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Abstract – Robust regression techniques are relevant tools 

for investigating data contaminated with influential 

observations. The article briefly reviews and describes 7 

robust estimators for linear regression, including popular 

ones (Huber M, Tukey’s bisquare M, least absolute 

deviation also called L1 or median regression), some that 

combine high breakdown and high efficiency [fast MM 

(Modified M-estimator), fast τ-estimator and HBR (High 

breakdown rank-based)], and one to handle small samples 

(Distance-constrained maximum likelihood (DCML)). We 

include the fast MM and fast τ-estimators because we use 

the fast-robust bootstrap (FRB) for MM and τ-estimators. 

Our objective is to compare the predictive performance on 

a real data application using OLS (Ordinary least squares) 

and to propose alternatives by using 7 different robust 

estimations. We also run simulations under various 

combinations of 4 factors: sample sizes, percentage of 

outliers, percentage of leverage and number of covariates. 

The predictive performance is evaluated by cross-

validation and minimizing the mean squared error (MSE). 

We use the R language for data analysis. In the real 

dataset OLS provides the best prediction. DCML and 

popular robust estimators give good predictive results as 

well, especially the Huber M-estimator. 

In simulations involving 3 predictors and n=50, the results 

clearly favor fast MM, fast τ-estimator and HBR whatever 

the proportion of outliers. DCML and Tukey M are also 

good estimators when n=50, especially when the 

percentage of outliers is small (5% and 10%). With 10 

predictors, however, HBR, fast MM, fast τ and especially 

DCML give better results for n=50. HBR, fast MM and 

DCML provide better results for n=500. For n=5000 all the 

robust estimators give the same results independently of 

the percentage of outliers.   

If we vary the percentages of outliers and leverage points 

simultaneously, DCML, fast MM and HBR are good 

estimators for n=50 and p=3. For n=500, fast MM, fast τ 

and HBR provide better results. For n=5000, the 7 robust 

estimators give the same results. When there are p=10 

covariates, fast τ, fast MM, HBR and DCML provide 

better results for n=50 and n=500. For n=5000, all the 

robust estimators provide the same results. 

 

Keywords – efficiency, high-breakdown, outliers, regression, 

robust estimators. 

 

I. INTRODUCTION 

 

Linear regression is one of the most widely-used methods in 

statistics. OLS estimator is often the default estimator.  

However, OLS may be biased by the presence of influential 

outlying observations. Robust estimators can remain 

unaffected and provide results that are resistant to influential 
outlying points. 

What constitutes an outlier depends on context. For example a 

regression outlier is an unusual value of y given the xs. 

Outlying observations may be errors, or they could have been 

recorded under exceptional circumstances (Rousseeuw and 

Hubert, 2011). Typically robust techniques reduce the 

influence of influential outlying observations on the estimator.  

A researcher needs to consider many factors when fitting a 

robust regression model, for example robustness, efficiency, 

ease of computation, and transparency. The field of robust 

statistics is evolving rapidly, so practitioners will want to keep 

abreast of developments. In our opinion, the priorities for a 
robust estimator of linear regression are (a) computability, (b) 

an asymptotic theory for a fairly wide class of distributions, 

(c) good asymptotic efficiency and (d) a high breakdown 

point, i. e., mitigation of bias due to the most common types of 

outliers.  

 

II. LITERATURE REVIEW 

 

In the context of linear regression, we distinguish 2 types of 

outliers: 

- vertical or y-outliers: these are outliers in the response 
variable; 

- leverage points or x-outliers: these are outliers in the space of 

the explanatory variables. 
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These 2 types of outliers have the potential to be influential. A 

data point is influential if it unduly influences any part of the 

regression (predicted response, estimated beta coefficients, 
hypothesis tests) and the regression’s predictive accuracy.  Y-

outliers and x-outliers are not a problem in themselves, but 

they become a problem if they are influential. 

In multiple linear regression influential observations can be 

identified using   Cook’s distance which combines leverage 

and outlyingness. It is a deletion diagnostic that measures the 

influence of the ith observation if it is removed from the 

sample.  Cook’s distance is presumably more suitable for 

evaluating prediction accuracy than some other influence 

measures since it shows how far, on average, the predicted y-

value will move if the observation in question is dropped.  

 

2.1 The Cook’s distance 

If the i-th observation is deleted, Cook’s distance, denoted 



Di , 

is   



Di 
(yi  ˆ y i)

2

(k 1)  MSE

hii

(1 hii)
2









   

where yi represents the ith response value, 



ˆ y i represents the 

ith fitted response value, there are k  regression parameters, 

and hii  is the leverage. 

 



Di  depends on both the residual, ei and the leverage, hii. That 

is, both the x value and the y value of the data point play a role 

in the calculation of Cook’s distance. These are guidelines for 

deciding when Di is large enough to warrant treating a data 

point as influential:  

- If 



Di  is greater than 0.5, then the ith data point is worthy of 

further investigation as it may be influential.  

- If 



Di  is greater than 1, then the ith data point is quite likely to 

be influential.  

- Or, if 



Di  sticks out like a sore thumb from the other 



Di  

values, it is almost certainly influential (available at 

https://online.stat.psu.edu/stat462/node/173/). 
In our opinion, these guidelines should not be applied rigidly. 

One should look for cases that stick out and attend first to the 

largest one (Fox, 1991). Robust techniques are really useful in 

the presence of influential observations because they 

downweight these points. 

 

2.2 Robustness properties 
The influence function and the breakdown point are the best 

known measures of robustness. The breakdown point is a 

global measure of robustness, giving the highest proportion of 

outliers for which the estimator’s bias remains finite (Hubert 

et al., 2008; Rousseeuw et al., 2004; Yohai, 1987; Yohai and 

Zamar, 1988; Ruckstuhl, 2016). (But the bias, although finite, 

is not guaranteed to be small.) In contrast, the influence 

function, introduced by Hampel (1971), is a local measure of 

robustness; it evaluates infinitesimal amounts of 

contamination due to the effect of a single outlier. Huber 

(1983) states that the bounded influence safeguards against the 

bias by an infinitesimally small amount of asymmetric 

contamination since it minimizes the asymptomatic variance at 
the usually normal model, subject to a bound on the supremum 

of the model’s influence function. Maronna, Martin and Yohai 

(2006) have recently emphasized that there is a fundamental 

trade off between high statistical efficiency and small bias in 

the presence of outliers.  

The influence function represents a sort of worst case scenario 

since in general an estimator with bounded influence may or 

may not be less biased.  The MM-estimator has a 50% 

breakdown point, the highest possible for a linear, affine-

equivariant estimator. On the other hand, our experience is 

that a bounded influence estimator can tolerate up to 5%-10% 

of outliers and/or bad leverage points, but generally not more. 
Therefore we emphasise the importance of the breakdown 

point criterion for robust models of linear regression.  

 

2.3 Efficiency properties 

Statistical efficiency is the sample size required to achieve a 

given precision compared to OLS at Gaussian distributions. 

For example the S-estimator, a robust alternative to the 

standard deviation, has an efficiency of only 28.7%, which 

means that the S-estimator requires a sample 3.48 (=1/0,287) 

times as large as the standard deviation needs to achieve the 

same sampling variance when the data are Gaussian. This 
illustrates the trade off: robustness is achieved at the cost of a 

larger sample size (Siegel, 1982).  

