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Abstract
A two-parameter extension of the XShanker distribution called power XShanker is developed and studied in this article. The 
properties which include moment, quantile function, moment generating function, order statistics, stress-strength reliability 
function, and Rény entropy were studied. The classical and Bayesian estimation procedures were studied with simulations. The 
usefulness of the proposed model was demonstrated using lifetime data sets.
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1 Introduction
New ideas and innovations are birthed daily in reaction to the 
complexities associated with life. In distribution theory, for 
instance, the development of new models has been on the increase 
for the last two decades. Most of the recent developments have 
been centered around intuitive modification and extension 
of existing models. The reasons are not far-fetched namely 
flexibility, tractability, parsimony, and applicability. We must 
remind ourselves, therefore, that a very powerful model in a given 
scenario might be worthless in another scenario and vice versa. 
Again, the goodness of fit is not the only feature of interest in 
modeling, model performance in terms of parameter estimation is 
also vital. Interest can also span into functions that are amenable to 
mathematical manipulations. For instance, experience has shown 
that distributions that possess closed-form quantile functions are 
less tedious in use and can easily lend themselves to simulation 
studies.

Power-transformed distributions enjoy applicability in data with 
a polynomial nature. In reality, such data are common in stock 
market records, biomedical events, the tensile strength of an 
engineering material, etc. Some of the existing articles on power-
transformed Lindley-class of distributions are  [1-12]. The gap in 
the literature is that none of these power-transformed Lindley-
class creations has harnessed the estimation of parameters using 

the Bayesian approach. Bayesian estimation is an important 
creation in inference which depends on prior information about 
the characteristics and nature of the event of interest when making 
posterior computation. Many other variant models in the Lindley 
class are necessary to mention such as [13-15].

In this article, a concise discussion of the properties of the 
proposed model is done, a detailed study of the classical estimation 
procedures is carried out, and then the Bayesian estimation based 
on the linear-exponential loss, squared error loss, and generalized 
entropy loss functions was given adequate attention. The remainder 
of this work is in the following sequence. Section two dwells on 
the derivation of the power XShanker distribution. In section three, 
the essential properties which include the moment and quantile 
function, etc were studied. In section four, the non-Bayesian 
estimation was discussed and in section five, the Bayesian method 
of estimation was studied. Simulation studies for both classical 
and Bayesian estimation procedures are carried out. Applications 
to lifetime data are demonstrated in section seven. The article 
ended with concluding remarks in section eight.

2 Power XShanker Distribution
Etaga, Celestine, et al. (2023) developed the XShanker Distribution 
(XSD) with PDF and CDF respectively given as
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squared error loss, and generalized entropy loss functions was given adequate attention. The remainder of this
work is in the following sequence. Section two dwells on the derivation of the power XShanker distribution. In
section three, the essential properties which include the moment and quantile function, etc were studied. In sec-
tion four, the non-Bayesian estimation was discussed and in section five, the Bayesian method of estimation was
studied. Simulation studies for both classical and Bayesian estimation procedures are carried out. Applications
to lifetime data are demonstrated in section seven. The article ended with concluding remarks in section eight.

2 Power XShanker Distribution
Etaga, Celestine, et al. (2023) developed the XShanker Distribution (XSD) with PDF and CDF respectively given
as

f (x;θ)= θ2

(
θ2 +1

)2

(
θ3 +2θ+ x

)
e−θx; x > 0, (1)

and

F(x;θ)= 1−
{

1+ θx
(
θ2 +1

)2

}
e−θx, (2)

where θ > 0 is the scale parameter. Using the box-muller transformation Y = X
1
c , for X ∼ XShanker (θ), where

c > 0 is the shape parameter, the new random variable X assumes the following PDF and CDF

f (y;θ, c)= cθ2

(
θ2 +1

)2

(
θ3 +2θ+ yc) yc−1e−θyc

; y> 0, (3)

and

F(y;θ, c)= 1−
{

1+ θyc

(
θ2 +1

)2

}
e−θyc

(4)

Eq. 3 and 4 are respectively the PDF and CDF of the Power XShanker Distribution (PXSD). Notice that PXSD
reduces to the XSD when α= 1.

The survival function S(y)= 1−F(y;θ, c) and the hazard rate function h(y)= f (y)
S(y) of the PXSD are given as follows

S(y)=
{

1+ θyc

(
θ2 +1

)2

}
e−θyc

(5)

and

h(y)= cθ2 (
θ3 +2θ+ yc) yc−1

θ4 +2θ2 + yc +1
(6)

The shape of the PDF in figure 1 shows that it is a right-skewed decreasing function. The figures 2- 5 demon-
strate varying shapes of the hazard rate function. It is increasing reversed L-shaped, approximately J-shaped,
decreasing L-shaped, and strictly increasing shaped respectively. These characteristics lend the distribution to
many applications.
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Figure 4: hazard function of PXSD(θ, c)
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3 Useful Properties
In this section, we discuss some important statistical characteristics of the proposed PXSD.

3.1 Quantile Function
Let Y ∼ PXSD (θ, c), if the CDF in Eq. 4 is inverted such that u ∼ U (0,1) then the quantle function is given by
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3 Useful Properties
In this section, we discuss some important statistical characteristics of the proposed PXSD.

3.1 Quantile Function
Let Y ∼ PXSD (θ, c), if the CDF in Eq. 4 is inverted such that u ∼ U (0,1) then the quantle function is given by
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Q(u)=



−

θ2 +1
2 −W−1


−(1−u)(θ2 +1)2e−(θ2+1)2



θ





1
c

(7)

Proof. Let replace F(y;θc) with u in Eq. 4, so that

(1−u)

θ2 +1

2 =

θ2 +1

2 +θyc


e−θyc
(8)

If we multiply both sides by a minus sign, then let Z(y) = −

θ2 +1

2 +θyc

=⇒ Z(y)+ 

θ2 +1
2 = −θyc. This

yields

− (1−u)

θ2 +1

2 = Z(y)eZ(y)+(θ2+1)2

− (1−u)

θ2 +1

2
e−(θ2+1)2 = Z(y)eZ(y)

(9)

Taking the Lambert W function, we have

W−1


−(1−u)(θ2 +1)2e−(θ2+1)2


= Z(y) (10)

where Z(y)=−

θ2 +1

2 +θyc

, the rest is trivial.

3.2 Moment
The crude moment enables the computation of the mean and other measures such as variance, skewness, and
kurtosis. Let Y ∼ PXSD (θ, c), then the rth crude moment is obtained as

µ
′
r =

cθ2


θ2 +1

2


θ3 +2θ

θ
r
c+1

Γ
r

c
+1

 1

θ
r+1

c +1
Γ


r+1

c
+1


; r = 1,2, · · · (11)

Proof. The rth crude moment is defined as µ
′
r = EY r =∞

0 yr f (y) d y, where f (y) represents the density function
for with support y> 0. Replacing f (y) with the PDF of PXSD gives

µ
′
r =

∞

0

cθ2


θ2 +1

2


θ3 +2θ+ yc yr+c−1e−θyc

d y (12)

This can be rewritten as

µ
′
r =

cθ2


θ2 +1

2


θ3 +2θ

∞

0
yr+c−1e−θyc

d y+
∞

0
yr+c e−θyc

d y


(13)

Let t = θyc =⇒  x
θ

 1
c and d y= x

1
c −1

cθ
1
c

dx, then the rest is trivial.

