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Abstract
Studying human postural structure is one of the challenging issues among scholars and physicians. The spine is 
known as the central axis of the body, and due to various genetic and environmental reasons, it could suffer from 
deformities leading to physical dysfunction and correspondingly affecting people's quality of life. Radiography 
is the most common method for detecting these deformities; however, it frequently exposes the patient to X-rays 
and ionization and consequently increases cancer risk in patients particularly children and pregnant women.The 
purpose of this research is to provide an entirely safe and non-invasive method to examine the spiral structure 
and its deformities. Hence, it is attempted to find the exact location of anatomical landmarks on the human back 
surface, which provides useful and functional information about the status of the human postural structure to 
the physician.
 
In this study, using Microsoft Kinect sensor, the depth images from the human back surface of 105 people were 
recorded and, our proposed approach – a deep convolution neural network- was used as a model to estimate the 
locations of anatomical landmarks. In network architecture, two learning processes, including landmark position 
and affinity between the two associated landmarks, are successively performed in two separate branches. This is 
a bottom-up approach; thus, the runtime complexity is considerably reduced, and then the resulting anatomical 
points are evaluated concerning manual landmarks marked by the operator as the benchmark. Our results 
showed 86.9% of PDJ and 80% of PCK that demonstrate more effectiveness compared to other methods.
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1-Introduction
Spinal deformities have always been one of the most critical is-
sues in the medical community; the study has been dramatically 
increased over the past decade. Due to its particular complexi-
ties, this disease is a different and serious one and affects various 
age groups [1]. This disorder reduces the patients' quality of life 
and is associated with pain and fatigue. Spinal deformities in-
clude Scoliosis, sagittal plane misalignment, kyphosis, slipping, 
and vertebrae [2]. Various factors can cause these deformities, 
including degenerative changes in the intervertebral discs, trau-
ma, tumors, and infections, the occurrence of which in adult-
hood might be due to the development of deformities and disor-
ders from childhood [3]. This disease's primary issue is its early 
diagnosis to prevent significant clinical consequences because 

spinal alignment plays a critical role in protecting the nervous 
system and skeletal stability and maintaining the natural body 
alignment [1], [4]–[7].
 
Various invasive and non-invasive measurement systems have 
assessed these disorders over the decades. Radiography is one of 
the essential invasive diagnostic methods used for clinical pur-
poses and is dangerous for many patients, especially adolescents, 
who are frequently exposed to X-rays, and its consequences may 
occur in the upcoming decades. Studies have shown that adoles-
cent girls with Scoliosis are at serious risk of breast cancer [2], 
[3]. This could also cause breaking intermolecular forces and 
consequently damage deoxyribonucleic acid (DNA). Therefore, 
individuals during reproductive ages are prone to transfer this 
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damaged DNA to the child via mutation. However, this phenom-
enon has not been proved yet [8]. Therefore, such risks have dra-
matically increased the necessity of using non-invasive methods 
for describing the spinal deformities [2]. 

Surface topography is the study of the 3D human back shape. 
This technique is an alternative for radiography to reduce the 
patient's exposure to ionizing radiation during the treatment pe-
riod. One of these systems' functions that separates them from 
other technologies is putting anatomical landmarks on specific 
points of the human back surface, such as the posterior superi-
or iliac spine (PSIS), 7th Cervical Vertebra(C7). Research has 
shown that this system can detect landmarks more accurately 
than an experienced physician [3]. These landmarks are essential 
for advanced topographic analysis because they are regarded as 
a fixed coordinate system and an axis for the patient [4]. 

In this study, a new heuristic approach automatically detects 
anatomical landmarks of the human back surface. The system 
includes a Kinect depth sensor [9]. The resulting information 
is a grayscale image of the human body surface that contains 
information about the exact location of critical points. Given that 
recent approaches based on deep learning have led to signifi-
cant achievements in various machine vision studies [10], thus, 
in this study, the problem can be examined using deep learning 
methods and convolutional neural networks (CNNs). It should 
be noted that the methods are utilized to detect the critical points 
of the body in the human pose estimation because restoring the 
human condition means locating the critical points of the body. 
Although this research aims not to estimate the body pose, the 
anatomical landmark points have a specific description of it. 