 

2.4 Computation properties 

Computational complexity describes how the time required to 

compute an estimate grows as the sample size increases. The 

complexity is generally expressed as a polynomial (when 

possible), an exponential, or other function, with lower-order 

polynomials being asymptotically faster than higher-order 

polynomials and exponentials. The constant term is generally 

omitted when describing computational complexity and 

quadratic complexity will be asymptotically faster than cubic 
complexity; but for a given sample size the cubic algorithm 

might be faster depending on the constants (Siegel, 1982). 

 

2.5 Relationship between robustness, efficiency and 

computability  

Increasing efficiency may often compromise robustness. In the 

case of the MM-estimator, the breakdown point (robustness) is 

maintained (50%), but the maximum possible bias increases. 

Conversely, one could use an 80% efficient MM estimator to 

lower the maximum bias while retaining the 50% breakdown 

point (Hubert et al., 2008; Rousseeuw et al., 2004). In other 
words, with a given breakdown point (e.g., 50%), we may 

increase the efficiency of MM, HBR or τ-estimators; but the 

price is likely to be a larger bias. In the presence of influential 

outliers and leverage observations –which can be difficult to 

detect using scatter plots—the estimated coefficients could be 

far from the true parameter values. However, if one is 
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confident that the actual fraction of influential outliers and 

leverage points is not large, the breakdown point can be 

decreased (i.e. from 50% to 30%), making MM, HBR or τ-
estimators easier to compute. Statisticians are currently 

developing a test that helps set the maximum attainable 

efficiency for the MM-estimator before the bias becomes 

excessively high.  

Moreover it is impractical to compute exact solutions for high 

breakdown methods like MM, HBR or τ-estimators when the 

data set contains many regressors. Instead resampling 

algorithms generate approximate solutions which have been 

shown to perform acceptably in simulations and on real data 

sets, but the algorithms’ asymptotic properties (e.g., 

consistency) have not been demonstrated (Olive, 2017). On 

the other hand, the outlook for speedier and more accurate 
computation is good. Already the “fast” algorithms are widely 

available and have been used in this paper to compute the fast-

MM and fast τ-estimators. (HBR does not have a fast version). 

And more recently “deterministic” procedures that dispense 

with the resampling algorithm have been included in popular 

statistics platforms, for example the packages ‘DetMCD’ and 

‘DetR’ for users of R.       

 

2.6 Brief presentation of 7 robust regression estimators  

Let us now examine in more detail several of the most 

commonly used robust estimators: Huber’s M-estimator, 
Tukey’s bisquare M-estimator and least absolute deviations as 

well as the estimators combining high breakdown and high 

efficiency like fast MM, fast τ-estimator and HBR. We will 

also review a robust estimator adapted for small sample size 

(N<100), the DCML.  

 

2.6.1 OLS, Huber and Tukey-M estimators 

M-estimates (Huber, 1981) are solutions of the normal 

equation with appropriate weight functions. They are resistant 

to unusual outliers, but sensitive to high leverage points. 

Using Huber M-estimator the outliers are downweighted but 

not to zero. In contrast, redescending M-estimators like the 
Tukey’s bisquare M-estimator give extreme observations zero 

weight (Welsh, 1996). Using a standard notation, we start with 

the familiar  OLS estimator : 



ˆ LS  argmin


ri()2

i1

n

  where 

the function 



argmin  returns a vector 



 for which the sum is 

minimal, in other words 



argmin  refers to minimizing the 

argument (sum of squared residuals). Huber and Tukey M-

estimators are as follows : 



ˆ M  argmin


(
ri()

ˆ ()
i1

n

 ) 

where 



  is an appropriate function, which might be squared 

around zero, but bounded for large (absolute) values with 




i1

n

 (
ri()

ˆ ()
)xij  0  (Welsh, 1996). Here is the system of 

weighted equations 



 i(yi  xi

T)xi  0
i1

n

 . For OLS 

regression we get weights for the residuals 



 i
=1 for all 



i . In 

contrast, the robust methods (Huber and Tukey) attempt to 

downweight outliers. 

 

2.6.2 L1 estimator 

The Least absolute deviation (LAD) also called L1 estimates 

due to the L1 norm used, was developed by Roger Joseph 

Boscovich in 1757, nearly 50 years before OLS estimation 

(Nevitt and Tam, 1998; Birkes and Dodge, 1993). Like 

Huber’s M estimator, the L1 regression is robust with respect 

to y-outliers but not to leverage points (Gschwandtner and 

Filzmoser, 2012). Here is the L1 equation: 



ˆ L1  argmin


r
i
()

i1

n

 . These 3 estimators have 1/n 

breakdown point. So, as 



n increases the breakdown point 

goes towards zero. 

 

2.6.3 MM estimator 

The MM estimation was introduced by Yohai (1987) and is a 

combination of high breakdown value and efficient estimation. 

The MM-estimate can be found by a three-stage procedure. In 

the first stage, it computes an initial consistent estimate 



ˆ B 0  

with high breakdown point but possibly low normal 

efficiency. In the second stage, it computes a robust M-

estimate of scale 



ˆ  of the residuals based on the initial 

estimate. In the third stage, it finds an M-estimate 



ˆ B  starting 

at 



ˆ B 0 . In practice, LMS (Least median of squares) 



ˆ  argmin


Med (yi  xi

T)2  or S-estimate (Scale 

estimate) - 



ˆ  argmin


ˆ (r1(),...,rn ())  where 



ri()  yi  xi

T and 



ˆ (r1(),...,rn ())  is the scale M-

estimate - with Huber or bisquare functions is typically used 

as the initial estimate 



ˆ B 0 (Yu et al., 2014). Here is the 

equation for MM-estimator: 



ˆ MM  argmin


(
ri()

ˆ 
i1

n

 ) . 

Let 



ˆ 0  be an S estimator, and let 



ˆ  be the corresponding M 

estimator. 

 

2.6.4 τ-estimator  

The τ-estimator (Yohai and Zamar, 1988) has been shown to 
have a good balance between robustness and efficiency. In τ-

estimation, unlike MM estimation, there is no global 

precalculated estimate of scale. Both 



B and 



 are iteratively 

and alternatively estimated. In the general procedure the 

function 



0 used to estimate scale is chosen to give the 
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maximum breakdown point for regression estimates. On the 

other hand the function 



1
 used for estimation of 



B is chosen 

to give high efficiency (0.95 is suggested as high) (Riani et al., 

2014). Although the τ-estimate of regression is equivalent to 

an M estimate, it is defined as the minimizer of a particular 

robust and efficient estimate of the scale of the residuals, the 



 -scale estimate 



ˆ T . The equation is as follows: 



ˆ x m
T  argmin

x

ˆ 
2(r(x)) . 