4



Volume 2 | Issue 1 | 4Eng OA, 2024

3.2 Moment
The crude moment enables the computation of the mean and other measures such as variance, skewness, and kurtosis. Let Y ∼ PXSD (θ, 
c), then the rth crude moment is obtained as

Q(u)=



−

θ2 +1
2 −W−1


−(1−u)(θ2 +1)2e−(θ2+1)2



θ





1
c

(7)

Proof. Let replace F(y;θc) with u in Eq. 4, so that

(1−u)

θ2 +1

2 =

θ2 +1

2 +θyc


e−θyc
(8)

If we multiply both sides by a minus sign, then let Z(y) = −

θ2 +1

2 +θyc

=⇒ Z(y)+ 

θ2 +1
2 = −θyc. This

yields

− (1−u)

θ2 +1

2 = Z(y)eZ(y)+(θ2+1)2

− (1−u)

θ2 +1

2
e−(θ2+1)2 = Z(y)eZ(y)

(9)

Taking the Lambert W function, we have

W−1


−(1−u)(θ2 +1)2e−(θ2+1)2


= Z(y) (10)

where Z(y)=−

θ2 +1

2 +θyc

, the rest is trivial.

3.2 Moment
The crude moment enables the computation of the mean and other measures such as variance, skewness, and
kurtosis. Let Y ∼ PXSD (θ, c), then the rth crude moment is obtained as

µ
′
r =

cθ2


θ2 +1

2


θ3 +2θ

θ
r
c+1

Γ
r

c
+1

 1

θ
r+1

c +1
Γ


r+1

c
+1


; r = 1,2, · · · (11)

Proof. The rth crude moment is defined as µ
′
r = EY r =∞

0 yr f (y) d y, where f (y) represents the density function
for with support y> 0. Replacing f (y) with the PDF of PXSD gives

µ
′
r =

∞

0

cθ2


θ2 +1

2


θ3 +2θ+ yc yr+c−1e−θyc

d y (12)

This can be rewritten as

µ
′
r =

cθ2


θ2 +1

2


θ3 +2θ

∞

0
yr+c−1e−θyc

d y+
∞

0
yr+c e−θyc

d y


(13)

Let t = θyc =⇒  x
θ

 1
c and d y= x

1
c −1

cθ
1
c

dx, then the rest is trivial.

4

θ

0.5

1.0

1.5

2.0

u

0.0

0.2

0.4

0.6

0.8

1.0

Q
(u)

0

20

40

60

0

10

20

30

40

50

Figure 6: Q(u) of PXSD (θ, c)

Replacing r with 1 gives the mean. The variance can be obtained from the moment following EY = EY 2 − [EY ]2.
The Bowley’s skewness (η) and Moore’s kurtosis (ξ) are derived from the quantile function and are respectively
given as;

η= Q
(3

4
)+Q

(1
4
)−2Q

(1
2
)

Q
(3

4
)−Q

(1
4
) (14)

and

ξ= Q
(7

8
)−Q

(5
8
)+Q

(3
8
)−Q

(1
8
)

Q
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4
)−Q
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4
) (15)
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Replacing r with 1 gives the mean. The variance can be obtained from the moment following EY = EY2 −[EY]2. The Bowley’s skewness 
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The variance plot in figure 7 justifies the shape of the PDF in figure 1 that X ∼ PXSD (θ, c) contains a high
dispersion from the mean. Figure 9 indicates that the distribution has a positive skewness. While figure 10
shows that the distribution is leptokurtic (highly peaked).

3.3 Moment Generating Function
Let Y ∼ PXSD (θ, c) where it exists, the moment generating function (MGF) written as MY (t) is defined as

MY (t)= Eety =
∞∫

0

ety f (y;θ, c) d y= cθ2

(
θ2 +1

)2

∞∑
j=0

(−1) j

j!
θ j

{(
θ3 +2θ

) Γ [c(1+ j)]
(−t)c(1+ j) + Γ [c(2+ j)]

(−t)c(2+ j)

}
(16)

3.4 Order Statistics
Let Y1,Y2, · · · , Xn be the ordered statistics of a random sample y1, y2, · · · , y from the continuous population with
PDF f (y;θ, c) and CDF F(y;θ, c) then the PDF of rth order statistics Yr is given by

f y(r) =
n!

(r−1)!(n− r)!
f (y)[F(y)]r−1[1−F(y)]n−r =

∞∑
j=0

(−1) j n!
j!(r−1)!(n− r− j)!

f (y)F j+r−1(y)

=
∞∑

i, j,k,l=0

(−1)i+ j+l

i!
n!

j!(n− r)!(n− r− j)!
(1+ i)lθk+l+2 yc(k+l+1)−1

(
θ2 +1

)2(1+k)

(
i
k

)(
j+ r−1

i

)
(
θ3 +2θ+ yc)

(17)

3.5 Stress-Strength Reliability Analysis
Let y ∼ PXSD (θ1, c1) and x ∼ PXSD (θ2, c2) be the stress and strength of a system that assumes the proposed
PXSD, then the reliability of PXSD can be expressed as

RPXSD = P(x < y)=
∫∞

0

∫y

0
f (x) f (y) d ydx

= 1− θ2
1(

θ2
1 +1

)2

∞∑
j=0

(−1) j

j!
θ

j
2

{
θ3

1 +2θ1

θ
jr+ 1

c1
+1

1

Γ

[
jr+ 1

c1
+

]
+
Γ

[
jr+ 1

c1
+2

]

θ
jr+ 1

c1
+2

1

+ θ2
(
θ3

1 +2θ1
)

(
θ2

1 +1
)2

Γ
[
( j+1)r+ 1

c1
+1

]

θ
( j+1)r+ 1

c1
+1

1

+ θ2(
θ2

2
)2

Γ
[
( j+1)r+ 1

c1
+2

]

θ
( j+1)r+ 1

c1
+2

1

}
; where r = c2

c1

(18)
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The variance plot in figure 7 justifies the shape of the PDF in figure 1 that X ∼ PXSD (θ, c) contains a high
dispersion from the mean. Figure 9 indicates that the distribution has a positive skewness. While figure 10
shows that the distribution is leptokurtic (highly peaked).

3.3 Moment Generating Function
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3.4 Order Statistics
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The variance plot in figure 7 justifies the shape of the PDF in figure 1 that X ∼ PXSD (θ, c) contains a high
dispersion from the mean. Figure 9 indicates that the distribution has a positive skewness. While figure 10
shows that the distribution is leptokurtic (highly peaked).
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The variance plot in figure 7 justifies the shape of the PDF in figure 1 that X ∼ PXSD (θ, c) contains a high
dispersion from the mean. Figure 9 indicates that the distribution has a positive skewness. While figure 10
shows that the distribution is leptokurtic (highly peaked).
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The variance plot in figure 7 justifies the shape of the PDF in figure 1 that X ∼ PXSD (θ, c) contains a high dispersion from the mean. 
Figure 9 indicates that the distribution has a positive skewness. While figure 10 shows that the distribution is leptokurtic (highly peaked).

3.3 Moment Generating Function 
Let Y ∼ PXSD (θ, c) where it exists, the moment generating function (MGF) written as MY (t) is defined as

3.4 Order Statistics
Let Y1,Y2,· · · ,Xn be the ordered statistics of a random sample y1, y2,· · · , y from the continuous population with PDF f (y;θ, c) and CDF 
F(y;θ, c) then the PDF of rth order statistics Yr is given by

3.5 Stress-Strength Reliability Analysis
Let y ∼ PXSD (θ1, c1) and x ∼ PXSD (θ2, c2) be the stress and strength of a system that assumes the proposed PXSD, then the reliability 
of PXSD can be expressed as
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Proof.