Deep learning methods also pose new challenges, the first of 
which is the lack of training images due to the limitations of 
recording images from countless people. To compensate for this 
problem, the data augmentation method was utilized. The sec-
ond challenge was to train an optimal model to understand and 
describe the human back surface features from depth data. Train-
ing a Neck-network from scratch is not a good idea, especially 
when training it by a small dataset. We used a pre-trained mod-
el as a feature descriptor for other parts of our model to cover 
this. Therefore, the transfer-learning technique was applied in 
network architecture by using ResNet-152. In this research, the 
network was separately implemented with three feature descrip-
tors, including ResNet-50[11], VGG-19, ResNet-152[12], and 
its performance was compared in all three models. We predict 
that Resnet-152 could be the best choice to describe the depth 
data features. 

2-Related Work
2-1-Landmark Detection without Deep Learning
The nature of the data we used plays a significant role in se-
lecting the appropriate method for the automatic analysis of the 
human back shape. These are application-dependent methods; 
thus, any methods that have been made so far must be consis-
tent with the data used [1]. In this research, the depth data were 
used and approximated as (x,y), indicating each landmark's co-
ordinates on the image. It should be noted that there are several 
methods based on 3D segmentation. L. Soler et al. [13] used 

this method to analyze anatomical structures of 3D volumetric 
data obtained from CT. This method is not useful for 2D data, in 
which the structures are placed on a surface. Some other meth-
ods attempt to describe the anatomical shape feature achieved 
by marking landmarks on the body surface. For example, M. 
A. Styner et al. [14] used the spherical harmonics (SPHARM) 
method, which provides a significant representation of the sur-
face for shape analysis. This method only works on data with 
spherical topology and could not support the data used in this 
research. Another method is the active shape model (ASM) [15], 
a statistical model-based feature matching method used to detect 
the object's shape in an image using the point distribution model 
for statistical matching. In this method, the shapes are described 
by a set of points; these points are allowed to deform following 
the original deformation. This method was initially developed 
for working with 2D images having the desired embossing. The 
point distribution model (PDM) can be easily generalized to be 
consistent with the 3D nature of input data by adding third co-
ordinates during analysis. This is valid for volumetric data, in 
which the model can be entirely deformed in all three dimen-
sions. This method does not work appropriately for detecting 
deformities in the body's back structure because a small percent-
age of the total population has a deformation problem on the 
human body surface. Thus, in the ASM method, a very coherent 
training set that does not contain all changes cannot find new 
shapes that are valid in realtime. Therefore, these changes can 
be unintentionally neglected during modeling by principle com-
ponent analysis (PCA) [1], [16]. In short, although the described 
approaches provide an invaluable insight into data analysis, they 
do not correctly solve the problem due to the above limitations. 

2-2-Landmark Detection with Deep Learning
CNNs have achieved advanced results in various fields due to 
being resistant and having high learning capacity [7]. The hu-
man pose estimation aims to approximate the location of the hu-
man joints in images. In other words, it is a process that involves 
finding key points such as arms and shoulders and then com-
bines them in a model [17]. In this section, we mainly discuss 
deep learning methods to approximate these points. In general, 
based on the management of input images, the deep learning 
methods can be classified into holistic- and part-based methods 
[17]. DeepPose is an example of a holistic-based approach that 
was proposed by Toshev et al. [18]. This method is considered 
the first approach used in deep learning to estimate the human 
pose and is formulated as a regression problem, and the idea of 
this method in correcting and improving the estimations is to use 
the cascade of regressors [6], [19], [20]. This model has made 
progress in several challenging datasets and attracted research-
ers' attention to CNNs. The holistic-based models are not very 
accurate because it is challenging to learn the regression of point 
vectors directly from images. In the part-based method, the body 
parts are approximated and combined by a graphical model [17]. 
Thomson et al. [21] used a combination of CNNs and graphi-
cal models to estimate components. The graphical models often 
learn the spatial relationships and distances between the points. 
In this method, the network output is heatmap points, instead 
of continuous regression, estimating a landmark's probability in 
each pixel. The results of this method are very successful and 
lead future works towards heatmaps. This method's only draw-
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back is the lack of body structure modeling and not detecting the 
point-to-point connection. Establishing this affinity is very im-
portant from the viewpoint of the detected vital points because 
the formation of this affinity leads to the ease of displaying the 
key points. Therefore, this problem was solved by the following 
methods. Wei et al. [22] proposed a completely different method 
to estimate multi-stage CNN-based human pose, and a part of 
the body is estimated at each stage. Therefore, fewer errors could 
occur in landmark detection. This network uses an intermediate 
layer after each stage due to errors in dealing with decreasing 
slope during training. Carreira et al. [23] proposed an algorithm 
known as duplicate error feedback. Using predictive error feed-
back, the designed model corrects its initial prediction several 
times. This method can be regarded as estimating an approx-
imate mode to estimate a more accurate mode. Cao et al.[24] 
extracted features from the first ten layers of VGG-19[11]. Then, 
these features were processed using a three-output CNN with 
two input sources, and one output predicts the location of critical 
points. One output retains the vector field maps, and the third 
output retains the initial features. This method is performed it-
eratively. Multi-stage CNN combines the processing results of 
each of CNN's outputs, which is used to obtain rich information 
from images to improve the function [24]–[27]. Hence, given 
that this algorithm is the most advanced method in this field and 
has multiple outputs, this method can detect the desired land-
marks for medical purposes. On the other side, having three 
outputs is one of the advantages of this method. In detecting 
anatomical landmarks on the human back surface, by determin-
ing affinity between two pairs of the related points, a view of the 
human spine can also be predicted. Despite all the advantages 
of this method, after testing and implementing the network pro-
posed by Cao et al. [24], the result showed that VGG-19 [11] is 
not appropriate as a feature descriptor for our depth data, and no 
good output is obtained. Thus, in this paper, the structure of the 
feature descriptor was changed and Resnet-152 was employed. 
The results show that the used algorithm achieved the best re-
sults even despite the lack of training data. In the following, we 
will elaborate on the algorithm operation. In Section 3, we indi-
cate show how to choose the anatomical structure and network 
architecture. Section 4 describes how to collect data and Section 
5 explains the preprocessing and data enhancement methods. 
Section 6 shows the evaluation criteria and Section 7 describes 
the network training along with the network parameters. We will 
compare the results of applying the algorithm to the VGG-19, 
Resnet-50 and Resnet-152 networks, and finally both discussion 
and conclusion are provided in Section 8.