 

2.6.5 HBR estimator  

Some prior simulations have shown that the HBR estimator 

(Kloke and McKean, 2012; Chang et al., 1999) performs with 

fair efficiency compared to MM and τ-estimators, but it does 
not deal well with bad leverage points. Data points which are 

outliers are downweighted. If all the weights are 1 then HBR 

is the Wilcoxon norm. High breakdown rank (HBR) estimates 

are based on a weighted Wilcoxon pseudo-norm. The weights 

for the HBR estimates make use of the high breakdown 

minimum covariance determinant (MCD), which is an 

ellipsoid in p-space that covers about half of the data and yet 

has minimum determinant (McKean and Kloke, 2014). The 

HBR estimation is a weighted Wilcoxon dispersion function 

given by :



v
HBR

bij i  j

i j

  where 



bij 0  and 



bij  b ji

. The HBR estimator of 



 minimizes this objective function, 

which we denote by 



ˆ HBR  argmin y  X HBR . The 

HBR estimator minimizes the convex function 



DHBR()  

which is defined by : 



DHBR ()  bij (Yi Y j )  (x i  x j )'
j1

n


i1

n

 . HBR, fast 

MM and τ-estimators have 50% breakdown point.  

 

2.6.6 DCML estimator  

The DCML estimator’s breakdown point is at least that of the 

initial estimator, specifically an MM-estimator which in turn is 

based on a S-estimator (Maronna et al. 2018). So the 

breakdown point of the DCML is that of the S-estimator: 50%. 

The DCML estimator is asymptotically fully efficient and 

shows a very good balance between efficiency and robustness 

(Maronna and Yohai, 2015a). Let 



ˆ 0  be a highly robust 

estimator, typically an MM-estimator and 



ˆ  be 



argmin  L(r1,r2,...rn ). The DCML optimization is : 



min  ri

2()
i1

n

  subject to 



d
KL , ˆ V x

( ˆ 0,)   where 



KL= 

Kullback-Leibler distance (the natural function from a 
"true" probability distibution to a "target" probability 

distribution) and 



ˆ v x =(robust estimate). 

 

2.7 In case of small sample size, which estimator to use and 

why? 

There are a few regression estimators adapted for small 
sample size (N<100). Besides the DCML there is a family of 

robust regression estimators called bounded residual scale 

estimators (BRS estimators) (Smucler and Yohai, 2017). They 

are simultaneously highly robust and highly efficient for small 

sample size (Smucler and Yohai, 2015). The DCML estimator 

(Maronna and Yohai, 2015b) is recommended for following 

reasons: (a) inference (i.e., confidence intervals) is better 

justified; (b) the estimator can be computed somewhat faster 

and (c) it has a simpler and more intuitive definition. Thus 

Maronna et al. (2018) use n=50 for DCML. 

 

2.8 Breakdown point as the criterion for robustness 
We emphasize that all these 7 estimators are robust against 

influential outliers but not necessarily against influential high 

leverage points. Since our focus is on the predictive 

performances of these 7 estimators and OLS on real data and 

in simulations study, we concentrate on the estimators’ 

breakdown point instead of their influence function; in this we 

follow Davies (1993 ; 1994), who proposes for desirable 

properties of estimators mainly robustness properties and not 

efficiency. Nevertheless, we will explore whether robust 

estimators combining high breakdown and high efficiency 

(MM, τ, HBR and DCML) really provide better predictive 
results than classical OLS and other procedures with low 

breakdown points (Huber, Tukey and L1).  

For that we will use a real dataset and run simulations. 

Concerning the simulations, we first vary only the percentage 

of outliers and in a second step we vary the percentage of 

outliers and of leverage simultaneously. 

Table 1 below summarizes the breakdown point of the 8 

different regression estimators. 

 

Table 1: Breakdown point of the different estimators 

 
Estimator

s 

OL

S 

Hube

r-M 

Tuke

y-M 

L

1 

fast 

M

M 

fast 

τ 

HB

R 

DCM

L 

breakdow

n point 

1/n 1/n 1/n 1/

n 

50

% 

50

% 

50% 50% 

 

III. MATERIAL AND METHODS 

 

3.1 R software and packages 

In this article we use the R software (R Core Team, 2017), the 

“robustbase”, the “MASS”, the “quantreg”, the “RobPer”, the 

“devtools”, the “RobStatTM” and the “boot” packages. 

 

3.2 Application to ATTICA epidemiological data 

The dataset ATTICA is an epidemiological study of 731 men 

and women with no clinical evidence of chronic disease or 
acute inflammation, aged 18 - 84 years, randomly selected 

from all areas of the Athens metropolitan region in Greece 

(Pitsavos et al., 2003). I really thank my colleague, Professor 
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Panagiotakos, who provided this dataset. As this dataset has 

many medical and health variables it might contain quite a few 

influential observations. We want to be sure that OLS is the 
best predictive fit for this dataset as compared to more robust 

estimators.  

Information about age (in years), sex (male/female), systolic 

(sbp) and diastolic (dbp) blood pressure (in mmHg), physical 

activity status (at least adequately active/inactive), current 

smoking (yes/no), educational level (educat) measured by the 

years of schooling, HDL cholesterol level (HDLC), total 

cholesterol (TC), body mass index (BMI in Kg/m2) calculated 

as body weight divided by standing height, fasting blood 

glucose levels (in mg/dL) and diabetes status (based on 

glucose levels and/or anti-diabetic medication), was retrieved 

from the entire database and related to high sensitivity C-
reactive protein (CRP) levels (dependent outcome) in order to 

examine the role of metabolic markers on the chronic systemic 

inflammation process, in light of confounding factors.  

 

The fitted model is : 

C-RP=bo + b1
 X age + b2

 X sex + b3 X bmi + b4 X educat + b5 

X PhysActlevel + b6 X smokingcurrent  + b7 X dbp + b8 X 

Diabetes + b9 X glucose + b10 X TC + b11 X HDLC + error 

 

Table 2 displays some descriptive statistics, the frequency 

tables of the variables retained (the dependent variable C-RP 
and all the other explanatory variables) and the graph of the 

dependent variable.  

 

Table 2: Descriptive statistics of C-RP dependent variable and 

all other independent variables 

 

 
 

 

 
Figure 1: The density plot of the CR-P dependent variable 

 

The dependent variable CR-P is highly right skewed. This 

skeweness may be due to the presence of some y-outliers as 
can be seen in Figures 3 and 5. No interaction terms were 

included in the regression because they did not improve 

predictive accuracy.  

 

3.3 Model evaluation 

 

3.3.1 Cross-validation and error evaluation metric 

 

The evaluation metric retained for predictive accuracy is the 

Mean squared error (MSE). 



MSE 
1

n
(yi  ˜ y i)

2

i1

n

  
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where n is the number of data points, 



yi
 represents observed 

value and 



˜ y i represents predicted values. 

To assess prediction accuracy, the holdout cross-validation 

(training set=66% and testing set=34%) is run 1000 times to 

examine the variability of the out-of-bag accuracy value. The 

cross-validation predictive accuracy values are averaged and 

then the model that minimizes the Mean squared error (MSE) 

is deemed the best (Varin, 2020). We also calculate the 95% 

BCa bootstrap confidence intervals around the MSE value 

(Efron, 1987; DiCiccio and Efron, 1996). 

   

3.4 Unbiased prediction 

 
Minimizing anything else than the mean squared error (MSE) 

may lead to biased prediction (Varin, 2020). Indeed, if we 

want an unbiased prediction, then the MSE is the only 

criterion that will be minimized by the true value in 

expectation; and we will simply need to accept that skewed or 

highly variable conditional outcomes have a strong influence 

on the conditional expectation. We note that the possible 

inflation in MSE is due to the presence of outliers (Varin, 

2020). 