R = P(x < y)=
∫∞

0
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0
f (x) f (y) d ydx=
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f (y)F(y) d y (19)

Plugging in Eq. 3 and 4, we have
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and the rest is trivial.

3.6 Rény Entropy
One of the common measures of entropy is the Rény entropy. It is a measure of the amount of information in the
data sets. It is defined for ω ̸= 1 and ω> 0.

Definition 3.1. Let Y ∼ PXSD (θ, c), then the Rény entropy RE can be expressed as
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Proof. The Rény entropy is generally defined as

RE = 1
1−ω

log
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0
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}
(23)

where f (y;θ, c) is the PDF of the PXSD as defined in Eq. 3. Plug in Eq. 3, we obtain
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Using the general binomial expansion on
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and the rest is trivial.
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RE = 1
1−ω

log

{∫∞

0

cωθ2ω

(
θ2 +1

)2ω

(
θ3 +2ω+ yc)ω y(c−1)ωe−θωyc

d y

}
(24)

Using the general binomial expansion on
(
θ3 +2ω+ yc)ω, we obtain

RE = 1
1−ω

log

{
cωθ2ω

(
θ2 +1

)2ω

∞∑
j=0

(
ω

j

)(
θ3 +2θ

)ω− j
∫∞

0
yjc−ωc−ωe−θωyc

d y

}
(25)

Define t = θωyc =⇒ y= ( t
θω

) 1
c and d y= t

1
c

c(θω)
1
c

dt. Then

RE = 1
1−ω

log

{
cω−1θ2ω

(
θ2 +1

)2ω

ω∑
j=0

(
ω

j

)(
θ3 +2ω

)ω− j
(θω)−( j−ω− ω

c + 1
c )

∫∞

0
t j−ω− ω

c + 1
c −1e−t dt

}
(26)

and the rest is trivial.
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Figure 11 is sufficient to advise a reliability engineer that potential harm to the system that assumes the pro-
posed distribution should any stress act on it. As additional stress is exerted on it, the reliability takes a maxi-
mum of zero, that is −∞≤ RE ≤ 0. Figure 12 shows that 10×ω randomness exists in the system.

4 Non-Bayesian Estimation
In this section, we discuss two classical approaches to parameter estimation namely the maximum likelihood
and the maximum product spacing.

4.1 Maximum Likelihood Estimation
Estimating the parameters of the PXSD is important in studying the behavior of the model. The maximum like-
lihood appears more applicable in the literature among other classical methods of estimation. Let (y1, y2, · · · , yn)
random samples of size n with joint PDF f (y1, y2, · · · , yn;θ, c). The likelihood function can be expressed as

L(y1, y2, · · · , xn;θ, c)∝
n∏

i=1
f (y1, y2, · · · , yn;θ, c)= cnθ2n

(
θ2 +1

)2n e
−θ

n∑
i=0

yc n∏
i=1

(
θ3 +2θ+ yc) yc−1 (27)

Taking the natural logarithm will lead to

ℓ= n ln c+2n lnθ−2n ln
(
θ2 +1

)−θ
n∑

i=1
yc +

n∑
i=1

ln
(
θ3 +2θ+ yc)+ (c−1)

n∑
0

ln y (28)

The maximum values of θ̂ and ĉ are obtained by differentiating partially with respect to θ and c. That is,

∂ℓ

∂θ
= 2n

θ
− 4nθ
θ2 +1

−
n∑

i=1
yc +

n∑
i=1

3θ2 +2
θ3 +2θ+ yc +

n∑
i=1

ln y (29)

and
∂ℓ

∂c
= n

c
−θ

n∑
i=1

yc ln y+
n∑

i=1

yc ln y
θ3 +2θ+ yc +

n∑
i=1

ln y (30)

The two derivatives are not compact, meaning that their solutions are found through numerical iteration. This
can be implemented in R.

8

Stre
ss

1

2

3
4

5

Strength

1

2

3

4

5

R
eliability

-60

-40

-20

0

-60

-50

-40

-30

-20

-10

0

Figure 11: stress-strength reliability of PXSD(θ, c)

ω

0.2

0.4

0.6

0.8x

0.2

0.4

0.6

0.8

R
ényi Entropy

2

4

6

8

2

4

6

8

Figure 12: Rény entropy of PXSD(θ, c)

Figure 11 is sufficient to advise a reliability engineer that potential harm to the system that assumes the pro-
posed distribution should any stress act on it. As additional stress is exerted on it, the reliability takes a maxi-
mum of zero, that is −∞≤ RE ≤ 0. Figure 12 shows that 10×ω randomness exists in the system.

4 Non-Bayesian Estimation
In this section, we discuss two classical approaches to parameter estimation namely the maximum likelihood
and the maximum product spacing.

4.1 Maximum Likelihood Estimation
Estimating the parameters of the PXSD is important in studying the behavior of the model. The maximum like-
lihood appears more applicable in the literature among other classical methods of estimation. Let (y1, y2, · · · , yn)
random samples of size n with joint PDF f (y1, y2, · · · , yn;θ, c). The likelihood function can be expressed as

L(y1, y2, · · · , xn;θ, c)∝
n∏

i=1
f (y1, y2, · · · , yn;θ, c)= cnθ2n

(
θ2 +1

)2n e
−θ

n∑
i=0

yc n∏
i=1

(
θ3 +2θ+ yc) yc−1 (27)

Taking the natural logarithm will lead to

ℓ= n ln c+2n lnθ−2n ln
(
θ2 +1

)−θ
n∑

i=1
yc +

n∑
i=1

ln
(
θ3 +2θ+ yc)+ (c−1)

n∑
0

ln y (28)
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4.1 Maximum Likelihood Estimation
Estimating the parameters of the PXSD is important in studying the behavior of the model. The maximum likelihood appears more 
applicable in the literature among other classical methods of estimation. Let (y1, y2,· · · , yn) random samples of size n with joint PDF f 
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The two derivatives are not compact, meaning that their solutions are found through numerical iteration. This can be implemented in R.

4.3 Least Squares Estimation
From Swain, Venkatraman, and Wilson (1988), we can derive the LSEs of the parameters θ and c as follows;

4.2 Maximum Product Spacing Estimation
Consider the data to be in ascending order at this point, the PXSD greatest product spacing is given as

4.2 Maximum Product Spacing Estimation
Consider the data to be in ascending order at this point, the PXSD greatest product spacing is given as

Gi:m:n(θ, c | yi)=
(

n+1∏
i=1

Di(yi,θ, c)

) 1
n+1

(31)

Where Di(yi,θ, c) = F(yi;θ, c)− F(yi−1;θ, c), i = 1,2, · · · ,n. In a like manner, one may decide to increase the
function

S(θ, c)= 1
n+1

n+1∑
i=1

lnDi(θ, c) (32)

The parameter estimates are determined by solving the first derivative of the function S(ξ) with respect to θandc
and solving the non-linear equations at ∂S(ξ)

∂θ
= 0 and ∂S(ξ)

∂c = 0 where ξ= (θ, c).

4.3 Least Squares Estimation
From Swain, Venkatraman, and Wilson (1988), we can derive the LSEs of the parameters θ and c as follows;

E[F(yi:n|θ, c)]= i
n+1

; V [F(yi:n|θ, c)]= i(n− i+1)
(n+1)2(n+2)

.