3-Methodology
This approach's primary purpose is the automatic landmark de-
tection of the human body surface and the affinity to evaluate the 
spinal deformities and ease of the diagnostic process. As men-
tioned, the restriction of traditional methods and shared goals 
with human pose estimation provides the context to study the 
latest methods in the literature. Thus, in this research, human 
pose estimation's best architecture is inspired for medical pur-
poses. In this section, first, choosing the key points related to 
spinal displacements, and then, the deep convolutional network 
architecture used for the stated purposes is described in detail.
 

3-1- Selection of Anatomical Structures
A topographical assessment of the human back surface visually 
provides the physician's postural structure's required informa-
tion. However, this requires determining a series of variables 
and indicators to detect disorders and deformities of the human 
back surface using these indicators. Two indicators that have 
been widely used as determinants to this date are called poste-
rior trunk symmetry index [28] and deformity in the axial plane 
index [29]. The location of the landmarks is optionally defined. 
A common feature of these structures is that their position is in-
fluenced by the shape of the spine that can facilitate the detection 
of deformities using topographic data [1]. 

This study is inspired by the list of landmarks in both deformity 
in the axial plane index (DAPI) and posterior trunk symmetry 
index (POTSI) indicators, and concerning the definition of the 
problem, 10 points are shown in figure 1 were selected as an-
atomical structures (Table 1). These structures contain a small 
area and no single points. This means that these points' neigh-
borhood can be considered an anatomical landmark, but the pa-
rameters used to evaluate the deformities should consider single 
positions as an input. The output of the described algorithm must 
also be single-point, each point of which indicates the position 
of an anatomical structure [1], [2].

Figure 1: Illustration of 10 anatomical landmarks.

Table1: List of single points.
Anatomical Landmarks
1 Vertebra Prominens
2 Natal Cleft
3 L Shoulder
4 R Shoulder
5 L Scapulae
6 R Scapulae
7 L Waist Line
8 R Waist Line
9 LPSIS
10 RPSIS

3-2- Model Architecture
The proposed network architecture consists of two parts. 1. 
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Table1: List of single points. 

Anatomical Landmarks 

1 Vertebra Prominens 

2 Natal Cleft 

3 L Shoulder 

4 R Shoulder 

5 L Scapulae 

6 R Scapulae 

7 L Waist Line 

8 R Waist Line 

9 LPSIS 

10 RPSIS 
Figure 1: Illustration of 10 

anatomical landmarks. 
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Feature extraction, 2. Prediction of landmark position and the 
affinity. In the present research, the data's characteristics have 
caused the complexity of feature extraction because understand-
ing the depth data features for medical purposes is highly sen-
sitive. Then, choosing an appropriate feature extractor plays a 
determinant role in the network's accuracy and performance. In 
this study, ResNet-152 [12] is selected as a feature descriptor. 
It is noteworthy to mention that to match the input image to the 
standard structure of the network ResNet-152, a stacked image 
of the input was created and applied to the network input. 

