

and upper bounds of the search space.

2. Rank the λ points that were generated from best (xb) to worst (xw) where the best
point is associated with the smallest function value f(xb). Keep the best µ individuals
(xi, σi), i ∈ {1, . . . , µ}.

3. Replication. A new population of λ individuals is reconstituted by mutation of the µ
individuals (xi, σi) using a non-isotropic mutative self-adaptation rule:

σ′k,j = σrank(k),j exp(τ ′N(0, 1) + τNj(0, 1)), k = {1, . . . , λ}, rank(k) = mod(k − 1, µ) + 1

x′k = xrank(k) + σ′kN(0, 1)

σ′k ← σrank(k) + α(σ′k − σrank(k)) (exponential smoothing)

4. Repeat Steps 2 to 4 until a stopping rule is met.

41



A.2.2 Improved Stochastic Ranking Evolution Strategy (ISRES)

Runarsson and Yao (2005) point out that the search by the (µ, λ)−ES is biased toward a grid
aligned with the coordinate system. To address this issue, the authors introduce a modification
to the algorithm (differential variation) that can be thought of as a variation of the Nelder-Mead
method. More specifically, Runarsson and Yao (2005) modify Step 3 by subdividing it into two
substeps. A specific mutation is performed on each of the µ − 1 best parents according to the
following equation:

x′i = xi + γ(xb − xi+1), i ∈ {1, . . . , µ− 1}.

The search direction is now determined by the best individual and the individual ranked just
below the parent being replicated (index i+ 1).. The step length is controlled by the parameter
γ. For these trials, the parent mean step size σi is copied unmodified.

The new algorithm can be described as follows:

1. Initialize. Generate λ individuals (x′i, σ
′
i), where x′i are uniformly distributed random

points from the search space X, and σ′ij = (x̄j − xj)/
√
n , where xj and x̄j are the lower

and upper bounds of the search space.

2. Rank the λ points that were generated from best (xb) to worst (xw) where the best
point is associated with the smallest function value f(xb). Keep the best µ individuals
(xi, σi), i ∈ {1, . . . , µ}.

3. Replication. A new population of λ individuals is reconstituted by mutation of the µ
individuals (xi, σi). There are two types of mutations:

(a) Differential variation. For the µ− 1 first individuals, the strategy parameter is kept
unchanged and the new individual coordinates are a combination of two parents xi
and xi+1 and the best point so far xb:

x′i = xi + γ(xb − xi+1), i ∈ {1, . . . , µ− 1}.

(b) Standard mutation. For the remaining individuals (x′k, σ
′
k) for k ∈ µ, . . . , λ, the

strategy parameter σk and the point xk are mutated, according to a non-isotropic
mutative self-adaptation rule:

σ′k,j = σrank(k),j exp(τ ′N(0, 1)+τNj(0, 1)), k = {µ, . . . , λ}, rank(k) = mod(k−1, µ)+1

x′k = xrank(k) + σ′kN(0, 1)

σ′k = σk(i) + α(σ′k − σrank(k)) (exponential smoothing)

4. Repeat Step 2 and 3 until a stopping rule is met.

We use the following values for the parameters of the algorithm: λ = 20(n + 1), λ/µ = 1/7,
τ = 1/

√
2
√
n, τ ′ = 1/

√
2n, and α = 0.2, γ = 0.85.
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A.3 Evolutionary Strategy with Cauchy Distribution (ESCH)
ESCH (Evolutionary Strategy Algorithm with Cauchy Distribution) is an Evolutionary Al-

gorithm developed by Silva-Santos et al. (2010, 2018). ESCH is based on an µ + λ-evolution
strategy algorithm. The algorithm creates an initial population that is then iteratively recom-
bined according to a single point recombination, and individuals undergo mutations generated
by a Cauchy distribution. At each generation, the best µ individuals are selected from the entire
population (µ+ λ individuals).

The ESCH algorithm can be summarized by the following steps:

1. Initialize. Generate µ individuals xi, where xi are randomly generated according to a
Cauchy distribution in the search space X. These are the parents P .

