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Abstract
The valence of a function f at a point z0 is the number of distinct,finite solutions to f(z) = z0. In this paper we bound the 
valence of complex-valued harmonic polynomials in the plane for some special harmonic polynomials of the form f(z) 
=p(z)q(z), where p(z) is an analytic polynomial of degree n and q(z) is an analytic polynomial of degree m, and q(z) = 
αp(z) for some constant α. Using techinques of complex dynamics used in the work Sheil-Small and Wilmshurst on the 
valence of harmonic polynomial, we prove that the harmonic polynomial f(z) = p(z)q(z) has the valency of m + n.
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1. Introduction 
An upper bound on the total number of roots of analytic function 
can be known due to the result of the fundamental theorem of 
algebra, which stipulates that every non-zero, single-variable, 
analytic polynomial of degree n with complex coefficients has 
exactly n complex roots, counted with multiplicity.

The argument principle for harmonic functions can be 
formulated as a direct generalization of the classical result for 
analytic functions, see Duren et al [1]. The winding number of 
the image curve f(C) about the origin,                             equals the 
total number of zeros of f in ⅅ, counted according to multiplicity 
where ⅅ is a plane domain bounded by a rectifiable Jordan curve 
C, oriented in the counterclockwise direction and f(z) ≠ 0 on C is 
analytic in ⅅ and continuous in ⅅ.

The location and number of the zeros of analytic polynomials as 
well as complex-valued harmonic polynomials has been studied 
by many researchers. After a basic paper by Clunie and Sheil 
Small in 1984 the theory of Harmonic univalent and multivalent 
functions attracted attention of complex analysts [2]. Since then 
the theory has rapidly developed and became an active branch 
of complex analysis for researchers. One area of investigation 
that has recently become of interest is the number and location 
of zeros of complex-valued harmonic polynomials. Clunie and 
Sheil-Small introduced the family of complex-valued harmonic 
functions f = u + iv defined in the unit disk ⅅ = {z : |z| < 1}, 
where u and v are real harmonic in ⅅ [2].

Lewy’s Theorem stipulates that if f is a complex valued harmonic 
function that is locally univalent in a domain ⅅ ⊂ ℂ, then its 
Jacobian ,Jf(z), never vanish for all z ∈ ⅅ. For more information 

we can refer to [3]. As an immediate consequence of Lewy’s 
Theorem, a complex valued harmonic function f(z) = h(z) + g(z) 
is locally univalent and sense-preserving if and only if h'(z) ≠ 0 
and |ω(z)| < 1, where ω(z) is a dilatation function of f defined by 

Determining the number of zeros of complex-valued harmonic 
polynomial is an interesting research area in complex analysis. 
Suppose f is a polynomial function of degree n in two variables 
and let Zf denote the number of zeros of f, that is, number of 
points z ∈ ℂ satisfying f(z) = 0. Then for n > m, we have n ≤ 
Zf ≤ n2. The lower bound is based on the generalized argument 
principle and is sharp for each m and n. The upper bound follows 
from applying Bezouts theorem to the real and imaginary parts 
of f(z) = 0 after noticing that the zeros are isolated, which was 
shown by Wilmshurst this upper bound is sharp in general [4]. 
For instance as illustrated by Wilmshurst in the same paper,              
                              is a polynomial with n2 zeros where Q(z) = 
zn + (z − 1)n + izn − i(z − 1)n. But it is natural to ask whether or 
not it can be improved for some interesting special classes of 
polynomials.

Wilmshurst considered the cases of complex-valued harmonic 
polynomials of the form f(z) = p(z)+q(z) [5]. If degp = n > m 
= degq, then as to the question of improving the bound Zf ≤ n2 
given additional information, Wilmshurst made the conjecture 
Zf ≤ 3n − 2 + m(m − 1). This conjecture is stated in [4]. It is 
also among the list of open problems in [6]. For m = n−1 the 
upper bound follows from Wilmshurst’s theorem and examples 
were also given in showing that this bound is sharp [4]. For m = 
1, the upper bound was proved by D.Khavinson and G.Swiatek 
and bound was also sharp [7]. For m = n − 3, the conjectured 
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1. INTRODUCTION

An upper bound on the total number of roots of analytic function can be known
due to the result of the fundamental theorem of algebra, which stipulates that every
non-zero, single-variable, analytic polynomial of degree n with complex coefficients has
exactly n complex roots, counted with multiplicity.