The output of this stage is fed to the n stage. As illustrated in 
figure 2, each stage is divided into two parts. The first branch is 
made of a deep convolutional network that produces a heatmap 
for each landmark and is defined as H= (H_1,….,H_J). The de-
sign of branch 2 is the same as branch 1, except that the network 
in this branch tends to predict the affinity between these points, 
which is known as landmark affinity field and is defined as L= 
(L_1,….,L_C). There is a vector for each joint between the two 
landmarks. Each pixel on the heatmap indicates the possibili-
ty of a specific key point. These two branches are considered a 
stage in this architecture, and as required, stage 7 is used in this 
work [24]. The network architecture is shown in figure 2.

Figure 2: Architecture of the two-branch multi-stage CNN.

4- Dataset Collection
In this study, data were collected by Microsoft's Kinect-v2 [9]. 
Fifty women and fifty-five men aged 19-35 years old were re-
cruited at Tabriz University of Medical Sciences, which resulted 
in 105 depth images of the human back surface. The participants 
were assumed to be healthy and have no history of Scoliosis. 
These people were asked to naturally stand with their backs to 
the camera so that the distance of feet from the vertical line was 
identical (See an example in figure 3). The Kinect sensor was 
located 1.5 m behind the participants. As shown in figure 3, the 
data entry process was as follows: at first, a marker was placed at 
point C7, and imaging was done without other landmarks. Then, 
the rest of the markers were embedded in the exact location, 
and the second image was recorded with landmarks. The images 
were saved as raw images in the size of 512×424. It is necessary 
to note that due to the presence of error sources in the Kinect 
sensor, we decided to limit the image conditions to a closed area 
far from direct light, and a 20-min delay was required to put the 
sensor in stable conditions [30]. The Institutional Review Board 
approved the protocol for research ethics and human subjects 
protection at Tabriz University of Medical Sciences. All partic-
ipants gave informed consent after the experimental procedures 
were explained to them.

Figure3: Example of captured images

5- Preprocess and Augmentation Pipeline
Given the characteristics of the Kinect sensor, the resulting depth 
images were very noisy [9]. Hence, it was necessary to apply a 
pre-processing stage to improve the quality of the depth image. 
Thus, if r were the depth image matrix, it would be removed 
with the thresholding method r>1.7m. Figure 4 shows the depth 
image before and after noise removal. 

(a) Raw image                            (b) Denoised image

Figure 4: Example of Raw image and Denoised image In the 
depth images, the range of pixels varied in different scenes. 
Meanwhile, the sensor error and movement of objects in the 
scene dynamically changed the minimum and maximum dis-
tance. Thus, it made feature extraction more difficult during 
convolutional operations. Therefore, in the training process of 
CNNs, the network was hardly converged. To solve this prob-
lem, the data was normalized through equation 1. Therefore, the 
data range was converted to a range of 0 and 1[31].

Figure 5: Example of Data Augmentation

In Equation 1, R is the input image matrix and R* is the post-nor-
malization raw image. 

The first step in using CNNs is to have an extensive dataset. In 
fact, these networks have provided a platform that needs a large 
volume of data to train the network without overfitting. If we 
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want to use deep learning for specific expertise, this need still 
exists. Compared with large datasets used in deep learning, such 
as COCO [32] and ImageNet [33], the dataset collected for such 
research, which requires precise detection and high sensitivity, 
is very small. Then, data augmentation [34] was used to solve 
the data shortage problem. We applied four transfer techniques 
to the right, left, top, and bottom of the dataset's images. Figure 
5 shows an example of the images. The final number of images 
of the dataset was 525.
 
6-Evaluation Metrics
In automatic landmark detection, two well-known criteria of 
PCK (i.e., the percentage of points that are correctly estimated) 
[35] and PDJ (i.e., the percentage of correctly detected points) 
[36] are widely used. First, PDJ is the percentage of points that 
are correctly detected. A point is detected correctly when the 
distance between the predicted location and real location is less 
than a coefficient of the upper body's diameter. The upper body's 
diameter is defined as the distance between the left shoulder and 
the right thigh. This coefficient is considered equal to 0.2. Sec-
ond, PCK is the percentage of points that are correctly estimated. 
A point is correctly estimated when the distance between the 
predicted location and real location is less than a threshold. This 
threshold limit can be considered equal to 50% of head length, 
less than 0.2 of upper body diameter, or equal to 150 mm.