Minimize the function L(θ, c) to obtain the estimates θ̂LSE and ĉLSE of the parameters θ and c as follows

L(θ, c)= argmin
(θ,c)

n∑
i=1

[
F(yi:n|θ, c)− i

n+1

]2
. (33)

Resolving the following non-linear systems of equations produces the estimates

n∑
i=1

[
F(yi:n|θ, c)− i

n+1

]2
∆1(yi:n|θ, c)= 0 (34)

n∑
i=1

[
F(yi:n|θ, c)− i

n+1

]2
∆2(yi:n|θ, c)= 0 (35)

where

∆1(yi:n|θ, c)=
(
θ2 +1

)4 − (
θ2 +1

)[(
θ2 +1

)
(1−θyc)−4θ2]

(
θ2 +1

)4 . (36)

∆2(xi:n|θ, c)=
(
θ2 +1

)2 +θyc −1
(
θ2 +1

)2 . (37)

4.4 Weighted Least Squares Estimation
Minimize the function W(θ, c) to obtain the estimates θ̂WLSE and ĉWLSE of the proposed PXSD parameters θ and
c as follows

W(θ, c)= argmin
(θ,c)

n∑
i=1

(n+1)2(n+2)
i(n− i+1)

[
F(yi:n|θ, c)− i

n+1

]2

. (38)

Resolving the following non-linear systems of equations produces the estimates

n∑
i=1

(n+1)2(n+2)
i(n− i+1)

[
F(yi:n|θ, c)− i

n+1

]
∆1(yi:n|θ, c)= 0 (39)

n∑
i=1

(n+1)2(n+2)
i(n− i+1)

[
F(yi:n|θ, c)− i

n+1

]
∆2(yi:n|θ, c)= 0, (40)

∆1(y.|θ, c) and ∆2(y.|θ, c) are respectively defined in (36) and (37).
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Minimize the function W(θ, c) to obtain the estimates ˆθWLSE and ˆcWLSE of the proposed PXSD parameters θ and c as follows



Volume 2 | Issue 1 | 9Eng OA, 2024

4.2 Maximum Product Spacing Estimation
Consider the data to be in ascending order at this point, the PXSD greatest product spacing is given as

Gi:m:n(θ, c | yi)=
(

n+1∏
i=1

Di(yi,θ, c)

) 1
n+1

(31)

Where Di(yi,θ, c) = F(yi;θ, c)− F(yi−1;θ, c), i = 1,2, · · · ,n. In a like manner, one may decide to increase the
function

S(θ, c)= 1
n+1

n+1∑
i=1

lnDi(θ, c) (32)

The parameter estimates are determined by solving the first derivative of the function S(ξ) with respect to θandc
and solving the non-linear equations at ∂S(ξ)

∂θ
= 0 and ∂S(ξ)

∂c = 0 where ξ= (θ, c).

4.3 Least Squares Estimation
From Swain, Venkatraman, and Wilson (1988), we can derive the LSEs of the parameters θ and c as follows;

E[F(yi:n|θ, c)]= i
n+1

; V [F(yi:n|θ, c)]= i(n− i+1)
(n+1)2(n+2)

.

Minimize the function L(θ, c) to obtain the estimates θ̂LSE and ĉLSE of the parameters θ and c as follows
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4.5 Cramér-von-Mises Estimation
We minimize the function C(θ, c) to obtain the estimates ˆθCVME, and ˆcCVME of the PXSD parameters θ, and c as follows

4.6 Anderson-Darling Estimation

4.7  Right-tailed Anderson-Darling Estimation

4.5 Cramér-von-Mises Estimation
We minimize the function C(θ, c) to obtain the estimates θ̂CV ME, and ĉCV ME of the PXSD parameters θ, and c as
follows

C(θ, c)= argmin
(θ,c)


1

12n
+

n
i=1


F(yi:n|θ, c)− 2i−1

2n

2
. (41)

Resolving the following non-linear systems of equations produces the estimates

n
i=1


F(yi:n|θ, c)− 2i−1

2n


∆1(yi:n|θ, c)= 0

n
i=1


F(yi:n|θ, c)− 2i−1

2n


∆2(yi:n|θ, c)= 0,





(42)

∆1(y.|θ, c) and ∆2(y.|θ, c) are respectively defined in (36) and (37).

4.6 Anderson-Darling Estimation
We minimize the function A(θ, c) to obtain the estimates θ̂ADE, and ĉADE of the PXSD parameters θ and c as
follows

A(θ, c)= argmin
(θ,c)

n
i=1

(2i−1)

lnF(yi:n|θ, c)+ ln


1−F(yn+1−i:n|θ, c)


. (43)

Resolving the following non-linear systems of equations produces the estimates

n
i=1

(2i−1)

∆1(yi:n|θ, c)
F(yi:n|θ, c)

− ∆1(yn+1−i:n|θ, c)
1−F(yn+1−i:n|θ, c)


= 0

n
i=1

(2i−1)

∆2(yi:n|θ, c)
F(yi:n|θ, c)

− ∆2(yn+1−i:n|θ, c)
1−F(yn+1−i:n|θ, c)


= 0,





(44)

where ∆1(y.|θ, c) and ∆2(y.|θ, c) is as defined in (36) and (37) respectively.

4.7 Right-tailed Anderson-Darling Estimation
We minimize the function R(θ, c) to obtain the estimates θ̂RT ADE and ĉRT ADE of the PXSD parameters θ and c
as follows

R(θ, c)= argmin
(θ,c)


n
2
−2

n
i=1

F(yi:n|θ, c)− 1
n

n
i=1

(2i−1)ln

1−F(yn+1−i:n|θ, c)


. (45)

Resolving the following non-linear systems of equations produces the estimates

−2
n

i=1

∆1(yi:n|θ, c)
F(xi:n|θ, c)

+ 1
n

n
i=1

(2i−1)


∆1(yn+1−i:n|θ, c)
1−F(yn+1−i:n|θ, c)


= 0

−2
n

i=1

∆2(yi:n|θ, c)
F(yi:n|θ, c)

+ 1
n

n
i=1

(2i−1)


∆2(yn+1−i:n|θ, c)
1−F(yn+1−i:n|θ, c)


= 0,





(46)

∆1(y.|θ, c) and ∆2(y.|θ, c) are respectively defined in (36) and (37).

5 Bayesian Estimation
For tests with limited sample sizes or when there is censored data present, classical approaches can occasionally
generate erroneous and misleading results. To provide more explicit estimates in this situation, the Bayesian
approach could make use of more prior knowledge, such as historical data or an understanding of the statistical
inferential process. In this section, we obtain Bayesian estimates that take parameter uncertainties into account
and deal with the parameters as random variables. The joint prior distribution is used to define the knowledge
of the parameter uncertainties before the gathering of failure data. Because it allows for the addition of prior
information in the analysis, the Bayesian approach is very helpful in reliability analysis. This is significant
because the lack of readily available data is one of the major hassles with reliability research. The unknown
parameter θ, c is estimated using the Bayesian estimation (BE) technique under the assumption that its prior
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follows

C(θ, c)= argmin
(θ,c)


1

12n
+

n
i=1


F(yi:n|θ, c)− 2i−1

2n

2
. (41)

Resolving the following non-linear systems of equations produces the estimates

n
i=1


F(yi:n|θ, c)− 2i−1

2n


∆1(yi:n|θ, c)= 0

n
i=1


F(yi:n|θ, c)− 2i−1

2n


∆2(yi:n|θ, c)= 0,





(42)

∆1(y.|θ, c) and ∆2(y.|θ, c) are respectively defined in (36) and (37).