 

IV. RESULTS AND DISCUSSIONS 
 

In this section an application based on the aforementioned data 

will be performed to compare OLS and the 7 different robust 

regressions estimators in their predictive performance.  

 

4.1 Residuals diagnostic plots of linear model 

 

No (multi)collinearity is found, the variance inflation factor is 

not higher than 2 and the regression function is linear. There is 

a problem of heteroscedasticity of the variance and of non-

Gaussian distribution of the residuals, a strong positive skew 

in the residuals (Figure 2).  

 
Figure 2: OLS standard diagnostic plots. Dots indicate 

observed individuals participated in the ATTICA study 

Unbiased point predictors require only that the errors have 
zero mean (James et al., 2017), which is guaranteed by the 

inclusion of intercepts in the models. We use the BCa 

nonparametric bootstrap (Efron, 1987; DiCiccio and Efron, 

1996) to generate confidence intervals and prediction intervals 

that don’t depend on mean/variance assumptions. The BCa 

bootstrap is second-order correct and works with skewed 

distributions and biased statistics (Varin, 2020).   

Figure 3 shows many outliers, many leverages and just a few 

outliers and leverages, but it is not known a priori if any of 

them is influential. According to Figure 4, the Cook’s distance 

plot reveals one clearly influential observation (n°42). We 

certainly advise the use of graphics and the scrutiny of the 

points with “values of D that are substantially larger than the 

rest”; it is indeed both an influential y-outlier and leverage 

(Figure 3). More precisely, the residual of this point (11.84) is 

5 times larger than the residual standard deviation of the 
model (2.34). The rest of the observations cannot be 

considered influential points.   
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Figure 3: Outlier and leverage diagnostic plot for CRP 

variable. Dots indicate observed individuals participated in the 

ATTICA study 

 

 
Figure 4: Cook’s distance plot showing the influential 

observations; numbers indicate observed individuals 
participated in the ATTICA study  

 

 
Figure 5: Deleted studentized residuals plot showing the y-

outliers; numbers indicate observed individuals participated in 

the ATTICA study  

 

4.2 Discussion 
Since point 42 is the salient influential observation, a high 

breakdown estimator isn’t required. However, a classical 

robust estimator like Huber, Tukey or L1 could be worthwhile. 

Table 3 shows that the estimators with the best prediction 

results (the lower MSE) are OLS and the popular estimators: 

Huber, Tukey, and L1. DCML is good as well but not the 

other high breakdown point estimators. In this case, with only 

one influential observation among 731, OLS regression still 

provides the best predictive result. 

 

Table 3 : Mean squared error (MSE) value for the 7 different 

robust estimators and OLS. In bold the lower MSE. In 
brackets the 95% BCa bootstrap confidence intervals. Number 

of iterations B=5,000 

 
Estimato

rs 

DCM

L 

M

M 

Hube

r 

Tuke

y 

L1 fast 

τ 

HB

R 

OL

S 

MSE  

6.14 

(4.9; 

7.6) 

 

6.3

9 

(4.9

; 

7.9) 

 

5.75 

(4.8; 

7.1) 

 

6.32 

(5.1; 

7.9) 

 

6.1

3 

(5; 

7.6

) 

 

7.0

6 

(5.7

; 

8.7) 

 

6.58 

(5.1; 

8) 

 

5.4 

(4.4

; 

6.7) 

 

OLS and standard robust estimators perform better, the use of 

highbreakdown estimators is absolutely counterproductive 

here. But are the differences meaningful? We compute and 
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present in brackets the 95% confidence intervals for the MSE 

using the nonparametric second-order accuracy BCa bootstrap 

with 5000 replications. Given the overlapping intervals, there 
is thus no statistical evidence that any estimator fits better and 

provides more accurate predictive results than the others at the 

5% level (Varin, 2016).  

 

 

V. SIMULATION EXPERIMENTS 

 

Simulation studies may be a better alternative for objectively 

comparing the predictive performances of these 7 robust 

regression estimators and OLS. We want to figure out which 

estimator performs better (minimizing MSE) in what 

circumstances (Varin, 2020).  

 

5.1 Design of the simulation 

We thus consider four different factors: n, sample size from 50 

to 5000; the percentage of outliers, from 5% to 30%; the 

percentage of leverage from 5% to 30% and the number of 

covariates, p, 3 and 10. In the first step only the percentage of 

outliers varies, and there are no leverage points. The second 

step varies the percentage of outliers and the percentage of 

leverage simultaneously. 

More precisely, for the simulated model with 3 variables, 2 of 

them (x and a) follow a uniform distribution on intevals 



0,5  
and 1 variable (z) follows a Normal distribution 



N(2;3) . The 

theoretical model is the following: 



y  0.1 b 0.5  z  a10. 

Regarding the simulated model with 10 variables, 5 variables 

(x, a, c, e and g) are uniformaly distributed on 



0,5  intervals 

and 5 (z, b, d, f and h) are normally distributed 



N(2;3) . The 

theoretical model is the following: 



y  0.1 b 0.5  z  a1.5  c 2  d  3 e  4  f  3.5  g  4.5  h 2.5  i10. 

We start by creating the values of covariates according to 

predefined distributions, i.e. uniform 



0,5  and Normal 



N(2;3) distributions. Then we calculate "y" according to the 

theoretical models, one with 3 and the other with 10 

covariates. Finally, we generate "y_obs" in our case according 

to a Normal distribution (mean equals to our theoretical model 

and standard deviation equals 0.1). In order to add outliers, a 

proportion of "y_obs" (5%, 10% and 30%) has been replaced 

by the same Normal distribution but with a standard deviation 

of 0.5, or 5 times greater. For the leverage observations, the 

Normal distribution 



N(2;3) of a covariate has been replaced 

with a standard deviation of 6, or 2 times greater. 

While fitting the model with 10 variables, we will not be able 

to present the 95% BCa confidence intervals because too 

many replications are needed to calculate the acceleration 
constant ”a”. Only the MSE is reported. 

In the appendix we present the 24 tables. In tables 4 through 9 

with the sample sizes (n=50, n=500, n=5000) we cross the 

results for the number of covariates (p=3; p=10) and the 

percentage of outliers (5%; 10% and 30%). There is no 

leverage. In table 10 to 18 we cross the percentages of outliers 

with the percentages of leverages (5%, 10% and 30%) 
simultaneously for p=3 and in table 19 to 27 for p=10. The 

MSE are reported with the smaller MSE numbers are in bold 

print. In brackets we report the 95% BCa bootstrap confidence 

intervals based on 1,000 iterations. 

 

5.2 Discussion of the simulation results  

Considering only the outliers, the simulation results are clearly 

in favour of fast MM, fast τ-estimator and HBR whatever the 

percentage of outliers when there are 3 predictors in the 

model. DCML and Tukey are good estimators in case of small 

sample size (n=50) especially when the percentage of outliers 

is small (5% and 10%). Let us remark that when the outliers 
are not too many (5%) and the sample size is small (n=50), the 

OLS estimator provides good results for p=3 and p=10.  

