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Abstract
This paper provides a comparison and assessment of both the performance and the capabilities of two recently developed 
approaches to the problem of computing the real-data DFT. The approaches exploit pipelined FFT and memory-based FHT 
architectures and aim to produce resource-efficient parallel solutions as required for use in resource and power constrained 
environments. The FFT-based solutions involve multi PE pipelined designs, geared to streaming (or serial) operation, 
that exploit the conjugate symmetric nature of the real-data DFT spectrum. The FHT based solutions, which are suitably 
optimized versions of the regularized FHT, are geared to batch (or block-based) operation and involve a memory-based 
single-PE design that exploits partitioned memory in order to achieve eight fold parallelism within the PE. After outlining 
the performance objectives of each approach the study highlights the key properties and relative advantages/disadvantages 
of each, showing how the arithmetic complexity may be traded off against the memory requirement in order to optimize 
the use of the available silicon resources on the target computing device and to meet the appropriate timing objectives or 
constraints. A number of additional design issues not addressed with recent real-data FFT research – in particular, those 
relating to design simplicity, regularity and scalability – are also discussed which enable a more comprehensive assessment 
of a solution’s capabilities. 
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1. Introduction
Many real-world spectrum analysis problems, such as those 
involving biomedical signals, require the computation of the 
real-data discrete Fourier transform (DFT) a unitary transform 
given by

						      (1)

where the transform kernel derives from the term

						      (2)

the Nth complex primitive root of unity [3,5,15]. The transform 
maps elements of the linear space of real valued N-tuples, RN, 
to elements of its complex-valued counterpart, CN, and when 
carried out in hardware is conventionally achieved via a real-
from-complex strategy using a complex-data version of the 
ubiquitous fast Fourier transform (FFT) [5,15]. Such algorithms 
are typically derived by exploiting the property of symmetry, 
whether it exists just in the transform kernel or, in certain 
circumstances, in the input data and/or output data as well.    
 

The reason for choosing the computational domain of real-data 
problems such as this to be CN, rather than RN, is due in part to 
the fact that computing equipment manufacturers have invested 
so heavily in producing digital signal processing (DSP) devices 
built around the design of the complex-data fast multiplier 
and accumulator (MAC), an arithmetic unit ideally suited to 
the implementation of the complex-data radix-2 butterfly, a 
computational unit used by the familiar class of radix-2 FFT 
algorithms [5,15]. The net result is that the problem of the real-
data DFT is effectively being modified so as to match an existing 
complex-data solution rather than a solution being sought that 
matches the actual problem needing to be solved. Many genuine 
real data solutions, referred to as real-data FFTs (or RFFTs), 
have been developed to address this problem, with a few of the 
most recent and most promising in terms of possessing low size, 
weight and power (SWAP) – as required for use in resource and 
power constrained environments as with applications typified 
by that of mobile communications being described in this paper 
[2,6,8-11,17-19]. 

Three such RFFT designs are considered, each possessing a 
pipelined architecture involving the use of a separate processing 
element (PE) for each stage of butterflies, that offer genuine 
real-data solutions by exploiting the conjugate-symmetric 
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nature of the real-data DFT spectrum [1,8,10,17]. The three 
algorithms considered are those based upon: 1) the real-valued 
serial commutator (RSC) architecture, 2) the modified RSC 
(mRSC) architecture and 3) the real-valued single path delay 
feedback (RSDF) architecture, with all three algorithms being 
of decimation-in-time (DIT) type [5,8,10,15,17]. The first two 
of these architectures are derived from the serial commutator 
(SC) architecture which was designed to maximize resource 
utilization by converting each stage of the pipeline to a half-
butterfly operation involving real-valued rather than complex-
valued inputs, whilst the third is derived from the single path 
delay feedback (SDF) architecture which was designed using 
delay lines, implemented with memory and shift registers, to 
reorder the data at each stage of the pipeline [9,10,12]. The 
resulting solutions for these three architectures are each geared 
to streaming (or serial) operation whereby individual samples 
(assumed hereafter to be real-valued) or sets of samples are 
processed as they are acquired with different levels of parallelism 
being exploited within the PEs by each in order to achieve their 
respective performance objectives. 