4.6 Anderson-Darling Estimation
We minimize the function A(θ, c) to obtain the estimates θ̂ADE, and ĉADE of the PXSD parameters θ and c as
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distribution is uninformative. Also, applying gamma prior for the variables θ and c with pdfs in the parameter
prior distribution of PXSD.

π1(θ)∝ θk1−1e−t1θ; θ > 0, k1 > 0, t1 > 0

π(c)∝ ck2−1e−t2c; c > 0, k2 > 0, t2 > 0
(47)

Where the hyperparameter ks, ts, s = 1,2 are selected to reject the prior knowledge about the unknown parameter.
The joint prior for ω= (θ, c) is given by

π(ω)=π1(θ)π2(c)

π(ω)∝ θk1−1ck2−1e{−t1θ−t2c} (48)

The corresponding posterior distribution density given the observed data y= (y1, y2, ..., yn) is given by

π(ω | y)= π(ω)ℓ(ω)∫
ωπ(ω)ℓ(ω)dω

Consequently, the posterior density function is given by

π(ω | y)∝ cn+k2−1θ2n+k1+−1

(
θ2 +1

)2n e
−(t1θ−t2c)−θ

n∑
i=1

yc
i

n∏
i=1

(
θ3 +2θ+ yc

i
)

yc−1
i (49)

Given any function, such as l(ω) under the squared error loss (SEL) function, the Bayes estimator is given as

ω̂BESEL = E[l(ω) | y]=
∫

ω
l(ω)π(ω | y)dω (50)

The SEL being a symmetrical loss function regards overestimation and underestimation equally. In real-life
situations, both overestimation and underestimation can have serious implications. The linear exponential loss
function (LINEX) can be used in certain instances as an alternative to the SEL function given by

(l(ω), l̂(ω))= e
{
l̂(ω)−l(ω)

}
−τ(l̂(ω)− l(ω))−1

Where τ ̸= 0 is a shape parameter. Here, τ > 1 insinuates that an overestimation is more serious than an
underestimation and vice-versa for τ > 0. Further, as τ approaches zero it replicates the SE loss function. For
more details in this regard, one should refer to Varian (1975) and Doostparast, Akbari, and Balakrishna (2011).
The BE of l(ω) under this loss function is given by

ωBELINEX = E[e{−τ(ω)} | y]=−1
τ

log
[∫

ω
e{−τ(ω)}π(ω | y)dω

]
(51)

Likewise, we consider the general entropy loss(GEL) suggested by Calabria and Pulcini (1996) defined as

(l(ω), l̂(ω)=
(

l̂(ω)
l(ω)

)ν
−ν log

(
(̂ω)
l(ω)

)
−1

Where ν ̸= 0 denotes a divergence from symmetry. It views overestimation as more significant than underes-
timation when ν > 0 and vice-versa when ν < 0.The Bayes estimator of l(ω) under the GE loss function is as
follows

ωBEGEL = [
E((l(ω))−ν | y)

] −1
ν =

[∫

ω
(l(ω))−νπ(ω | y)dω

]− 1
ν

(52)

Where there is no analytical solution to the computation of equation 50, 51 and 52, the Markov chain Monte
Carlo (MCMC) approach to generate posterior samples and arrive at suitable BEs is then used. It is possible
to properly quantify the posterior uncertainty with respect to the parameter ω using a kernel estimate of the
posterior distribution and the MCMC samples.
Lastly, part of the initial samples can be eliminated (burn-in) from the random samples of size M derived from
the posterior density, and the remaining samples can then be used to calculate Bayes estimates. Using MCMC
under the SEL, LINEX, and GEL functions, the BEs of ωi = (θ)i, (c)i can be calculated as

ω̂BESEL = 1
M− lB

M∑
i=lB

ω(i) (53)

ω̂BELINEX =−1
τ

log

[
1

M− lB

M∑
i=lB

e{−τω(i)}
]

(54)

ω̂BEGEL =
[

1
M− lB

M∑
i=lB

(
ω(i)

)−ν]
−1
ν

(55)

where lB represents the number of burn-in samples.
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BEs of ωi = (θ)i,(c)i can be calculated as

5.1 Credible intervals for Bayes estimates
A 100(1−γ)% credible intervals for the parameters φ= (θ, c) under the loss functions discussed are

φ̂BESEL ±Z γ

2

√
var(φ̂BESEL ); φ̂BELINEX ±Z γ

2

√
var(φ̂BELINEX ); φ̂BEGEL ±Z γ

2

√
var(φ̂BEGEL ) (56)

where Z γ

2
is distributed according to percentile standard normal with right-tailed probability.

6 Simulation Study
In this section, we simulate data for the PXSD to show how good each of the non-Bayesian estimation methods
is. First, 1000 data points are generated from the PXSD by considering the initial parameter values as

• θ = 0.50 and c = 2.0

• θ = 0.5 and c = 1.5

and sample sizes n = 50,100,150,200. For each estimate φ̂ = (θ̂, ĉ), the Bias and Root Mean Squared Error
(RMSE) are calculated respectively as

Bias(φ̂)= 1
N

N∑
i=1

(φ̂i −φ), and RMSE(φ̂)=
√√√√ 1

N

N∑
i=1

(φ̂i −φ)2.

To locate the desired estimates for the Non-Bayesian process, we employed the Newton-Raphson algorithm.
With the Bayesian approach, BEs are generated while accounting for prior knowledge using MCMC and the MH
algorithm. We made the gamma distribution hyper-parameters for the prior data equal to double the parameter
values. These values were filled in to provide the estimates we were looking for. The maximum likelihood
estimates consider initial guess values by using the MH method. To acquire the Bayes estimates under SEL,
LINEX at v =−1.5,1.5, and the GEL at τ=−0.5,0.5, we finally eliminate 2000 burn-in samples from the overall
10000 samples produced from the posterior density. We calculate the bias and RMSE for each strategy. For the
MCMC method, there are two types of graphs: marginal posterior and cumulative sum plots for lambda and
theta. The MCMC is a reliable method that, after a 5,000 burn-in from a 10,000 sample draw, meets stability
and convergences.

12

5.1 Credible intervals for Bayes estimates
A 100(1−γ)% credible intervals for the parameters φ= (θ, c) under the loss functions discussed are

φ̂BESEL ±Z γ

2

√
var(φ̂BESEL ); φ̂BELINEX ±Z γ

2

√
var(φ̂BELINEX ); φ̂BEGEL ±Z γ

2

√
var(φ̂BEGEL ) (56)

where Z γ

2
is distributed according to percentile standard normal with right-tailed probability.

6 Simulation Study
In this section, we simulate data for the PXSD to show how good each of the non-Bayesian estimation methods
is. First, 1000 data points are generated from the PXSD by considering the initial parameter values as

• θ = 0.50 and c = 2.0

• θ = 0.5 and c = 1.5

and sample sizes n = 50,100,150,200. For each estimate φ̂ = (θ̂, ĉ), the Bias and Root Mean Squared Error
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Table 1: Average estimated Biases and RMSEs of various estimation techniques for the PXSD for various sample
sizes n and various parameter values (θ = 0.50, c = 2.0).