More precisely if the number of predictors is 3, for n=50 the 

fast τ-estimator and the fast MM are better when the 

percentage of outliers is high (30%).   

For n=500, the fast MM and fast τ-estimator are good 

estimators when the percentage of outliers is low (5% and 

10%). For higher percentages of outliers (30%), HBR is better.  

For n=5000, the fast MM and fast τ-estimator provide better 

results; and the fast τ-estimator is good when the percentage of 

outliers is 10%.  
However, with 10 predictors in the model, HBR, fast MM, fast 

τ-estimator and especially DCML give better results for n=50. 

HBR, fastMM and DCML provide better results for n=500. 

For n=5000 they all give the same results. 

More precisely, for n=50 HBR and DCML are good 

estimators when the percentage of outliers is low (5% and 

10%). Fast MM is good for higher percentages of outliers 

(30%). 

For n=500, DCML is good for small percentage of outliers 

(5%). For large percentages of outliers, fast MM and HBR are 

good estimators.  

For n=5000, they all give the same results. As the sample size 
increase (n=5000) and the model is fitted with many 

predictors, in our case p=10, the robust estimators give 

equivalent MSE. Let us remark that OLS does not perform 

well. 

Now, crossing the percentage of outliers and the percentage of 

leverages, we remark that when the sample size is small 

(n=50), whatever the percentage of outliers (5%, 10% or 30%) 

with 5% and 10% of leverage observations, DCML provides 

the best results. With 30% of leverage and small percentages 

of outliers (5% and 10%) DCML is still the best estimator. 

With 30% of outliers, fast MM and HBR are good estimators. 
For n=500 whatever the percentage of outliers with 5% of 

leverage, fast MM and HBR provide the best results. With 

10% of leverage, with 5% and 10% of outliers, fast MM and 

fast τ are good estimators. With 30% of outliers, HBR gives 

the best predictive results. With 30% of leverage and a small 

amount of outliers (5% and 10%), fast MM, fast τ and HBR 
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provide the best results. With 30% of outliers, HBR is the best 

estimator. For n=5000, the 7 robust estimators give the same 

results. Again here, let us remark that OLS does not perform 
well. 

Considering p=10 covariates, 5% of leverage and 5% of 

outliers in the model, for n=50 fast τ and HBR are the best 

estimators. With 10% of outliers, DCML is the best and with 

30% of outliers it is the HBR estimator. With 10% of leverage 

and 5% of outliers, fast MM and HBR are the best estimators. 

With 10% and 30% of outliers, HBR gives the best results. 

With 30% of leverages, 5% and/or 30% of outliers, DCML 

and HBR provide the best results. With 10% of outliers fast 

MM provide better results. 

For n=500, with 5% of leverages and 5% of outliers, the fast 

MM estimator is good. With 10% of outliers, fast τ is the best 
estimator. With 30% of outliers fast MM and HBR are the best 

estmators. With 10% of leverages and 5% of outliers, fast MM 

is the best estimator. With 10% of outliers fast τ and DCML 

are the best ones. HBR and DCML are good estimators for 

30% of outliers. With 30% of leverages and 5% of outliers fast 

MM is the best one. Fast τ is good when the percentage of 

outliers is 10% and DCML is good for 30% of outliers. Again 

here, OLS does not perform well. 

For n=5000 the 7 robust estimators provide the same results. 

OLS does not provide good results. 

We emphasize once more that according to the 95% 
nonparametic BCa bootstrap confidence intervals no one of 

these 7 robust estimators provides better predictive results at 

5% level.  

 

VI. CONCLUSION 

 

In this article we briefly describe and compare 7 robust 

regression and OLS estimators while fitting linear regression 

models. MSE is our criterion. Based on the real data set 

results, we can say that OLS and the 3 popular estimators 

perform better than the high breakdown estimators. The main 

reason is that there is just one influential observation in 731 
samples. On the contrary, our simulations experiments 

demonstrated that the 4 high breakdown estimators have 

overall best predictive outcomes. In terms of prediction 

performances especially with a large percentage of outliers 

(30%) and whatever the percentage of leverage observations, 

the high breakdown estimators are quite impressive. OLS and 

the popular robust procedures – Huber, Tukey and L1 – are 

less attractive due especially to their low breakdown point in 

the presence of influential leverage. However we reiterate that 

according to their overlapped 95% confidence intervals, no 

one of these 7 robust estimators performs better at level 5% in 
any situation whether in the real data set or in simulations 

experiments. These results clearly show that the most 

important thing is to choose a robust estimator that we know 

how to use, no need to look for new unknown robust 

estimators. In the end they appear to provide about the same 

predictive performance. 

In conclusion, the selection of a robust estimator for linear 

regression should balance robustness, efficiency and 

computability. From this point of view, fast MM and the other 
highbreakdown estimators are a good choice. But unless the 

influential outliers are really far from the majority of the data, 

fast MM and the other highbreakdown estimators may not be 

optimal predictors. Indeed, when the majority of the data 

overlap in some sense with the influential outliers, we have 

often observed that fast MM and the other highbreakdown 

estimators can suffer from masking, meaning that one or more 

outliers are labelled as good cases by some criterion. Another 

negative point to the high breakdown estimators is their 

computation time using R software as compared to the more 

popular estimators.  
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VIII. APPENDIX 

 

 

Table 4: Robust regression estimators MSE results according 

to the number of covariates (p=3), the percentage of outliers 

(from 5% to 30%) for sample size n=50. The standard 

deviation of outliers is 5 times greater. Lower MSE is in bold. 

In brackets, the 95% BCa bootstrap CIs based on B=1000 

iterations 

 5% 10% 30% 

FastMM 
 

0.027 
(0.01; 0.07) 

0.021 
(0.012; 0.05) 

0.076 
(0.04; 0.143) 

https://link.springer.com/journal/40488
https://link.springer.com/journal/40488
https://www.researchgate.net/journal/1942-4795_Wiley_Interdisciplinary_Reviews_Data_Mining_and_Knowledge_Discovery
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Huber 0.029 

(0.01; 0.09) 

0.07 

(0.03; 0.16) 

0.14 

(0.088; 0.284) 

Tukey 0.012 

(0.006; 0.03) 

0.022 

(0.014; 0.04) 

0.12 

(0.06; 0.18) 

L1 0.028 

(0.01; 0.08) 

0.07 

(0.03; 0.16) 

0.09 

(0.05; 0.18) 

FastTau 0.027 
(0.01; 0.07) 

0.07 
(0.028; 0.19) 

0.039 
(0.025; 0.065) 

HBR 0.027 

(0.01; 0.07) 

0.06 

(0.026; 0.15) 

0.12 

(0.062; 0.17) 

DCML 0.027 

(0.013; 0.08) 
0.019 

(0.01,  0.04) 

0.048 

(0.032; 0.083) 

OLS 0.026 

(0.012; 0.06) 

0.021 

(0.012; 0.05) 

0.048 

(0.031; 0.082) 

 

Table 5: Robust regression estimators MSE results according 

to the number of covariates (p=3), the percentage of outliers 

(from 5% to 30%) for sample size n=500. The standard 

deviation of outliers is 5 times greater. Lower MSE is in bold. 