7-Experiment and Results
7-1- Training Dataset Generation
After recording the data, the training dataset's labeling process 
should be performed immediately for network training [38-40]. 
As mentioned earlier, the network has a branch for learning 
the position and spatial coordinates of landmarks and another 
branch for finding affinity between the two related points. Thus, 
all the information relevant to the JSON file's training images 
was set in the defined format in the first step. This information 
included the saved image address, image size, spatial coordi-
nates of landmarks, and ID of each image, and the connection 
points. For example, "Landmarks" represents an image's land-
mark coordinates from a dataset written as (x, y) from 1 to 10 
in a row. "Links" also represents the number of both connection 
points within a bracket, e.g., points 9 and 10 are connected. 
 
"Landmarks :" 
[267,137,261,304,214,154,313,154,239,202,294,192,227,261,2
95,258,247,286,273,291].
"links" : {[[9,10],[7,8],[5,6],[3,4],[1,2]]},…]}

Using this information, heatmaps and vector field maps for each 
image are labeled for network training. In the next section, we 
will explain how to create them with the existing mathematical 
equations. 
 
7-2- Heatmap Generation
For this issue, a label is made for each landmark as groundtruth 
using the Gaussian distribution, the mean of which represents 
the location of landmarks in the image. Each heatmap indicates 
the position where the landmarks occur. These heatmaps are 
derived from the coordinates of the critical points stored in the 
JSON file.

Assume Pj=(cxj ,cyj) is the correct position of the jth landmark for 
the person in the image so that xj,yj ϵ R2. To make a heatmap for 
this landmark, it is necessary to define a neighborhood to the 
center of this point because it is determined that each heatmap 
does not contain only one point but also involves a small area, 
and then the value of the Gaussian function for P=(x,y) is calcu-
lated in this area. A heatmap for the jth landmark is shown with 
HjGT.

Then, the value of the Gaussian function in Pϵ R2 position for the 
jth landmark is defined as follows [14].

Equation 2 shows the 2D Gaussian function at the center of the 
correct landmark position. An example of a heatmap resulting 
from this method was illustrated in figure 6. 

Below, we indicate how to formulate and generate ground truth 
images for anatomical landmarks mathematically. As mentioned, 
this method is based on the Gaussian function. First, an affinity 
around cx,cy is defined, and the value of the Gaussian function 
corresponding to all x and y values in this affinity is computed. 
We also show how to generate groundtruth images for automatic 
landmarks 
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Figure 6: Example of Heatmaps

7-2- Landmark Affinity Fields Generation
Each of the defined joints holds a vector map that connects two 
different parts of the body and contains the position and direc-
tion information in the joints. In figure 7, a joint is shown be-
tween two landmarks. Assume that xj1 and xj2 are positions of 
the two related landmarks j1 and  j2 in the image. If point p is on 
the joint c, the value of Lc

GH (P) is a single vector; otherwise, a 
vector with zero value for all the other points [19]. 

Figure 7: Landmark Affinity Field 
A vector filed map L_c^GH in the image, points p is defined as 
follows [14]:

where v is a single vector in the direction of joints and is defined 
as follows.
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7-2- Landmark Affinity Fields Generation 

Each of the defined joints holds a vector map that connects two different parts of the body and 
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Figure 7: Landmark Affinity Field  

A vector filed map   
   in the image, points p is defined as follows [14]: 
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where v is a single vector in the direction of joints and is defined as follows: 
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Figure 8 shows an example of vector maps obtained by the above method. 

  

(c) [3,4] (b) [1,2] (a) Original image 

(f) [9,10] (e) [7,8] (d) [5,6] 

Figure 8: Example of vector map 
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Figure 8 shows an example of vector maps obtained by the above method.

7-3- Training Protocol
We trained the model on 400 images and used the rest of the im-
ages for network testing. The deep learning model is created in 
Python 3.6 and TensorFlow 1.4. To design an optimal model, the 
heatmaps and vector maps were trained simultaneously using a 
training process similar to the training process [19]. Our mod-
el's best performance was achieved with a batch size of 3 and a 
learning rate of 0.0001. It should be noted that maximum epochs 
were equal to 70, and the network was implemented on a system 
with Nvidia Tesla T4 and 12GB RAM. 
 
7-4- Training
Figure 1 showed that the image (424 x 512) is entirely import-
ed into the convolutional network Resnet-152. Transfer learning 
occurs in this part because the network extracts the features of 
the input image without supervision. The result is a set of feature 
maps F that are entered into each branch, and local features are 
obtained. In this stage, the layers are more meaningful because 
they are directly set with the training data label. 