Method
n = 50 n = 100 n = 150 n = 200

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML
θ 0.06664 0.00457 0.06696 0.00454 0.06664 0.00448 0.06625 0.00442
c 0.00428 0.01785 0.00964 0.00910 0.01557 0.00620 0.01372 0.00417

MPS
θ 0.01664 0.00429 0.00693 0.00202 0.00511 0.00136 0.00537 0.00102
c 0.06944 0.03696 0.03898 0.01642 0.03182 0.01133 0.02614 0.00850

LE
θ 0.26430 0.08995 0.25255 0.07913 0.24507 0.07236 0.24013 0.06896
c 0.00780 0.03760 0.00462 0.01817 0.00535 0.01315 0.00023 0.00867

WLS
θ 0.00157 0.00440 0.00290 0.00211 0.00222 0.00142 0.00068 0.00103
c 0.01077 0.04340 0.01158 0.01857 0.00632 0.01237 0.00594 0.00950

CVM
θ 0.00449 0.00497 0.00568 0.00232 0.00380 0.00156 0.00168 0.00114
c 0.04968 0.05940 0.02835 0.02413 0.01614 0.01604 0.01241 0.01234

AD
θ 0.00092 0.00431 0.00269 0.00208 0.00199 0.00141 0.00048 0.00103
c 0.01493 0.03982 0.01124 0.01780 0.00539 0.01206 0.00513 0.00929

RTAD
θ 0.00102 0.00509 0.00444 0.00239 0.00325 0.00173 0.00113 0.00120
c 0.02326 0.04608 0.01832 0.02028 0.01039 0.01423 0.00768 0.01020

BESEL
θ 0.07134 0.00537 0.07485 0.00569 0.07596 0.00582 0.07653 0.00589
c 0.14448 0.03689 0.15458 0.03131 0.15816 0.02954 0.15999 0.02885

BELinex1
θ 0.07078 0.00529 0.07456 0.00565 0.07577 0.00579 0.07638 0.00587
c 0.15135 0.03907 0.15811 0.03245 0.16054 0.03031 0.16178 0.02944

BELinex2
θ 0.07189 0.00544 0.07514 0.00573 0.07616 0.00585 0.07668 0.00591
c 0.13762 0.03481 0.15104 0.03019 0.15578 0.02878 0.15820 0.02828

BEGEL1
θ 0.07263 0.00555 0.07552 0.00579 0.07642 0.00589 0.07688 0.00594
c 0.14127 0.03595 0.15293 0.03080 0.15706 0.02919 0.15916 0.02859

BEGEL2
θ 0.07521 0.00593 0.07688 0.00600 0.07734 0.00603 0.07757 0.00605
c 0.13483 0.03414 0.14964 0.02979 0.15485 0.02849 0.15750 0.02806
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Table 1: Average estimated Biases and RMSEs of various estimation techniques for the PXSD for various sample sizes n and 
various parameter values (θ = 0.50, c = 2.0).
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Table 2: Average estimated Biases and RMSEs of various estimation techniques for the PXSD for various sample
sizes n and various parameter values (θ = 0.50, c = 1.5).

Method
n = 50 n = 100 n = 150 n = 200

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ML
θ 0.06448 0.00430 0.06444 0.00422 0.06416 0.00417 0.06375 0.00410
c 0.00097 0.01090 0.01164 0.00535 0.01404 0.00350 0.01600 0.00275

MPS
θ 0.01650 0.00442 0.00747 0.00218 0.00488 0.00149 0.00581 0.00102
c 0.05123 0.02107 0.03084 0.00952 0.02155 0.00654 0.02240 0.00479

LS
θ 0.18492 0.04498 0.17521 0.03810 0.16747 0.03543 0.16663 0.03427
c 0.00357 0.02235 0.00385 0.01072 0.00190 0.00744 0.00224 0.00510

WLS
θ 0.00140 0.00453 0.00226 0.00220 0.00269 0.00153 0.00021 0.00104
c 0.00732 0.02466 0.00684 0.01064 0.00872 0.00756 0.00094 0.00532

CVM
θ 0.00494 0.00499 0.00519 0.00238 0.00435 0.00166 0.00131 0.00114
c 0.03507 0.03230 0.01944 0.01373 0.01637 0.00986 0.00567 0.00683

AD
θ 0.00074 0.00442 0.00227 0.00217 0.00245 0.00151 0.00002 0.00104
c 0.01042 0.02252 0.00713 0.01013 0.00786 0.00731 0.00017 0.00523

RTAD
θ 0.00350 0.00507 0.00421 0.00244 0.00336 0.00173 0.00114 0.00119
c 0.02340 0.02673 0.01284 0.01110 0.01053 0.00796 0.00351 0.00573

BESEL
θ 0.07132 0.00539 0.07410 0.00559 0.07489 0.00566 0.07536 0.00572
c 0.11380 0.02196 0.11779 0.01800 0.11917 0.01671 0.11998 0.01621

BELinex1
θ 0.07075 0.00531 0.07380 0.00554 0.07469 0.00563 0.07521 0.00569
c 0.11778 0.02295 0.11983 0.01850 0.12055 0.01704 0.12101 0.01646

BELinex2
θ 0.07188 0.00547 0.07439 0.00563 0.07509 0.00569 0.07551 0.00574
c 0.10982 0.02101 0.11575 0.01751 0.11779 0.01637 0.11894 0.01596

BEGEL1
θ 0.07264 0.00557 0.07479 0.00569 0.07536 0.00573 0.07572 0.00577
c 0.11132 0.02139 0.11652 0.01770 0.11832 0.01650 0.11934 0.01605

BEGEL2
θ 0.07528 0.00596 0.07617 0.00590 0.07631 0.00588 0.07643 0.00588
c 0.10636 0.02029 0.11399 0.01711 0.11661 0.01610 0.11806 0.01575
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Table 2: Average estimated Biases and RMSEs of various estimation techniques for the PXSD for various sample sizes n and 
various parameter values (θ = 0.50, c = 1.5).
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Table 3: Confidence Intervals for MLEs and Credible Intervals for the Bayesian Estimates using BESEL, BELinex1, BELinex2, BEGEL1 & BEGEL2

Initial
Value

lower
ML

Upper
ML

Lower
BESEL

Upper
BESEL

Lower
BELinex1

Upper
BELinex1

Lower
BELinex2

Upper

BELinex2

Lower
BEGEL1

Upper
BEGEL1

Lower
BEGEL2

Upper
BEGEL2

θ = 0.5 0.39261 0.46001 0.06740 0.40576 0.44223 0.03648 0.40943 0.43689 0.02746 0.41265 0.43464 0.02199
c = 2.0 1.87941 2.36974 0.49033 1.98911 2.32258 0.33348 2.02758 2.29585 0.26827 2.04376 2.26795 0.22419

θ = 0.5 0.39267 0.46269 0.07002 0.40566 0.44419 0.03853 0.40996 0.43898 0.02902 0.41315 0.43648 0.02333
c = 1.5 1.41986 1.79077 0.37091 1.49454 1.74489 0.25035 1.52351 1.72418 0.20067 1.54256 1.71013 0.16757
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The simulation study’s Tables (1-2) allow for the following deductions.
• The results of Tables (1-2) show the stability of the PXSD because the Bias and RMSE for the parameters of the PXSD are relatively 
small.
• As the sample size increases, we occasionally observe a decrease in the Bias and RMSE for all estimations.
• This indicates that using a variety of estimation techniques yields reliable Bias and RMSE results for big sample sizes.
• The WLS estimation method offers better metrics than the ML, MPS, LS, CVM, AD, and RTAD approaches.
• All estimators’ Bias and RMSE values decrease as sample size rises, indicating improved model parameter estimation accuracy.
• All sample sizes have a positive estimators’ bias.
• From Tables (1-2), we noted that the WLS, LS, CVM, AD, RTAD, ML, and Bayesian methods respectively, give smaller values for 
accurate Bias and RMSE findings for large sample sizes.