In brackets, the 95% BCa bootstrap CIs based on B=1000 

iterations 

 5% 10% 30% 

FastMM 

 
0.016 

(0.01; 0.02) 

0.033 

(0.0215; 
0.0443) 

0.08 

(0.06; 0.1) 

Huber 0.021 

(0.016; 0.03) 

0.04 

(0.026; 0.053) 

0.09 

(0.07; 0.12) 

Tukey 0.024 

(0.014; 0.035) 

0.04 

(0.026; 0.053) 

0.09 

(0.07; 0.12) 

L1 0.02 

(0.015; 0.027) 

0.04 

(0.03; 0.05) 

0.08 

(0.06; 0.1) 

FastTau 0.02 

(0.015; 0.035) 
0.028 

(0.02; 0.038) 

0.08 

(0.06; 0.1) 

HBR 0.018 

(0.013; 0.023) 

0.04 

(0.02; 0.06) 
0.07 

(0.05; 0.09) 

DCML 0.02 

(0.015; 0.035) 

0.03 

(0.02; 0.041) 

0.08 

(0.06; 0.1) 

OLS 0.024 

(0.018; 0.035) 

0.034 

(0.025; 0.051) 

0.08 

(0.06; 0.11) 

 

Table 6: Robust regression estimators MSE results according 

to the number of covariates (p=3), the percentage of outliers 

(from 5% to 30%) for sample size n=5000. The standard 
deviation of outliers is 5 times greater. Lower MSE is in bold. 

In brackets, the 95% BCa bootstrap CIs based on B=1000 

iterations 

 5% 10% 30% 

FastMM 

 
0.021 

(0.018; 0.022) 

0.034 

(0.03; 0.037) 
0.078 

(0.073; 0.083) 

Huber 0.023 

(0.021; 0.026) 

0.035 

(0.032; 0.038) 

0.082 

(0.077; 0.088) 

Tukey 0.022 

(0.019; 0.024) 

0.033 

(0.029; 0.036) 

0.082 

(0.077; 0.088) 

L1 0.022 0.033 0.082 

(0.019; 0.024) (0.029; 0.036) (0.077; 0.088) 

FastTau 0.022 

(0.02; 0.025) 
0.031 

(0.034; 0.037) 

0.084 

(0.083; 0.087) 

HBR 0.023 

(0.022; 0.026) 

0.034 

(0.032; 0.036) 

0.079 

(0.083; 0.085) 

DCML 0.022 

(0.02; 0.025) 

0.04 

(0.036; 0.041) 

0.079 

(0.072; 0.085) 

OLS 0.026 
(0.025; 0.027) 

0.045 
(0.043; 0.046) 

0.085 
(0.08; 0.091) 

 

Table 7: Robust regression estimators MSE results according 

to the number of covariates (p=10), the percentage of outliers 

(from 5% to 30%) for sample size n=50. The standard 

deviation of outliers is 5 times greater. Lower MSE is in bold.  

 5% 10% 30% 

FastMM 0.017 0.018 0.026 

Huber 0.018 0.043 0.066 

Tukey 0.016 0.022 0.068 

L1 0.012 0.02 0.068 

FastTau 0.03 0.046 0.053 

HBR 0.009 0.023 0.051 

DCML 0.014 0.017 0.042 

OLS 0.014 0.021 0.054 

 

Table 8: Robust regression estimators MSE results according 

to the number of covariates (p=10), the percentage of outliers 

(from 5% to 30%) for sample size n=500. The standard 

deviation of outliers is 5 times greater. Lower MSE is in bold.  

 5% 10% 30% 

FastMM 0.019 0.039 0.097 

Huber 0.019 0.04 0.078 

Tukey 0.028 0.041 0.078 

L1 0.028 0.041 0.078 

FastTau 0.022 0.029 0.1 

HBR 0.02 0.033 0.077 

DCML 0.018 0.04 0.078 

OLS 0.022 0.04 0.089 

 

Table 9: Robust regression estimators MSE results according 

to the number of covariates (p=10), the percentage of outliers 
(from 5% to 30%) for sample size n=5000. The standard 

deviation of outliers is 5 times greater. Lower MSE is in bold.  

 5% 10% 30% 

FastMM 0.021 0.033 0.08 

Huber 0.022 0.033 0.08 

Tukey 0.021 0.033 0.08 

L1 0.021 0.033 0.08 

FastTau 0.021 0.033 0.08 

HBR 0.021 0.033 0.08 

DCML 0.021 0.033 0.08 

OLS 0.024 0.036 0.084 
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Table 10: Robust regression estimators MSE results according 

to the number of covariates (p=3), the percentage of outliers 

(5%, 10% and 30%) for sample size n=50. The percentage of 
leverage (x-outliers) is 5%. Lower MSE is in bold. In brackets, 

the 95% BCa bootstrap CIs based on B=1000 iterations 

 5% 10% 30% 

FastMM 

 

0.025 

(0.008; 0.085) 

0.06 

(0.02; 0.12) 

0.08 

(0.04; 0.16) 

Huber 0.023 

(0.01; 0.06) 

0.03 

(0.015 ; 0.06) 

0.06 

(0.04 ; 0.1) 

Tukey 0.023 

(0.01; 0.06) 

0.03 

(0.01 ; 0.07) 

0.07 

(0.03; 0.2) 

L1 0.024 

(0.01; 0.05) 

0.03 

(0.01; 0.07) 

0.07 

(0.03; 0.18) 

FastTau 0.027 

(0.007; 0.06) 

0.03 

(0.01; 0.07) 

0.07 

(0.03; 0.17) 

HBR 0.023 

(0.01; 0.06) 

0.03 

(0.01; 0.07) 

0.07 

(0.04; 0.14) 

DCML 0.022 

(0.009; 0.07) 

0.02 

(0.01; 0.03) 

0.03 

(0.02; 0.05) 

OLS 0.023 

(0.01; 0.06) 

0.03 

(0.01; 0.06) 

0.06 

(0.04; 0.11) 

 

Table 11: Robust regression estimators MSE results according 
to the number of covariates (p=3), the percentage of outliers 

(5%, 10% and 30%) for sample size n=50. The percentage of 

leverage (x-outliers) is 10%. Lower MSE is in bold. In 

brackets, the 95% BCa bootstrap CIs based on B=1000 

iterations 

 5% 10% 30% 

FastMM 

 

0.02 

(0.01; 0.06) 

0.05 

(0.02; 0.12) 

0.07 

(0.04; 0.16) 

Huber 0.02 

(0.01; 0.05) 

0.03 

(0.02 ; 0.06) 

0.06 

(0.04 ; 0.09) 

Tukey 0.02 

(0.008; 0.07) 

0.03 

(0.01 ; 0.08) 

0.07 

(0.03; 0.2) 

L1 0.02 

(0.009; 0.06) 

0.03 

(0.01; 0.08) 

0.07 

(0.03; 0.18) 

FastTau 0.02 

(0.01; 0.07) 

0.03 

(0.01; 0.07) 

0.07 

(0.04; 0.13) 

HBR 0.02 

(0.007; 0.05) 

0.03 

(0.01; 0.07) 

0.07 

(0.04; 0.12) 

DCML 0.01 

(0.008; 0.02) 

0.02 

(0.009; 0.04) 
0.01 

(0.06, 0.26) 