An alternative approach is also described which is based 
upon the use of the regularized fast Hartley transform (FHT) 
(or RFHT), which involves a single-PE design for computing 
the real-valued discrete Hartley transform (DHT) [4,15], an 
orthogonal transform given by 

						      (3)

where the input/output data sets both belong to RN and the 
transform kernel is given by

						      (4)

which is referred to in the literature as the ‘cas’ function 
[3,13,15]. The RFHT is also of DIT type and may also be 
used for computing the real-data DFT, given that the DFT and 
DHT output data sets as produced by Eqtns. 1 and 3 may be 
straightforwardly obtained, one from the other, via the following: 

The RFHT design possesses a memory-based architecture which 
involves double-buffering of the input data [18]. The solution is 
geared to batch (or block-based) operation whereby the entire 
input data set must be available before processing can commence 
with the required computational throughput being achieved by 
using a single highly parallel PE built from a small quantity of 
silicon resources. The resulting design can thus be shown to 
possess low SWAP as well as a number of attractive properties 
that pipelined RFFT solutions typically do not. 

The design constraints and performance objectives of each of 
these two approaches – namely, those based upon the use of 

either the pipelined RFFT or the memory-based RFHT – to 
the efficient computation of the real-data DFT are described 
together with a theoretical performance comparison of the 
resulting solutions as expressed by their space (arithmetic 
requirement, in terms of the required numbers of real multipliers 
and adders, together with the memory requirement, in terms 
of the required amount of dual-port random access memory 
(RAM)) and time (achievable latency/throughput) complexities. 
This includes a discussion of the key properties and relative 
advantages/disadvantages of each of the solutions together with 
a few illustrative examples for carrying out the real-data DFT of 
small to medium sized data sets. The aim with each approach, 
essentially, is to maximize the throughput per unit area of 
silicon, a metric that’s more commonly known when assessing 
the silicon-based implementation of signal/image processing 
algorithms as the ‘computational density’ [15]. 

The analysis presented is not intended to be exhaustive in terms 
of the various RFFT and FHT solutions considered as a number 
of comprehensive studies have already been carried out in recent 
years (such as those discussed in) for dealing with the many RFFT 
variations [2,6,11,18,19]. Just a few key RFFT architectures are 
therefore considered, whilst the choice of FHT is limited to that 
of the regularized version of the FHT, namely the RFHT, in order 
to highlight the relative advantages/disadvantages of a memory-
based solution (geared to batch operation) to that of a pipelined 
solution (geared to streaming operation). Thus, following this 
introductory section, brief accounts are given of the real-data 
FFT designs in Section 2 and that of the regularized FHT in 
Section 3. The various design constraints and performance 
objectives of the two approaches are then discussed in Section 
4, this including a theoretical performance/resource comparison 
of the resulting solutions in terms of their respective arithmetic 
and memory requirements and achievable latency/throughput, 
together with a discussion of the key properties and relative 
advantages/disadvantages of each solution. The paper finishes 
with a brief summary and conclusions in Section 5.   

2. Recent Developments with Real-Data FFT Design
The most commonly used FFT algorithms are those of the 
fixed-radix type and, in particular, those with a radix of 2 
where typically the DIT version of the algorithm involves the 
use of bit-reversed inputs and naturally ordered outputs, whilst 
the decimation-in-frequency (DIF) version involves the use of 
naturally ordered inputs and bit reversed outputs [5,15]. An 
8-point DIT FFT algorithm for the case of real-valued data is 
illustrated in Figure 1 whereby the two 4-point FFTs resulting 
from the decomposition each have real-valued inputs and ‘odd’ 
conjugate symmetric outputs, as expressed by

	  	 X[k] = –X*[N–k].	  (7)