Branch 1 predicts anatomical points, and Branch 2 can detect 
the affinity between two pairs of related points and show them 
as vector maps at the output. This part is significant since the de-
formities can be visually and generally found by drawing these 
affinities in the human back front structure, which requires a spe-
cialist to detect the affinity between joints with various spinal 
diseases. 

Assume that ρ1 and ϕ1 are the same CNNs. Then, the first branch 
produces a set of heatmaps H1=ρ1 (F) and the second branch 
produces a set of vector map L1=ϕ1 (F). In the next stages, both 
branches' predictions in the previous stage and features of main 
image F obtained from the descriptor are combined. 

Equations 5 and 6 show the predictions of branches 1 and 2 in 
step t, respectively [19].

To guide the network and correct predictions, two-loss functions 
are applied at the end of each step, where fH

t  and fL
t are used 

for branches 1 and 2, respectively. The specific cost function is 
assigned to each branch per step.

Loss functions in both branches in step t are defined as follows:

where Hj
GTis the ground truth of heatmap, Lc

GT is the ground 
truth of vector map, and W is a binary mask with W(P)=0. This 
binary mask made of ground truth is applied to prevent the re-

17 
 

 

 

7-3- Training Protocol 

We trained the model on 400 images and used the rest of the images for network testing. The deep 

learning model is created in Python 3.6 and TensorFlow 1.4. To design an optimal model, the 

heatmaps and vector maps were trained simultaneously using a training process similar to the training 

process [19]. Our model's best performance was achieved with a batch size of 3 and a learning rate of 

0.0001. It should be noted that maximum epochs were equal to 70, and the network was implemented 

on a system with Nvidia Tesla T4 and 12GB RAM.  

  

7-4- Training 

Figure 1 showed that the image (424 x 512) is entirely imported into the convolutional network 

Resnet-152. Transfer learning occurs in this part because the network extracts the features of the input 

image without supervision. The result is a set of feature maps F that are entered into each branch, and 

local features are obtained. In this stage, the layers are more meaningful because they are directly set 

with the training data label.  

Branch 1 predicts anatomical points, and Branch 2 can detect the affinity between two pairs of related 

points and show them as vector maps at the output. This part is significant since the deformities can 

be visually and generally found by drawing these affinities in the human back front structure, which 

requires a specialist to detect the affinity between joints with various spinal diseases.  

Assume that    and    are the same CNNs. Then, the first branch produces a set of heatmaps 

     ( ) and the second branch produces a set of vector map      ( ). In the next stages, both 

branches' predictions in the previous stage and features of main image F obtained from the descriptor 

are combined.  

Equations 5 and 6 show the predictions of branches 1 and 2 in step t, respectively [19]. 

  

      (           )      (5)  

      (           )      ( )  
 

18 
 

To guide the network and correct predictions, two-loss functions are applied at the end of each step, 

where     and      are used for branches 1 and 2, respectively. The specific cost function is assigned to 

each branch per step. 

Loss functions in both branches in step t are defined as follows: 

  

 

    ∑ ∑  ( ) ‖  
 ( )    

  ( )‖ 
 

 
 
    (7)  

    ∑ ∑  ( ) ‖  
 ( )    

  ( )‖ 
 

 
 
    (8) 

 

where   
  is the ground truth of heatmap,   

   is the ground truth of vector map, and W is a binary 

mask with  ( )   . This binary mask made of ground truth is applied to prevent the removal of 

correct predictions to the outputs to mask the points. P represents a pixel of the image. Equation 9 

shows the total cost function, which is a combination of the cost functions     and     . 
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8- Results  

8-1- Results on VGG-19 

First, we were required to design and implement a descriptor to comprehend and extract the general 

concepts and input distinguishing features. This becomes problematic because of having depth 

images with different visual content compared to the color images. Putting the model under training 

from scratch because of leakage in our depth images dataset was not possible. Therefore, we tried to 

see transfer-learning from pre-trained models over color images to work on depth images. First, the 

deep convolutional network VGG-19 is utilized as a feature extractor, but no satisfactory results are 

achieved. 

 Figure 9 depicted a 10-channel Heatmap. Each of these heatmaps is the output of the first branch. As 

shown, the predicted Heatmaps are expected to represent anatomical landmarks of the human back 

surface. However, the desired output is failed to be obtained. Figure 10 also shows the Affinity part 

map. The undesired network performance in detecting and extracting the distinguishing features in 

this algorithm is observed.  
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Figure 9: Confidence map of stage-7 (trained with VGG-19) 

 

      

 

Figure 10: Vector map of stage-7 (trained with VGG-19) 

 

8-2- Results on ResNet-152  

Regarding the poor function of the VGG-19 network, the ResNet-152 network was applied. The 

network was expected to have better performance than VGG-19. Figure 11 shows the prediction of 

heatmaps obtained from the last layer of the CNN, and figure 12 represents the prediction of vector 

maps.  
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Figure 12: Vector map of stage-7 (trained with Resnet-152) 

By applying the input image to the ResNet-152 descriptor, the network could comprehend and extract 

distinguishing features from the input image. The second part of the network architecture could 

quickly learn the extracted features and achieve remarkable and promising results. After the training 

process ended, the experimental data were used to test the new architecture and ensure proper 

training.  