OLS 0.02 

(0.007; 0.06) 

0.03 

(0.01; 0.07) 

0.07 

(0.03; 0.2) 

 

Table 12: Robust regression estimators MSE results according 

to the number of covariates (p=3), the percentage of outliers 

(5%, 10% and 30%) for sample size n=50. The percentage of 

leverage (x-outliers) is 30%. Lower MSE is in bold. In 

brackets, the 95% BCa bootstrap CIs based on B=1000 

iterations 

 5% 10% 30% 

FastMM 

 

0.02 

(0.01; 0.06) 

0.06 

(0.02; 0.12) 
0.07 

(0.04; 0.15) 

Huber 0.02 

(0.008; 0.03) 

0.03 

(0.01 ; 0.06) 

0.09 

(0.04 ; 0.18) 

Tukey 0.02 

(0.008; 0.07) 

0.03 

(0.01 ; 0.07) 

0.09 

(0.03; 0.2) 

L1 0.02 
(0.009; 0.07) 

0.03 
(0.01; 0.07) 

0.09 
(0.03; 0.18) 

FastTau 0.02 

(0.008; 0.07) 

0.03 

(0.01; 0.07) 

0.13 

(0.1; 0.17) 

HBR 0.02 

(0.007; 0.05) 

0.03 

(0.01; 0.07) 
0.07 

(0.04; 0.12) 

DCML 0.01 

(0.007; 0.03) 

0.02 

(0.009; 0.06) 

0.09 

(0.04; 0.18) 

OLS 0.02 

(0.008; 0.04) 

0.07 

(0.03; 0.14) 

0.11 

(0.06; 0.2) 

 

Table 13: Robust regression estimators MSE results according 

to the number of covariates (p=3), the percentage of outliers 

(5%, 10% and 30%) for sample size n=500. The percentage of 

leverage (x-outliers) is 5%. Lower MSE is in bold. In brackets, 

the 95% BCa bootstrap CIs based on B=1000 iterations 

 5% 10% 30% 

FastMM 

 
0.017 

(0.016; 0.018) 

0.03 

(0.02; 0.04) 

0.07 

(0.06; 0.08) 

Huber 0.025 
(0.024; 0.026) 

0.04 
(0.03 ; 0.05) 

0.09 
(0.08 ; 0.1) 

Tukey 0.019 

(0.018; 0.02) 

0.04 

(0.03 ; 0.05) 

0.08 

(0.07; 0.09) 

L1 0.019 

(0.018; 0.02) 

0.04 

(0.03; 0.05) 

0.08 

(0.07; 0.09) 

FastTau 0.018 

(0.017; 0.02) 

0.04 

(0.03; 0.05) 
0.07 

(0.06; 0.08) 

HBR 0.017 

(0.016; 0.018) 
0.03 

(0.02; 0.03) 

0.08 

(0.07; 0.09) 

 

DCML 0.02 

(0.019; 0.021) 

0.04 

(0.03; 0.05) 

0.09 

(0.08; 0.1) 

OLS 0.021 

(0.02; 0.022) 

0.04 

(0.03; 0.05) 

0.09 

(0.08; 0.1) 

 

 

Table 14: Robust regression estimators MSE results according 

to the number of covariates (p=3), the percentage of outliers 
(5%, 10% and 30%) for sample size n=500. The percentage of 

leverage (x-outliers) is 10%. Lower MSE is in bold. In 

brackets, the 95% BCa bootstrap CIs based on B=1000 

iterations 

 5% 10% 30% 

FastMM 

 
0.02 

(0.01; 0.03) 

0.03 

(0.02; 0.04) 

0.08 

(0.07; 0.09) 

Huber 0.03 

() 

0.04 

(0.03 ; 0.05) 

0.09 

(0.08 ; 0.1) 

Tukey 0.03 0.04 0.08 
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() (0.03 ; 0.05) (0.07; 0.09) 

L1 0.03 

() 

0.04 

(0.03; 0.05) 

0.08 

(0.07; 0.09) 

FastTau 0.02 

(0.01; 0.03) 

0.03 

(0.02; 0.04) 

0.08 

(0.07; 0.09) 

HBR 0.02 

(0.01; 0.03) 

0.04 

(0.03; 0.05) 
0.06 

(0.05; 0.07) 

DCML 0.03 
(0.02; 0.04) 

0.04 
(0.03; 0.05) 

0.09 
(0.08; 0.1) 

OLS 0.03 

(0.02; 0.04) 

0.04 

(0.03; 0.05) 

0.09 

(0.08; 0.1) 

 

Table 15: Robust regression estimators MSE results according 

to the number of covariates (p=3), the percentage of outliers 

(5%, 10% and 30%) for sample size n=500. The percentage of 

leverage (x-outliers) is 30%. Lower MSE is in bold. In 

brackets, the 95% BCa bootstrap CIs based on B=1000 

iterations 

 5% 10% 30% 

FastMM 

 
0.018 

(0.017; 0.019) 

0.04 

(0.03; 0.05) 

0.08 

(0.07; 0.09) 

Huber 0.02 

(0.01; 0.03) 

0.05 

(0.04; 0.06) 

0.09 

(0.08 ; 0.1) 

Tukey 0.02 

(0.01; 0.03) 

0.05 

(0.04 ; 0.06) 

0.08 

(0.07; 0.09) 

L1 0.02 
(0.01; 0.03) 

0.05 
(0.04; 0.06) 

0.08 
(0.07; 0.09) 

FastTau 0.018 

(0.017; 0.019) 

0.05 

(0.04; 0.06) 
0.06 

(0.05; 0.07) 

HBR 0.018 

(0.017; 0.019) 

0.04 

(0.03; 0.05) 

0.08 

(0.07; 0.09) 

DCML 0.02 

(0.01; 0.03) 

0.05 

(0.04; 0.06) 

0.1 

(0.09; 0.11) 

OLS 0.02 

(0.01; 0.03) 

0.05 

(0.04; 0.06) 

0.09 

(0.08; 0.1) 

 

Table 16: Robust regression estimators MSE results according 

to the number of covariates (p=3), the percentage of outliers 

(5%, 10% and 30%) for sample size n=5000. The percentage 

of leverage (x-outliers) is 5%. Lower MSE is in bold. In 

brackets, the 95% BCa bootstrap CIs based on B=1000 

iterations 

 5% 10% 30% 

FastMM 0.022 0.034 0.08 

Huber 0.022 0.034 0.08 

Tukey 0.022 0.034 0.08 

L1 0.022 0.034 0.08 

FastTau 0.022 0.034 0.08 

HBR 0.022 0.034 0.08 

DCML 0.022 0.034 0.08 

OLS 0.026 0.037 0.084 

 
Table 17: Robust regression estimators MSE results according 

to the number of covariates (p=3), the percentage of outliers 

(5%, 10% and 30%) for sample size n=5000. The percentage 

of leverage (x-outliers) is 10%. Lower MSE is in bold. In 

brackets, the 95% BCa bootstrap CIs based on B=1000 
iterations 

 5% 10% 30% 

FastMM 0.022 0.033 0.08 

Huber 0.022 0.033 0.08 

Tukey 0.022 0.033 0.08 

L1 0.022 0.033 0.08 

FastTau 0.022 0.033 0.08 

HBR 0.022 0.033 0.08 

DCML 0.022 0.033 0.08 

OLS 0.024 0.036 0.1 

 