By utilizing the odd conjugate symmetry of the two 4-point FFTs 
it is possible to apply the same principle, recursively, to each of 
the half-length FFTs so as to break them down into even smaller 
2-point FFTs and to reuse the same hardware units, without 
modification, to carry them out.
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Figure 1 – signal flow graph for 8-point DIT real-data FFT 
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Figure 3: mRSC architecture for 16-point radix-2 real-data FFT
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Figure 3 – mRSC architecture for 16-point radix-2 real-data FFT 
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A number of DIT-type RFFTs have been derived in recent years 
from the SDF and SC architectures which, for a data set of size 
N, require that: 1) a memory of more than N words is available 
to enable the correct timing of the multiplications involving 
the trigonometric coefficients (or twiddle factors) at each stage 
of the processing, and 2) the resulting N scrambled outputs be 
suitably reordered. To meet these requirements and to further 
improve and optimize the use of the required hardware units, 
designs for the RSC architecture, as illustrated in Figure 2, and 
its subsequently improved version, the mRSC architecture, as 
illustrated in Figure 3, have been produced. Each comprises 
three types of hardware unit: 1) the butterfly, which performs 
an addition and a subtraction, 2) the rotator, which performs a 
complex multiplication involving trigonometric coefficients, 

and 3) the data management circuits, which are responsible for 
ensuring the correct timing of the resulting solution [10,17]. The 
RSC-based and mRSC based solutions each require 2.log2N-2 
real adders and log2N-2 real multipliers, whilst the RSC based 
solution requires N+9.log2N-19 words of memory which the 
mRSC-based solution reduces to just N+5.log2N-9 words. The 
latency of both solutions is given by N+3.log2N-8 clock cycles 
whilst the outputs of each are left in scrambled form so that bit 
reversal reordering is required in each case for application to 
both the input and output data sets. Although such reordering 
of the outputs may be carried out as an additional stage of the 
pipeline it nevertheless results in an even more complex and 
irregular design. 
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A more recent real-data FFT solution, which is derived from the 
SDF architecture and again of DIT type, is that possessing the 
RSDF architecture, as illustrated in Figure 4 [8]. The solution 
exploits the odd conjugate symmetry at each stage of processing 
by utilizing a specific DIT technique that requires bit reversed 
inputs but that produces naturally ordered outputs, rather than the 
scrambled outputs of the previous two solutions, thus avoiding 
the need for additional circuitry after the pipeline’s final stage 
of butterflies. The solution enables the number of operations 
to be halved for each stage of processing as well as allowing 
for the production of two outputs at a time, rather than the one 
output of the previous two solutions, leading to an increased 
throughput. This increased throughput is only achieved, 
however, by increasing the I/O rate from one sample per clock 
cycle, as required by the RSC based and mRSC based solutions, 
to two samples per clock cycle – this, in turn, requiring the use 
of increased numbers of multipliers and adders.  

With all three RFFT illustrated architectures, as given by Figures 
2 to 4, a radix-2 solution is assumed so that a total of log216 = 4 
stages are required for carrying out the processing in a pipelined 
fashion where each stage is assigned its own PE. With the RSDF 
architecture, however, the first two stages, which would each be 
expected to involve a radix-2 butterfly, are merged into a large 
single stage by performing a radix-4 butterfly rather than two 
radix-2 butterflies. It is this merging of stages which enables the 
processing of two real-valued inputs at a time, instead of just 
one – as is the case with the RSC and mRSC architectures. Also, 
it is evident that the RSC and mRSC architectures, although 

constructed from the same set of basic components, each require 
three distinct PE designs whilst the RSDF requires two. As a 
result, the three pipeline designs can be said to be neither strictly 
‘regular’ (whereby the design involves the presence of large 
amounts of repetition and symmetry) nor ‘scalable’ (whereby 
the only design change needed in going from one size of data 
set to another is in the amount of memory required for storage 
of the input data and trigonometric coefficients). In fact, the 
consequence of the complexity reduction techniques utilized by 
these and other RFFT solutions tends to be a loss of regularity in 
the resulting design. 
  