7 Applications
The first data consists of thirty successive values of March precipitation (in inches) in Minneapolis/St Paul from Hinkley (1977) and 
studied by EL-Helbawy, AL-Dayian, and Abd AL-Fattah (2020).
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• All sample sizes have a positive estimators’ bias.
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7 Applications
The first data consists of thirty successive values of March precipitation (in inches) in Minneapolis/St Paul
from Hinkley (1977) and studied by EL-Helbawy, AL-Dayian, and Abd AL-Fattah (2020).

Table 4: Thirty successive values of March precipitation (in inches) in Minneapolis/St Paul

0.77 1.74 0.81 1.20 1.95 1.2 0.47 1.43 3.37 2.2
3.0 3.09 1.51 2.1 0.52 1.62 1.31 0.32 0.59 0.81

2.81 1.87 1.18 1.35 4.75 2.48 0.96 1.89 0.9 2.05

Table 5: Goodness of fit measures and performance indices for data I

Dist. NLL CVM AD AIC CAIC BIC HQIC P-value
PXSD 43.04 0.0172 0.1347 90.0861 90.5306 92.8885 90.9826 0.718

PP 44.46 0.1960 1.1618 92.9191 93.3635 95.7215 93.8156 0.5807
Shanker 42.99 0.0144 0.1126 87.9748 88.1176 89.3760 88.4230 0.3216
TPRD 40.51 0.0281 0.2275 85.0114 85.4558 87.8137 85.9079 0.8170

Lindley 43.14 0.0144 0.1123 88.2875 88.4303 89.6886 88.7357 0.2384
xgamma 44.57 0.0189 0.1446 91.1471 91.2899 92.5483 91.5953 0.1021

The competing distribution fitted on the data sets are Power Prakaamy distribution by Shukla and Rama
Shanker (2020), Shanker distribution by Shanker (2015), two-parameter Rani distribution by Al-Omari, Aidi,
and Seddik-Ameur (2021), Lindley distribution by Lindley (1958) and Xgamma distribution by Sen, Maiti, and
Chandra (2016). The following statistics were computed for the model performance Negative Log-Likelihood
(NLL), cramér von Misses (CVM), Anderson-Darling (AD), Akaike Information Criterion (AIC), conditional
AIC (cAIC), Bayesian Information Criterion (BIC), and the Hannan-Quinn information criterion (HQIC). The
Kolmogorov-Smirnov statistic p-value is used as a model. adequacy measure.

16

The simulation study’s Tables (1-2) allow for the following deductions.

• The results of Tables (1-2) show the stability of the PXSD because the Bias and RMSE for the parameters
of the PXSD are relatively small.

• As the sample size increases, we occasionally observe a decrease in the Bias and RMSE for all estimations.

• This indicates that using a variety of estimation techniques yields reliable Bias and RMSE results for big
sample sizes.

• The WLS estimation method offers better metrics than the ML, MPS, LS, CVM, AD, and RTAD ap-
proaches.

• All estimators’ Bias and RMSE values decrease as sample size rises, indicating improved model parameter
estimation accuracy.

• All sample sizes have a positive estimators’ bias.

• From Tables (1-2), we noted that the WLS, LS, CVM, AD, RTAD, ML, and Bayesian methods respectively,
give smaller values for accurate Bias and RMSE findings for large sample sizes.

7 Applications
The first data consists of thirty successive values of March precipitation (in inches) in Minneapolis/St Paul
from Hinkley (1977) and studied by EL-Helbawy, AL-Dayian, and Abd AL-Fattah (2020).

Table 4: Thirty successive values of March precipitation (in inches) in Minneapolis/St Paul

0.77 1.74 0.81 1.20 1.95 1.2 0.47 1.43 3.37 2.2
3.0 3.09 1.51 2.1 0.52 1.62 1.31 0.32 0.59 0.81

2.81 1.87 1.18 1.35 4.75 2.48 0.96 1.89 0.9 2.05

Table 5: Goodness of fit measures and performance indices for data I

Dist. NLL CVM AD AIC CAIC BIC HQIC P-value
PXSD 43.04 0.0172 0.1347 90.0861 90.5306 92.8885 90.9826 0.718

PP 44.46 0.1960 1.1618 92.9191 93.3635 95.7215 93.8156 0.5807
Shanker 42.99 0.0144 0.1126 87.9748 88.1176 89.3760 88.4230 0.3216
TPRD 40.51 0.0281 0.2275 85.0114 85.4558 87.8137 85.9079 0.8170

Lindley 43.14 0.0144 0.1123 88.2875 88.4303 89.6886 88.7357 0.2384
xgamma 44.57 0.0189 0.1446 91.1471 91.2899 92.5483 91.5953 0.1021

The competing distribution fitted on the data sets are Power Prakaamy distribution by Shukla and Rama
Shanker (2020), Shanker distribution by Shanker (2015), two-parameter Rani distribution by Al-Omari, Aidi,
and Seddik-Ameur (2021), Lindley distribution by Lindley (1958) and Xgamma distribution by Sen, Maiti, and
Chandra (2016). The following statistics were computed for the model performance Negative Log-Likelihood
(NLL), cramér von Misses (CVM), Anderson-Darling (AD), Akaike Information Criterion (AIC), conditional
AIC (cAIC), Bayesian Information Criterion (BIC), and the Hannan-Quinn information criterion (HQIC). The
Kolmogorov-Smirnov statistic p-value is used as a model. adequacy measure.

16

Table 4: Thirty successive values of March precipitation (in inches) in Minneapolis/St Paul

Table 5: Goodness of fit measures and performance indices for data I

The competing distribution fitted on the data sets are Power Prakaamy distribution by Shukla and Rama Shanker (2020), Shanker 
distribution by Shanker (2015), two-parameter Rani distribution by Al-Omari, Aidi, and Seddik-Ameur (2021), Lindley distribution 
by Lindley (1958) and Xgamma distribution by Sen, Maiti, and Chandra (2016). The following statistics were computed for the model 
performance Negative Log-Likelihood (NLL), cramér von Misses (CVM), Anderson-Darling (AD), Akaike Information Criterion 
(AIC), conditional AIC (cAIC), Bayesian Information Criterion (BIC), and the Hannan-Quinn information criterion (HQIC). The
Kolmogorov-Smirnov statistic p-value is used as a model. adequacy measure.