2. Crossover replication. Generate λ offspring. For each offspring k in {1, . . . , λ}, randomly
choose two parents from P : p1 and p2. Randomly choose an index jthreshold in {1, . . . , n}.
The first j components are copied from parent 1, and the remaining n − j components
are copied from parent 2 so that

xkj = p1j , j ∈ {1, . . . , jthreshold}

xkj = p2i, j ∈ {jthreshold + 1, . . . , n}.

3. Mutations. CreateM mutations. For each mutation, randomly draw an individual among
the λ − µ offspring; call it i0. Randomly draw a dimension from the parameter space
(j ∈ {1, ..., n}). Replace the component xi0j with a draw from a Cauchy distribution.

4. Selection. Rank the entire population (µ parents and λ offspring) and select the best µ
individuals.

5. Repeat Steps 2 to 4 until a stopping rule is met.

We use the following values for the parameters of the algorithm: µ = 40, λ = 60, and M =
60× n/10.

A.4 Multi-Level Single-Linkage (MLSL)
MLSL is a multistart algorithm that starts several local optimizations from a sequence of

starting points that can be generated either with a pseudo-random number or with a Sobol’
low-discrepancy sequence. The algorithm is proposed by Rinnooy Kan and Timmer (1987a,b).
The version, which we are using in this paper, relies on Sobol’s low-discrepancy sequence, which
has been shown to improve convergence rates as Sobol’ sequences cover the search space more
efficiently (Kucherenko and Sytsko (2005)). The NLopt library allows specifying different local
search algorithms, and we use the Nelder-Mead simplex algorithm. In addition, MLSL has a
"clustering" heuristic that prevents the algorithm from performing repeated searches that are
likely to converge to identical local optima. MLSL has been found to be very effective when
used with a fast gradient-based local search algorithm on smooth problems (Ghebrebrhan et
al. (2009)). It is not obvious, however, that this performance carries over to nonsmooth global
optimization problems in economics.

The MLSL algorithm proceeds along the following steps:
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1. Draw N elements (from the Sobol’ sequence) from the search space X and add them to
S (initially empty).

2. Rank the elements in S according to their function values. Select the best γ||S|| values
and store them in S̃.

3. For every point x in S̃:

(a) Implement a local search starting from x, unless x is a local minimum previously
found (i.e., unless x is already in X∗), or if there is another point xj in S such that
f(xj) < f(x) and ||x− xj || ≤ r. If one of these conditions is met, skip this step.

(b) Add the minimum found by the local search to X∗.

4. Repeat Steps 1 to 4 until a stopping rule is met. Select the best element from X∗.

We use the following parameter values for the algorithm: N = 4 and γ = 0.3.

A.5 Stochastic Global Optimization (StoGo)
StoGo was developed by Madsen et al. (1998) and it uses a branch-and-bound technique.

The algorithm proceeds by dividing the search space into smaller hyper-rectangles. Within
these areas the algorithm then implements local optimizations, which use a gradient-based
local search algorithm. A potential drawback of this algorithm is therefore that the function
needs to be differentiable, since the local search algorithm is gradient based.

The main steps of the algorithm are as follows:

1. Initialization. Initialize C = X, where C is the set of candidate boxes (hyper-rectangles).
Initialize G = ∅. G represents the set of garbage boxes.

2. Rank boxes B̃ in C based on the minimum function value among all points in B̃ computed
during iteration. Store the best box from C in B and remove it from C (i.e., B as the
smallest known function value).

3. Randomly draw a set S of N points in B . Evaluate f(x) for x ∈ S. Start local search
from each point in S using the Dogleg method (gradients are estimated using forward
differences):

(a) If all local searches end up out of the box B, remove B from C, and add B to
garbage set G.

(b) If all local searches converge to the same point (local minimum) x∗, add x∗ to C.
Remove B from C, and add B to garbage set G.