3. Computing Real-Data DFT via Regularized FHT 
Given the ease with which the output data sets of the DHT and 
the real-data DFT may be obtained, one from the other, an FHT 
algorithm was sought which would enable attractive parallel 
solutions to be produced for the computation of the real-data 
DFT. The result was the RFHT which is a radix-4 DIT algorithm 
whose correctness of operation has already been proven in silicon 
with a fixed-point implementation using field-programmable 
gate array (FPGA) technology and with the storage of data and 
coefficients carried out with fast dual-port RAM [13,14,16]. 

The RFHT is a resource-efficient means of carrying out the 
DHT (and thus the real-data DFT) that is both highly parallel 
and scalable, whilst its being ‘regularized’ refers to the fact 
that the algorithm structure has been made regular so that the 
conventional need for two separate butterfly designs for the 
fixed radix FHT is thus avoided. The design includes two key 
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features: a) an architecture based upon the use of a single PE, 
as illustrated in Figure 5, which exploits partitioned memory to 
facilitate the parallel computation of the large ‘double butterfly’ 
operation; and b) ‘conflict free’ and ‘in place’ parallel memory 
addressing schemes for both the data, as stored in the PE’s 
internal data memory (PDM), and the trigonometric coefficients, 
as stored in the PE’s coefficient memory (PCM). These features, 

when combined with pipelining and single instruction multiple-
data (SIMD) processing techniques for the internal operation of 
the PE, enable the resources residing on the PE to be maximally 
utilized and each instance of the generic double butterfly – the 
computational engine producing eight outputs from each set of 
eight inputs – to produce a new output data set with each clock 
cycle [1].
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Note that the single-PE architecture may be regarded as being 
‘recursive’ in the sense that the output from each stage of double 
butterflies is fed back as input to the succeeding stage, with the 
same set of computational units being used to perform the same 
set of operations on the input data to each and every stage. The 
original design required 12 multipliers and 22 adders for carrying 
out the double butterfly operation, with: a) each eight sample 
(one sample per memory bank) data set being read/written in 
parallel from/to the partitioned PDM, configurable as an array of 
eight memory banks; and b) the trigonometric coefficients being 
read in parallel from the partitioned PCM, configurable as an 
array of three one-level look up tables (LUTs), with each LUT 
storing a single quadrant of the sine function. The addressing of 
the PDM, over two consecutive clock cycles, enables all those 
samples required by the two corresponding instances of the 
double butterfly operation to be read from the PDM, processed 
and then written back to the PDM in a conflict free and in place 
manner at the rate of one eight-sample data set per clock cycle.

Being a radix-4 DIT algorithm, the input data to the RFHT needs 
first to be reordered according to the dibit-reversal mapping (that 
is, involving the exchange of two bits at a time rather than the 
one bit of the bit -reversal mapping), enabling the input data set 
to be then written to the PDM with consecutive data samples 
being stored cyclically within consecutive memory banks, whilst 

on completion of the RFHT, the naturally ordered output data set 
may be read out from the PDM with consecutive data samples 
being retrieved cyclically from consecutive memory banks.

Three additional versions of the PE have been subsequently 
derived (as well as a CORDIC version not considered here) 
which enable the arithmetic component of the space complexity 
to be traded off against the memory component, which varies 
according to the use of either one-level or two-level LUTs for 
the PCM [15]. The use of two-level LUTs results in a reduced 
memory requirement of O(√N) words, as opposed to the 
O(√N) requirement of the one-level LUTs, this reduction being 
obtained at the expense of increased addressing complexity 
through the need for the combined use of both coarse resolution 
and fine resolution LUTs. A theoretical performance/resource 
comparison of all four versions of the RFHT is provided in Table 
1, with each version achieving an O(N. log N) latency which 
corresponds, in clock cycles, to the total number of double 
butterflies to be executed per transform, namely N/8.log4N. An 
O(N) update period (or refresh rate) for each input/output data 
set is achieved for each solution which corresponds to an I/O 
rate of just one sample per clock cycle. The signal flow graph 
for the nine multiplier version of the generic double butterfly is 
illustrated in Figure 6. 
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    Figure 6 – signal flow graph for nine-multiplier version of generic double butterfly  
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 6 