In addition to increasing network accuracy, ResNet-152 can be used as a feature descriptor to 

accelerate the network convergence process. This result was expected since this network was the 

deepest version of the ResNet network and had higher accuracy than ResNet-50 in the ranking. 

Therefore, this network's outputs, which will be presented in more details in the next section, 

obtained higher percentage in proper landmark detection compared to others based on the evaluation 

criteria.  

In figure 13, the results of applying the evaluation samples to the ResNet-152 network are shown, 

which was visually compared with the ground truth of each one, and the process of improvement can 

be observed in network performance. The red points and lines indicate ground truth in these images, 

and the yellow points and lines indicate the predicted output. Here the network had a very remarkable 

performance in detecting all points, although the participants were assumed to be healthy. However, 

in practice, there were cases with spinal deformities and Scoliosis, an example of which can be 

observed in figure 13. In addition to automatic landmark detection, the proposed algorithm could 

predict a view of people's spine by finding a relationship in these points; this will help diagnose 

Scoliosis and other spinal deformities.  

  

 

By applying the input image to the ResNet-152 descriptor, the 
network could comprehend and extract distinguishing features 
from the input image. The second part of the network architec-
ture could quickly learn the extracted features and achieve re-
markable and promising results. After the training process end-
ed, the experimental data were used to test the new architecture 
and ensure proper training. 

In addition to increasing network accuracy, ResNet-152 can be 
used as a feature descriptor to accelerate the network conver-
gence process. This result was expected since this network was 
the deepest version of the ResNet network and had higher ac-
curacy than ResNet-50 in the ranking. Therefore, this network's 
outputs, which will be presented in more details in the next sec-
tion, obtained higher percentage in proper landmark detection 
compared to others based on the evaluation criteria. 

In figure 13, the results of applying the evaluation samples to the 
ResNet-152 network are shown, which was visually compared 
with the ground truth of each one, and the process of improve-
ment can be observed in network performance. The red points 
and lines indicate ground truth in these images, and the yellow 
points and lines indicate the predicted output. Here the network 
had a very remarkable performance in detecting all points, al-
though the participants were assumed to be healthy. However, in 
practice, there were cases with spinal deformities and Scoliosis, 
an example of which can be observed in figure 13. In addition 
to automatic landmark detection, the proposed algorithm could 
predict a view of people's spine by finding a relationship in these 
points; this will help diagnose Scoliosis and other spinal defor-
mities. 
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Figure 13: Sample plots of output from our model 

 

7-5- Comparisons 

Evaluation criteria were calculated for both ResNet-50 and ResNet-152 networks (figures 14 and 15). 

In this comparison, the VGG-19 model was not included, because it did not produce comprehensible 

output. By comparing both networks' performance, as expected, the final version of ResNet increased 

network accuracy with less difference from the original version. Table 1 illustrates the PCK for all 

landmarks.  

 

Accordingly, the network performs well in IF detection but shows poor performance in detecting 

scapular points (LS, RS). Although most people were assumed to be healthy, they had asymmetrical 

protrusions in the scapula; therefore, to make the network comprehensive, this amount of difference 

should learn more data. Indeed, correct detection of deformities in the back surface depends on 

having a large dataset with different forms of spine deformities; then, the network could learn the new 

7-5- Comparisons
Evaluation criteria were calculated for both ResNet-50 and Res-
Net-152 networks (figures 14 and 15). In this comparison, the 
VGG-19 model was not included, because it did not produce 
comprehensible output. By comparing both networks' perfor-
mance, as expected, the final version of ResNet increased net-
work accuracy with less difference from the original version. 
Table 1 illustrates the PCK for all landmarks. 