Table 18: Robust regression estimators MSE results according 

to the number of covariates (p=3), the percentage of outliers 

(5%, 10% and 30%) for sample size n=5000. The percentage 

of leverage (x-outliers) is 30%. Lower MSE is in bold. In 

brackets, the 95% BCa bootstrap CIs based on B=1000 

iterations 

 5% 10% 30% 

FastMM 0.02 0.03 0.08 

Huber 0.02 0.03 0.08 

Tukey 0.02 0.03 0.08 

L1 0.02 0.03 0.08 

FastTau 0.02 0.03 0.08 

HBR 0.02 0.03 0.08 

DCML 0.02 0.03 0.08 

OLS 0.023 0.034 0.085 

 

Table 19: Robust regression estimators MSE results according 

to the number of covariates (p=10), the percentage of outliers 

(5%, 10% and 30%) for sample size n=50. The percentage of 

leverage (x-outliers) is 5%. Lower MSE is in bold. In brackets, 
the 95% BCa bootstrap CIs based on B=1000 iterations 

 5% 10% 30% 

FastMM 0.016 0.02 0.044 

Huber 0.017 0.018 0.044 

Tukey 0.008 0.02 0.045 

L1 0.009 0.018 0.043 

FastTau 0.007 0.04 0.05 

HBR 0.007 0.018 0.04 

DCML 0.009 0.016 0.06 

OLS 0.02 0.022 0.1 

 

Table 20: Robust regression estimators MSE results according 

to the number of covariates (p=10), the percentage of outliers 

(5%, 10% and 30%) for sample size n=50. The percentage of 

leverage (x-outliers) is 10%. Lower MSE is in bold. In 

brackets, the 95% BCa bootstrap CIs based on B=1000 

iterations 

 5% 10% 30% 

FastMM 0.007 0.022 0.066 
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Huber 0.017 0.018 0.14 

Tukey 0.008 0.02 0.046 

L1 0.009 0.018 0.043 

FastTau 0.018 0.04 0.06 

HBR 0.007 0.011 0.042 

DCML 0.009 0.018 0.043 

OLS 0.02 0.028 0.050 

 

 

Table 21: Robust regression estimators MSE results according 

to the number of covariates (p=10), the percentage of outliers 
(5%, 10% and 30%) for sample size n=50. The percentage of 

leverage (x-outliers) is 30%. Lower MSE is in bold. In 

brackets, the 95% BCa bootstrap CIs based on B=1000 

iterations 

 5% 10% 30% 

FastMM 0.0155 0.01 0.07 

Huber 0.017 0.018 0.14 

Tukey 0.007 0.02 0.05 

L1 0.009 0.018 0.04 

FastTau 0.022 0.048 0.08 

HBR 0.007 0.018 0.04 

DCML 0.007 0.015 0.04 

OLS 0.024 0.028 0.08 

 

Table 22: Robust regression estimators MSE results according 

to the number of covariates (p=10), the percentage of outliers 

(5%, 10% and 30%) for sample size n=500. The percentage of 

leverage (x-outliers) is 5%. Lower MSE is in bold. In brackets, 

the 95% BCa bootstrap CIs based on B=1000 iterations 

 5% 10% 30% 

FastMM 0.019 0.04 0.076 

Huber 0.021 0.04 0.08 

Tukey 0.03 0.04 0.08 

L1 0.03 0.04 0.08 

FastTau 0.025 0.03 0.09 

HBR 0.027 0.04 0.076 

DCML 0.03 0.04 0.08 

OLS 0.04 0.05 0.1 

 

Table 23: Robust regression estimators MSE results according 
to the number of covariates (p=10), the percentage of outliers 

(5%, 10% and 30%) for sample size n=500. The percentage of 

leverage (x-outliers) is 10%. Lower MSE is in bold. In 

brackets, the 95% BCa bootstrap CIs based on B=1000 

iterations 

 5% 10% 30% 

FastMM 0.019 0.036 0.09 

Huber 0.021 0.039 0.096 

Tukey 0.028 0.041 0.078 

L1 0.028 0.041 0.078 

FastTau 0.023 0.03 0.085 

HBR 0.028 0.04 0.075 

DCML 0.02 0.03 0.075 

OLS 0.027 0.041 0.1 

 

Table 24: Robust regression estimators MSE results according 

to the number of covariates (p=10), the percentage of outliers 

(5%, 10% and 30%) for sample size n=500. The percentage of 
leverage (x-outliers) is 30%. Lower MSE is in bold. In 

brackets, the 95% BCa bootstrap CIs based on B=1000 

iterations 

 5% 10% 30% 

FastMM 0.019 0.036 0.09 

Huber 0.021 0.033 0.096 

Tukey 0.028 0.04 0.079 

L1 0.028 0.04 0.078 

FastTau 0.023 0.03 0.085 

HBR 0.028 0.04 0.077 

DCML 0.02 0.034 0.074 

OLS 0.029 0.042 0.1 

 

 

Table 25: Robust regression estimators MSE results according 

to the number of covariates (p=10), the percentage of outliers 

(5%, 10% and 30%) for sample size n=5000. The percentage 

of leverage (x-outliers) is 5%. Lower MSE is in bold. In 

brackets, the 95% BCa bootstrap CIs based on B=1000 

iterations 

 5% 10% 30% 

FastMM 0.02 0.03 0.08 

Huber 0.02 0.03 0.08 

Tukey 0.02 0.03 0.08 

L1 0.02 0.03 0.08 

FastTau 0.02 0.03 0.08 

HBR 0.02 0.03 0.08 

DCML 0.02 0.03 0.08 

OLS 0.024 0.038 0.084 

 

Table 26: Robust regression estimators MSE results according 
to the number of covariates (p=10), the percentage of outliers 

(5%, 10% and 30%) for sample size n=5000. The percentage 

of leverage (x-outliers) is 10%. Lower MSE is in bold. In 

brackets, the 95% BCa bootstrap CIs based on B=1000 

iterations 

 5% 10% 30% 

FastMM 0.021 0.035 0.08 

Huber 0.021 0.035 0.08 

Tukey 0.021 0.035 0.08 

L1 0.021 0.035 0.08 

FastTau 0.021 0.035 0.08 

HBR 0.021 0.035 0.08 

DCML 0.021 0.035 0.08 

OLS 0.025 0.039 0.085 

 

Table 27: Robust regression estimators MSE results according 

to the number of covariates (p=10), the percentage of outliers 
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(5%, 10% and 30%) for sample size n=5000. The percentage 

of leverage (x-outliers) is 30%. Lower MSE is in bold. In 

brackets, the 95% BCa bootstrap CIs based on B=1000 
iterations 

 5% 10% 30% 

FastMM 0.022 0.036 0.082 

Huber 0.022 0.036 0.082 

Tukey 0.022 0.036 0.082 

L1 0.022 0.036 0.082 

FastTau 0.022 0.036 0.082 

HBR 0.022 0.036 0.082 

DCML 0.022 0.036 0.082 

OLS 0.028 0.04 0.09 

 

 

 

 

 

 

 

 

 

 

 
 

 

 