Version    

of        

Solution 

Arithmetic Complexity Memory Requirement 
(real words) 

Time Complexity 
(clock cycles) 

Processing Element Coefficient Generator Input/Output Data 
(Double-Buffered) 

Trigonometric    

Coefficients 
Latency Update 

Period No of Real 
Multipliers 

No of Real  
Adders   

No of Real 
Multipliers 

No of Real  
Adders 

I 12 22 0 0 2 × 8× 8
1 N = 2N 3 × 4

1 N = N4
3  Nlog.N8

1
4  N 

II 9 25 0 6 2 × 8× 8
1 N = 2N 3 × 4

1 N = N4
3  Nlog.N8

1
4  N 

III 12 22 7 8 2 × 8× 8
1 N = 2N 3 × N2

1 = N2
3  Nlog.N8

1
4  N 

IV 9 25 7 14 2 × 8× 8
1 N = 2N 3 × N2

1 = N2
3  Nlog.N8

1
4  N 

 

Table 1 – performance/resource comparison for fast multiplier versions of N-point regularized FHT 

Table 1 – performance/resource comparison for fast multiplier versions of N-point regularized FHT

4. Comparative Analysis of  Pipelined FFT and Memory-
Based FHT Approaches 
The relative advantages/disadvantages of the two approaches to 
the problem of computing the real-data DFT – namely, those 
based upon the RFFT, as dealt with in Section 2, and the RFHT, 
as dealt with in Section 3 – are now discussed in some detail. 
 
4.1 A Few Desirable Properties – Bilateralism, Regularity 
and Scalability 
The DHT, unlike the DFT, is equal to its own inverse – that is, 
a ‘bilateral’ transform. As a result, the RFHT may be effectively 

used for dealing with those real data problems involving the 
computation of both forward and inverse transforms – such as for 
carrying out the finite impulse response (FIR) filtering operation 
via the transform-domain approach, in a computationally 
efficient manner, by invoking the circular convolution theorem 
[5]. The RFFT algorithms, on the other hand, would need to be 
suitably modified in order to deal with the corresponding inverse 
transform. Thus, whilst each RFFT algorithm could be used for 
carrying out the fast computation of the forward DFT, where 
the input/output data sets are real-valued/complex-valued, a 
modified version would be required for carrying out the fast 

Figure 6:

    Table 1:
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computation of the inverse DFT, where the input/output data sets 
are complex-valued/real-valued – the complex-valued data set, 
in each case, being assumed to be conjugate symmetric.    

The scalable RFHT design is also very simple and regular – as is 
evident from the illustrated architecture of Figure 5 – comprising 
one column of real multipliers operating in parallel, in SIMD 
fashion, together with three (or four, depending upon the 
chosen algorithm, as both nine-multiplier and twelve-multiplier 
versions of the PE are available) columns of adders with each 
column also operating in parallel. The RFFT designs, on the 
other hand, are evidently more complex and, as evident from the 
discussion in Section 2, less regular in the sense of requiring the 
design of two or more PE variations as opposed to the single PE 
design of the RFHT. Thus, the three RFFT solutions, although 
each possessing design commonalities amongst the multiple 
PEs (as evidenced from the illustrated architectures of Figures 
2, 3 and 4) cannot, unlike the RFHT, be regarded as being either 
strictly regular or scalable. For real world commercial operation 
the questions of bilateralism and of design simplicity, regularity 
and scalability become critical issues to be considered in the 
design process as these may have a serious impact on the costs 
encountered by the organization involved for its various signal 
processing requirements (given that all such organizations will 
be ultimately constrained by costs!). 