(c) Else (lower bound reduction), there are several local minima found in B:
i. Estimate the lowest point in B, lb(B) using

lb(B) = min
x∈B
{f(xmin)−maxGrad · ||x− xmin||}

where xmin is the smallest known function value in B, and maxGrad is the
maximum value of the gradient, which is estimated at each point generated by
the local searches.
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ii. If lb(B) > fbound, remove B from C, and add B to garbage set G.
iii. Else: subdivide. Compute the centroid of two best local minima in C and the

dimension-wise dispersion from the local minima in C to the centroid. Select
the dimension with the highest dispersion. Split B in two boxes along this
dimension at the centroid. By construction of the centroid, each subdivision
contains at least one of the local minima. Put these two boxes in candidate set
C .

4. Repeat Steps 2 to 3 until C does not contain any boxes (only singletons).

5. Remove an arbitrary box from garbage set G and store it in B. Create two subsets B1

and B2 from B in the following way:

(a) If B has no known local minimum, split B in two along the longest dimension. Add
B1 and B2 to C.

(b) If B has exactly one known local minimum x∗, split B in two along the dimension
for which x∗ is farther away from boundary of B. Add B1 and B2 to C.

(c) If B has several known local minima, compute the centroid of two best local minima
in C and the dimension-wise dispersion from the local minima in C to the centroid.
Select the dimension with the highest dispersion. Split B in two boxes along this
dimension at the centroid. By construction of the centroid, each subdivision contains
at least one of the local minima. Put these two boxes in candidate set C .

6. Repeat Step 5 until garbage set G is empty.

7. Repeat Steps 2 to 6 until a stopping rule is met.

A.6 TikTak
In this section, we summarize the main steps of TikTak as it is used in this paper. For an

overview of this version of TikTak, see also Section 2. A more general description of the TikTak
algorithm is available in Guvenen (2011).

• Step 0. Initialization:

1. Determine bounds for each parameter.

2. Generate a sequence of Sobol’ points with length N .

3. Evaluate the function value at each of these N Sobol’ points. Keep the set of N∗

Sobol’ points28 that have the lowest function values, and order them in descending
order, as s1, . . . , sN∗ , with f(s1) ≤ · · · ≤ f(sN∗).

4. Set the global iteration number to i = 1.

• Step 1. Global stage:

28In this paper we use N∗ = 0.1×N.
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1. Select the ith value (vector) in the Sobol’ sequence: si.

2. If i > 1, read the function value (and corresponding parameter vector) of the smallest
recorded local minimum from the “wisdom.dat” text file. Denote the lowest function
value found so far (as of iteration i − 1) as f lowi−1 and the corresponding parameter
vector as plowi−1.

3. Generate a starting point (i.e., initial guess) Si for the local search by using the
convex combination of the Sobol’ point si and the parameter value plowi−1 that gen-
erated the best local minimum found so far: Si = (1 − θi)si + θplowi−1. The weight
parameter θi ∈ [0, θ] with θ < 1 increases with i.29

• Step 2: Local stage:

– Select a local optimizer (in this paper, we use either Nelder-Mead and DFNLS) and
implement a local search at the identified starting point Si until a local minimum
is found.

– Select a stopping criterion for the local search algorithm (in this paper, we use
tolerances of either 10−3 or 10−8 as convergence criteria).

– Open the wisdom.dat file and record the local minimum (function value and pa-
rameters).

• Step 3. Stopping rule:

– Repeat Steps 1 and 2 until local searches are completed from starting points that
use each of the N∗ Sobol’ points.

– Return the point with the lowest function value from wisdom.dat as global mini-
mum.

A.7 Gradients of Test Functions
Griewank Function The gradient of the Griewank function is equal to

∂f

∂xi
=

2xi
a

+

 n∏
j=1,j 6=i

cos

(
xi√
i

) sin
(
xi/
√
i
) 1√

i
.