Accordingly, the network performs well in IF detection but 
shows poor performance in detecting scapular points (LS, RS). 
Although most people were assumed to be healthy, they had 
asymmetrical protrusions in the scapula; therefore, to make the 

network comprehensive, this amount of difference should learn 
more data. Indeed, correct detection of deformities in the back 
surface depends on having a large dataset with different forms 
of spine deformities; then, the network could learn the new fea-
tures. However, our algorithm has a remarkable performance, 
even with a limited number of subjects. As indicated in table 2, 
the PCK value is computed for only two networks, ResNet-50 
and ResNet-152. VGG is not a suitable option for our research 
study because the ResNet network has been formed by deeper 
layers and has more computational complexities than the VGG 
network. 
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Table 2: PCK results
Method VP IF LSH RHS LS RS LW RW LPSIS RPSIS Total

Train
ResNet-50 74 97 82 72 49 68 89 73 81 76.8 76.1

ResNet-152 76 97 86 80 56 74 89 79 83 80 80
Test
ResNet-50 71 89 81 66 46 60.9 88.8 71 78 65.7 71.7
ResNet-152 75 90 83.4 75 54 72 84 75 80 73 76.1

In table 3, PDJ results indicate the percentage of the points which 
have been detected accurately. As illustrated, ResNet-152 has 
better performance than ResNet-50 network, and again, the low-
est level of precision is to detect the scapular points. As noted, 

it is because of the limited number of subjects with this specific 
deformity. If the network trains with various data, it can extract 
more complicated features. Therefore, this accuracy level of the 
network indicates the proper statistical population of the data. 

Table 3: PDJ results
Method VP IF LSH RHS LS RS LW RW LPSIS RPSIS Total
Train
ResNet-50 90.6 97 86.7 81 61.2 67 89.1 94 91 93.6 85.1
ResNet-152 92 97 88 85 66 69 91 96 93 92 86.9
Test
ResNet-50 86 92 82.7 73 57.8 56 87 82 85.6 91.6 79.4
ResNet-152 88 93 84 74 58 61 89 84 88 90 80.9

Similarly, the following plots (figures 16 and 17) provide ev-
idence for our interpretations. For example, as shown, Res-
Net-152 performed better than ResNet-52; the lowest accuracy 
was obtained for detection and estimation of spatial position in 
point LS. By comparing PCK and PDJ, the critical point to note 
is the network's remarkable performance to detect and estimate 
the spatial position of the point IF. This point, placed on top 
of the intergluteal furrow, does not have a particular deformity 
compared to the other points. On the other hand, its position is 
not influenced by other spine deformities; therefore, enough data 
is fed to the network for training the features.

Figure 14: PCK comparison in training phase between
Resnet-50 and Resnet-152 

Figure 15: PCK comparison in testing phase between
Resnet-50 and Resnet-152

Figure 16: PDJ comparison in training phase between
Resnet-50 and Resnet-152



Figure 17: PDJ comparison in testing phase between
Resnet-50 and Resnet-152 

From the medical and clinical point of view, the manual detec-
tion of anatomical points is difficult. If the desired anatomical 
points are marked by several specialists on a patient's body, none 
of the points are located at a specific point. Therefore, to detect 
these points, the spatial coordinates are not enough, and a range 
of neighborhoods of that point is considered. However, this re-
search aimed to reduce the error rate of landmark detection and 
achieve only one coordinate as the detected point. The promis-
ing results were obtained using the proposed algorithm, and it is 
also essential to highlight the point that the deep convolutional 
network could comprehend the complexity of this type of data 
and meet the primary goal of research. 

8-Discussion and Conclusion
This study aims to automatically detect the anatomical land-
marks of the human back surface to investigate spinal deformi-
ties. This study's necessity arose from the point that many people 
suffer from spinal deformities, among which Scoliosis is highly 
important because the predominant method for the detection and 
evaluation of the treatment process is performed through multi-
ple radiographs. However, due to being invasive and having ion-
izing radiation, it increases cancer incidence, particularly among 
the youth. Therefore, one of the benefits of this study is the use 
of a non-invasive diagnosis method. 

In this paper, deep learning methods were utilized since CNN 
has a remarkable capability, and in recent years, has been ap-
plied in a wide range of studies, obtaining remarkable results. 
The use of the presented algorithm is advantageous for the phy-
sician due to autonomy. Because in a spontaneous process, an 
appropriate diagnosis system presents recommendations to the 
physicians. This study's essential attainment is deep image train-
ing because it provides rich information about the patients' back 
surface to physicians. 

To evaluate the algorithm's results, the evaluation criteria were 
calculated and compared with ground truth. The results indicat-
ed that the network could comprehend the distinguishing fea-
tures of the input and perform well in the evaluation data. As il-
lustrated in the images, some points were not placed in the exact 
position, and the highest error rate in this regard was related to 

the scapula. This can be justified so that the network needs more 
data to learn more features and information. 
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