4.2 Computational Accuracy for Fixed-Point Implementation
With a fixed-point implementation of the proposed algorithms 
the question of computational accuracy also becomes important, 
so that a suitable scaling strategy would be needed in order to 
prevent arithmetic overflow from occurring. With the RFFT-
based solutions the recursive nature of the architecture (whereby 
the butterfly stages are processed one at a time) suggests the 
adoption of a conditional (or ‘optimal’) scaling technique, such 
as the block floating-point technique, the most accurate scheme 
whereby the fixed-point data is only shifted when an overflow 
occurs [15]. With the RFFT-based solutions, however, the 
pipelined nature of the architecture (whereby all the butterfly 
stages are processed simultaneously) suggests the adoption of 
an unconditional (or ‘sub-optimal’) scaling technique as being 
more appropriate in order that undesirable timing delays be 
avoided – these delays due to the need for the periodic updating 
of a common scaling exponent applicable to the outputs of each 
and every stage of butterflies. Thus, for implementations with 
fixed-point data of given word-length, an unconditional scheme 
shifts the data regardless of whether an overflow has occurred 
and would therefore inevitably result in less accurate results than 
a conditional scheme.   
    

4.3 Timing Constraints of Both Approaches
Being a batch processing algorithm, the RFHT has a timing 
constraint which requires that the latency is less than the update 
period of the input data set, namely N clock cycles for an N 
sample data set. On the other hand, the RFFT algorithms operate 
in a streaming fashion so that the timing constraint requires that 
each algorithm is able to process the input samples serially as 
they are acquired – this means individual samples for when the 
I/O rate is set to one sample per clock cycle (as with the RSC 
based and mRSC-based solutions) or sets of samples for when 
the I/O rate is greater than one sample per clock cycle (as with 
the two samples per clock cycle of the RSDF-based solution). 

The fact that the latency of the RFHT solution can be shown to 
be considerably less than the update period for small to medium 
sized data sets means that the hardware resources are not being 
maximally utilized. This suggests that a reduction in the power 
consumption may be achieved or, alternatively, that post RFHT 
processing may be carried out on the RFHT output data before 
the next input data set is available for processing. This could, 
for example, include the additional tasks of converting the 
transform outputs from Hartley space to Fourier space, which 
may be straightforwardly achieved via the simple additions and 
subtractions (plus right shifts, of length one, of the results) of 
Eqtns. 5 and 6, or of converting the RFHT outputs directly to 
power spectral density (PSD) estimates via the expression 
	

						             (8)

for subsequent signal detection/classification processing. 

4.4 Performance/Resource Comparison
The relative performances of the pipelined FFT and memory-
based FHT solutions to the real data DFT in terms of resource 
requirements and achievable latency/throughput are as 
summarized in Tables 2 and 3, with Table 2 providing generic 
performance parameters as well as highlighting those key 
properties held by the various solutions – including those relating 
to computational accuracy, bilateralism, design regularity and 
scalability, whilst Table 3 provides a detailed performance/
resource comparison for a number of small-to-medium sized 
data sets – namely, for data sets comprising 64, 256 and 1024 
real valued samples. Only the Versions II and IV solutions of 
the RFHT are considered, with Version II being optimized to 
minimize the arithmetic complexity (at the expense of increased 
memory requirement) and Version IV optimized to minimize 
the memory requirement (at the expense of increased arithmetic 
complexity). 






 +−==

2)H(2)H(2)F( ]k[X]kN[X2
1]k[X]k[PSD
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Solution to      
N-point         

Real-Data DFT 

Arithmetic Complexity Data+Coefficient   
Memory         

(real words) 

Latency / Update Period 
(clock cycles) 

No of Data 

Reorderings 

Fixed-Point       
Scaling     

Performance 

Properties:   
Regular /  
Scalable / 
Bilateral 

No of Real    
Multipliers 

No of Real    
Adders 

RFFT (RSC) log2N–2 2.log2N–2 N+9.log2N–19 N+3.log2N–8 N 2 – Input&Output Sub-Optimal1 No / No / No  

RFFT (mRSC) log2N–2  2.log2N–2 N+5.log2N–9 N+3.log2N–8 N 2 – Input&Output Sub-Optimal1 No / No / No  

RFFT (RSDF) 3.log2N–4 8.log2N–8 N–2 N/2 N/2 2 – Input&Output  Sub-Optimal1 No / No / No 