Table 3: Confidence Intervals for MLEs and Credible Intervals for the Bayesian Estimates using BESEL, BELinex1, BELinex2, BEGEL1 
& BEGEL2



Volume 2 | Issue 1 | 15Eng OA, 2024

Table 6: PXSD Parameter Estimates for data I using various methods

Method θ c

ML
Estimate 0.70249 1.25642
Std. Error 0.10102 0.17077

MPS
Estimate 0.62434 1.43630
Std. Error 0.09246 0.17530

LS
Estimate 0.61904 1.54419
Std. Error 0.26108 1.04752

WLS
Estimate 0.61255 1.54734
Std. Error 0.01812 0.06550

CVM
Estimate 0.60655 1.61478
Std. Error 0.26265 1.08422

AD
Estimate 0.60444 1.58580
Std. Error 0.10559 0.34951

RTAD
Estimate 0.62851 1.50989
Std. Error 0.18324 0.49830

BE
Estimate 0.67927 1.31921
Std. Error 0.08313 0.05845

The WLS method has the least standard error in estimating θ while BE has the smallest standard error in
estimating c. Relatively, WLS and the BE are the best methods for estimating the parameters of PXSD using
the first data.

0 2000 4000 6000 8000 10000

0
1

2
3

Iterations

..

Figure 13: MCMC trace for θ using data I
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Table 6: PXSD Parameter Estimates for data I using various methods

The WLS method has the least standard error in estimating θ while BE has the smallest standard error in estimating c. Relatively, WLS 
and the BE are the best methods for estimating the parameters of PXSD using the first data.
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Figure 17: Density, CDF, Survival function and TTT plots for data I

From figure 17, it is clear that the model approximates the empirical lines. This reflects better goodness of fit in
the first data scenario.
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likelihood for data I
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Figure 19: profile log-likelihood
for θ using data I
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Figure 20: profile log-likelihood
for c using data I

The second application is on the total factor productivity (TFP) growth agricultural production for thirty-seven
African countries from 2001-2010 studied by MOAKOFİ and OLUYEDE (2023).
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From figure 17, it is clear that the model approximates the empirical lines. This reflects better goodness of fit in
the first data scenario.
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The second application is on the total factor productivity (TFP) growth agricultural production for thirty-seven
African countries from 2001-2010 studied by MOAKOFİ and OLUYEDE (2023).
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Figure 17: Density, CDF, Survival function and TTT plots for data I

From figure 17, it is clear that the model approximates the empirical lines. This reflects better goodness of fit in the first data scenario.

The second application is on the total factor productivity (TFP) growth agricultural production for thirty-seven African countries from 
2001-2010 studied by MOAKOF˙I and OLUYEDE (2023).
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Table 7: Total factor productivity (TFP) growth agricultural production for thirty-seven African countries from
2001-2010

4.6 0.9 1.8 1.4 0.2 3.9 1.8 0.8 2.0 0.8 1.6 0.8 2.0
1.6 0.5 0.1 2.5 2.4 0.6 1.1 0.7 1.7 1.0 1.7 2.5 3.5
0.3 0.9 2.3 0.5 1.5 5.1 0.2 1.5 3.3 1.4 3.3

Table 8: Goodness of fit measures and performance indices for data II

Dist. NLL CVM AD AIC CAIC BIC HQIC P-value
PXSD 55.15 0.0291 0.1767 114.6511 114.2982 117.52 115.434 0.8044

PP 58.11 0.1992 1.1144 120.2268 120.5798 123.4486 121.3627 0.4171
Shanker 54.75 0.0290 0.1790 111.4963 111.6105 113.1072 112.0642 0.7229
TPRD 56.04 0.1079 0.6715 116.0767 116.4296 119.2985 117.2125 0.7032

Lindley 54.85 0.0291 0.1795 111.6938 111.8081 113.3047 112.2617 0.6352
xgamma 55.69 0.0318 0.1961 113.3826 113.4969 114.9936 113.9506 0.4620

In the second data scenario, the metrics of model fitness (K-S p-value) in table 8 show that the proposed PXSD
better fits the data more than the competing distributions.

Table 9: PXSD Parameter estimates for data II using various methods

Methods θ c

ML
Estimate 0.74451 1.12480
Std. Error 0.09509 0.13638

MPS
Estimate 0.72252 1.14087
Std. Error 0.09229 0.13578

LS
Estimate 0.69683 1.24184
Std. Error 0.24426 0.83060

WLS
Estimate 0.70173 1.21176
Std. Error 0.01608 0.04497

CVM
Estimate 0.68758 1.29276
Std. Error 0.24625 0.85999

AD
Estimate 0.69182 1.25862
Std. Error 0.10020 0.26488

RTAD
Estimate 0.70043 1.23696
Std. Error 0.17152 0.38419

BE
Estimate 0.68963 1.21984
Std. Error 0.07036 0.03423

From table 9, it is also obvious that in estimating θ, the WLS has the least standard error for data II while the
BE has the least for estimating the parameter c.
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better fits the data more than the competing distributions.

Table 9: PXSD Parameter estimates for data II using various methods

Methods θ c

ML
Estimate 0.74451 1.12480
Std. Error 0.09509 0.13638

MPS
Estimate 0.72252 1.14087
Std. Error 0.09229 0.13578

LS
Estimate 0.69683 1.24184
Std. Error 0.24426 0.83060

WLS
Estimate 0.70173 1.21176
Std. Error 0.01608 0.04497

CVM
Estimate 0.68758 1.29276
Std. Error 0.24625 0.85999

AD
Estimate 0.69182 1.25862
Std. Error 0.10020 0.26488

RTAD
Estimate 0.70043 1.23696
Std. Error 0.17152 0.38419

BE
Estimate 0.68963 1.21984
Std. Error 0.07036 0.03423

From table 9, it is also obvious that in estimating θ, the WLS has the least standard error for data II while the
BE has the least for estimating the parameter c.

19

Table 7: Total factor productivity (TFP) growth agricultural production for thirty-seven African countries from
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Figure 21: MCMC trace for θ using data II
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Figure 25: Density, CDF, Survival function and TTT plots for data II

The estimations clearly show that all of the generated posteriors are symmetric with respect to the theoretical
posterior density functions. Figures 13 and 14 show the trace plots of the posterior distributions of the param-
eters to track the convergence of the MCMC outputs. This figure shows how well the MCMC process converges.
The estimations clearly show that all of the generated posteriors are symmetric with respect to the theoretical
posterior density functions. Using the log-likelihood function in the two data scenarios, the contour plots in
figures 18 and 26 display the relationship between the two parameters of the PXSD model, and indicated in the

20
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The estimations clearly show that all of the generated posteriors are symmetric with respect to the theoretical posterior density functions. 
Figures 13 and 14 show the trace plots of the posterior distributions of the parameters to track the convergence of the MCMC outputs. 
This figure shows how well the MCMC process converges. The estimations clearly show that all of the generated posteriors are symmetric 
with respect to the theoretical posterior density functions. Using the log-likelihood function in the two data scenarios, the contour plots in
figures 18 and 26 display the relationship between the two parameters of the PXSD model, and indicated in the two plots are the 
optimum points of the relationship.
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Figure 27: profile log-likelihood
for θ using data II
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for c using data II

The profile log-likelihood plots in figures 19, 20, 27 and 28 support the exact estimates obtained for MLE in
both data instances reflecting consistency.

8 Concluding Remarks
We have shown how well the proposed power XShanker distribution can model lifetime data. Essentially,
this proposition is one among many Lindley class of distributions that possesses closed-form quantile func-
tions thereby making it diverse in application and particularly aiding data generation. In addition, we showed
the estimation of the parameters of the proposed model using the Bayesian method under squared error loss,
linear-exponential loss, and generalized entropy loss functions. Illustrations of the Bayesian method potential
are evident in the applications on precipitation and total factor productivity data sets. The Bayesian estimation
procedure is better than the competing distributions in estimating the shape parameter of the model c.
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