Levi Function The gradient of the Levi function is equal to

∇f =

 6π cos(3πx1) sin(3πx1) + 2(x1 − 1)(1 + sin2(3πx2))
2(xi − 1)(1 + sin2(3πxi+1)) + 2(xi−1 − 1)26π sin(3πxi) cos(3πxi)

2(xn − 1)(1 + sin2(2πxn)) + (xn − 1)24π cos(2πxn) sin(2πxn) + (xn−1 − 1)26π cos(3πxn)(3πxn)
for i /∈ {1, n}

 .

Rastrigin Function The gradient of the Rastrigin function is equal to
∂f

∂xi
= 2xi + 20π sin(2πxi).

29In this paper, we use the following function to increase the weight parameter: θi =

min
[
max[0.1, (i/N∗)

1/2
], 0.995

]
.
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Rosenbrock Function The gradient of the Rosenbrock function is equal to

∇f =

 −400x1(x2 − x21)− 2(1− x1)
200(xi − x2i−1)− 400xi(xi+1 − x2i )− 2(1− xi)

200(xn − x2n−1)2
for i /∈ {1, n}

 .

B Appendix: Data and Deviation Profiles for Two-
Dimensional Test Functions

In this section, we provide the data and deviation profiles for each test function in two
dimensions. For definitions and explanation of the figures, see Section 4.2. Note that the
performance profiles in Section 4.3 already include these two-dimensional test functions (as
part of the 800 problems that are included in the full set of problems p ∈ P ).
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Figure B.1 – Data and Deviation Profiles—Griewank (2-dim)

Panel A: Data Profile by Success Criteria
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Panel B: Deviations by Success Criteria
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Notes: For explanations and figure notes, see Section 4.2. Data and deviation profiles are defined in the
same way. The only difference is that the test functions here are in two (and not 10) dimensions.
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Figure B.2 – Data and Deviation Profiles—Levi (2-dim)

. Panel A: Data Profile by Success Criteria
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. Panel B: Deviations by Success Criteria
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Notes: For explanations and figure notes, see Section 4.2. Data and deviation profiles are defined in the
same way. The only difference is that the test functions here are in two (and not 10) dimensions.

49



Figure B.3 – Data and Deviation Profiles—Rastrigin (2-dim)

. Panel A: Data Profile by Success Criteria
.
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. Panel B: Deviations by Success Criteria
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Notes: For explanations and figure notes, see Section 4.2. Data and deviation profiles are defined in the
same way. The only difference is that the test functions here are in two (and not 10) dimensions.
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Figure B.4 – Data and Deviation Profiles—Rosenbrock (2-dim)

. Panel A: Data Profile by Success Criteria
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Notes: For explanations and figure notes, see Section 4.2. Data and deviation profiles are
defined in the same way. The only difference is that the test functions here are in two (and
not 10) dimensions.
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C Economic Application: Slices of the Objective Func-
tion Surface

Table C.1 – The True Parameter Values of the Income Process

Generic Parameter Description Results
x1 σε St. dev. of transitory income shock 0.103324
x2 p1 Weight of center of ζ distribution 0.965695
x3 µ2 Mean of right tail of ζ distribution 0.160240
x4 µ3 Mean of left tail of ζ distribution –0.1
x5 σ1,ζ St. dev. of center of ζ distribution 0.095628
x6 σ2,ζ St. dev. of right tail of ζ distribution 0.00367
x7 φ Aggregate risk transmission parameter 0.649274

Notes: The parameters are estimated by matching data moments from Sweden. In this
table, we report the parameter values that correspond to the smallest function value (equal
to 3.4863085) that is found by any algorithm in our benchmarking exercise. We consider
this point to be the “true” minimum to define whether minimizations are successful. The
whole income process is pinned down by the seven parameters presented in this table. The
standard deviations of the center and right tail of the ζ distribution are restricted to be
equal, so that σ2,ζ = σ3,ζ . Furthermore, we restrict the weight of the right and left tail of
the ζ distribution to be equal and the weights have to sum to 1, so that the knowledge of
p1 implies that p2 = p3 = 1−p1

2 .
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Figure C.5 – 1-Dimensional Slices of the Objective Surface
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Figure C.6 – 1-Dimensional Slices of the Objective Surface: Zooming In
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