RFHT (V II) 9 25 2N+3N/4 N/8.log4N N 1 – Input  Optimal2 Yes / Yes / Yes 

RFHT (V IV) 16 39 2N+3 N /2 N/8.log4N N 1 – Input  Optimal2 Yes / Yes / Yes 

 
 

Table 2 – performance/resource comparison for low-complexity solutions to N-point real-data DFT 

Note: 1 => unconditional scaling strategy, 2 => conditional scaling strategy 
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Table 3: performance/resource comparison of solutions for various sized data sets
Note: simplified logic-based sizing estimate assumes 16-bit fixed-point processing & excludes contribution of control logic
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Length of  

Data Set N Solution 
Arithmetic Complexity Data+Coefficient   

Memory         
(real words) 

Arithmetic+Memory 
Sizing Estimate       

(logic slices) 

Latency / Update Period 
(clock cycles) 

No of Data 

Reorderings No of Real    
Multipliers 

No of Real    
Adders 

64 

RFFT (RSC) 4 10 99 2304 74 64 2 – Input&Output 

RFFT (mRSC) 4 10 95 2240 74 64 2 – Input&Output 

RFFT (RSDF) 14 40 64 3584 32 32 1 – Input 

RFHT (V II) 9 25 176 4456 24 64 1 – Input 

RFHT (V IV) 16 39 140 5112 24 64 1 – Input 

256 

RFFT (RSC) 6 14 309 6016 272 256 2 – Input&Output 

RFFT (mRSC) 6 14 287 5664 272 256 2 – Input&Output 

RFFT (RSDF) 20 56 254 7712 128 128 1 – Input 

RFHT (V II) 9 25 704 12904 128 256 1 – Input 

RFHT (V IV) 16 39 536 11448 128 256 1 – Input 

1024 

RFFT (RSC) 8 18 1095 18944 1046 1024 2 – Input&Output 

RFFT (mRSC) 8 18 1065 18464 1046 1024 2 – Input&Output 

RFFT (RSDF) 26 72 1022 21088 512 512 1 – Input 

RFHT (V II) 9 25 2816 46696 640 1024 1 – Input 

RFHT (V IV) 16 39 2096 36408 640 1024 1 – Input 

 
Table 3 – performance/resource comparison of solutions for various sized data sets 

 Note: simplified logic-based sizing estimate assumes 16-bit fixed-point processing & excludes contribution of control logic   
Referring firstly to the properties of the various real-data DFT 
solutions described by the contents of Table 2, the three RFFT 
solutions would appear to offer similar performances with the 
RSC-based and mRSC-based solutions requiring the reordering 
of both the input and output data sets but an I/O rate of just 
one sample per clock cycle, whereas the RSDF-based solution 
requires the ordering of just the input data set but an increased 
I/O rate of two samples per clock cycle. Each of the RFHT 
solutions, in comparison, requires the reordering of just the input 
data set and an I/O rate of just one sample per clock cycle whilst 
the arithmetic requirement is fixed for each size of data set. 
This means that as the size of the input data set is increased the 

corresponding increase in silicon resources for the RFHT will 
be due primarily to the increased memory requirement, whilst 
for the three RFFT solutions the arithmetic component of the 
space complexity will also be significant with the number of 
real multipliers increasing logarithmically with each multiplier 
requiring O(L2) logic slices when implemented in logic.    

Referring next to the detailed contents of Table 3, the RSC-
based and mRSC-based RFFTs carry out each of the complex 
multiplications using just one real multiplier and two real 
adders whereas the RSDF-based solution exploits two-fold 
parallelism by processing two samples at a time using three 
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real multipliers and four real adders. As a result, the latency of 
the RSDF-based solution is able to be reduced, relative to the 
RSC-based and mRSC-based solutions, at the cost of increased 
arithmetic complexity. The two versions of the RFHT – which 
each achieve eight fold parallelism within the PE – are able to 
match the reduced latency of the RSDF-based RFFT, but only 
at the expense of increased silicon resources arising from the 
increased memory requirement (resulting from the double 
buffering of the input data). For the smallest 64 sample data set 
the latency of the two RFHTs is actually considerably lower than 
that achieved by all three RFFTs with the arithmetic requirement 
of the Version II solution being also considerably lower than that 
of the RSDF-based solution – the lowest arithmetic complexity 
for the examples considered is achieved by the RSC-based and 
mRSC-based solutions although, for N ≥ 4096, the Version II 
solution of the RFHT will always achieve the lowest arithmetic 
complexity of the solutions discussed.     

4.5 Approximate Sizing of Solutions
The simplified logic-based sizing estimates provided in Table 3 
is obtained by making the following simplifying assumptions, 
namely that: a) an L×L pipelined multiplier will require of the 
order of 5L2/8 logic slices in order to produce a new output each 
clock cycle, whilst b) an L-bit adder will require L/2 logic slices, 
and c) the memory, in the form of dual port RAM, will require L 
logic slices for each memory location [7]. Note, however, that the 
availability of ever-more efficient embedded fast multipliers with 
the latest FPGA technologies would suggest some benefit in the 
increased use of such multipliers in assessing and carrying out the 
trade-off of arithmetic complexity against memory requirement 
– the sizing estimates of Table 3 cannot reflect the efficiencies 
available through the use of such optimized components. The 
adoption of such multipliers would make the memory optimized 
Version IV solution of the RFHT a potentially more attractive 
option than its arithmetically-optimized counterpart, the Version 
II solution, as the arithmetic complexity would become less 
critical than the memory requirement in terms of its contribution 
to the total silicon area as the size of the input data set is increased. 
Note also that the logic-based sizing estimates do not account for 
the control logic requirement which, for the RFHT solutions, 
would be expected to remain relatively constant as the size of the 
input data set is varied and would be expected to be lower than 
the size-dependent requirements of the more complex designs of 
the RFFT solutions [14].

5. Summary and Conclusions
The main objective of the study has been to provide a comparison 
and assessment of both the performance and the capabilities of 
two recently developed approaches to the problem of computing 
the real-data DFT. The approaches exploit pipelined FFT and 
memory-based FHT architectures and aim to produce resource-
efficient parallel solutions that are able to optimize in some way 
the required amount of silicon resources so as to yield solutions 
possessing low SWAP – as required for use in resource and 
power constrained environments. The study has highlighted the 
key properties and relative advantages/ disadvantages of each 
approach, showing with each how the arithmetic complexity 
may be traded off against the memory requirement in order 

to optimize the use of the silicon resources available on the 
silicon-based computing device chosen for its implementation 
and to meet the appropriate timing objectives or constraints. 
A number of design issues not addressed with recent real-data 
FFT research – in particular, those relating to design simplicity, 
regularity and scalability – are also discussed which enable a 
more comprehensive assessment of a solution’s performance 
and capabilities to be made.   

The first approach involved the design of pipelined RFFT 
solutions geared to streaming operation and exploiting a multi-
PE pipelined architecture, whilst the second approach involved 
the design of memory-based RFHT solutions geared to batch 
operation and exploiting a single-PE recursive architecture. Both 
approaches have yielded attractive power-efficient solutions, 
although when compared to those of the RFFT approach, the 
RFHT solutions possess the additional attractions of bilateralism 
and of increased design simplicity, regularity and scalability the 
RFFT solutions would need to be optimized for each particular 
application, a potentially costly process – as well as lending 
themselves more naturally to the adoption of an accurate 
conditional scaling strategy for fixed-point operation. Therefore, 
as the contents of Tables 2 and 3 illustrate, the ‘best’ choice of 
solution is a complicated one to resolve with no one performance 
parameter able to tell the whole story. The best choice is 
dependent upon a number of often conflicting factors deriving 
from the performance objectives, the constraints (such as those 
relating to latency and/or power) of the particular application 
(or set of applications) of interest and of the available silicon 
resources – bearing in mind that the target device may typically 
be required to carry out several functions aside from that of the 
real data DFT. 
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