The argument principle for harmonic functions can be formulated as a direct general-
ization of the classical result for analytic functions, see Duren et al [11]. The winding
number of the image curve f(C) about the origin, 1

2π∆C argf(z) equals the total num-
ber of zeros of f in D, counted according to multiplicity where D is a plane domain
bounded by a rectifiable Jordan curve C, oriented in the counterclockwise direction
and f(z) �= 0 on C is analytic in D and continuous in D.

The location and number of the zeros of analytic polynomials as well as complex-valued
harmonic polynomials has been studied by many researchers. After a basic paper by
Clunie and Sheil Small in 1984 [7], the theory of Harmonic univalent and multivalent
functions attracted attention of complex analysts. Since then the theory has rapidly
developed and became an active branch of complex analysis for researchers. One area
of investigation that has recently become of interest is the number and location of
zeros of complex-valued harmonic polynomials. Clunie and Sheil-Small [7] introduced

the family of complex-valued harmonic functions f = u + iv defined in the unit disk
D = {z : |z| < 1}, where u and v are real harmonic in D.

Lewy’s Theorem stipulates that if f is a complex valued harmonic function that is
locally univalent in a domain D ⊂ C, then its Jacobian , Jf (z), never vanish for all
z ∈ D. For more information we can refer to [16]. As an immediate consequence of

Lewy’s Theorem, a complex valued harmonic function f(z) = h(z) + g(z) is locally
univalent and sense-preserving if and only if h′(z) �= 0 and |ω(z)| < 1, where ω(z) is a

dilatation function of f defined by ω(z) = g′(z)
h′(z) .

Determining the number of zeros of complex-valued harmonic polynomial is an inter-
esting research area in complex analysis. Suppose f is a polynomial function of degree
n in two variables and let Zf denote the number of zeros of f, that is, number of
points z ∈ C satisfying f(z) = 0. Then for n > m, we have n ≤ Zf ≤ n2. The lower
bound is based on the generalized argument principle and is sharp for each m and
n. The upper bound follows from applying Bezouts theorem to the real and imagi-
nary parts of f(z) = 0 after noticing that the zeros are isolated, which was shown by
Wilmshurst [17] and this upper bound is sharp in general. For instance as illustrated
by Wilmshurst in the same paper,

(
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i

)n
Q
(
iz + 1

2

)
is a polynomial with n2 zeros where

Q(z) = zn + (z − 1)n + izn − i(z − 1)n. But it is natural to ask whether or not it can
be improved for some interesting special classes of polynomials.

Wilmshurst [10] considered the cases of complex-valued harmonic polynomials of the

form f(z) = p(z)+q(z). If degp = n > m = degq, then as to the question of improving
the bound Zf ≤ n2 given additional information, Wilmshurst made the conjecture
Zf ≤ 3n− 2 +m(m− 1). This conjecture is stated in [17]. It is also among the list of
open problems in[6]. For m = n− 1 the upper bound follows from Wilmshurst’s theo-
rem and examples were also given in [17] showing that this bound is sharp. For m = 1,
the upper bound was proved by D.Khavinson and G.Swiatek [8], and bound was also
sharp. For m = n− 3, the conjectured bound is 3n− 2 +m(m− 1) = n2 − 4n+ 10.
Using techniques of complex dynamics, it is still possible to improve for some special
harmonic polynomials of the form f(z) = p(z)q(z), where p(z) is an analytic polyno-
mial of degree n and q(z) is an analytic polynomial of degree m, and q(z) �= αp(z) for
some constant α. The valency of this type of function is an open problem in [6] and
we solve it here.

Definition 1.1. [1] Let D be an open unit disk in the complex plane C. Denote by
H(D) the linear space of all analytic functions in D, and let B(D) be the set of all
functions ω(z) ∈ H(D) satisfying |ω(z)| < 1, z ∈ D. A non-constant function f is
said to be logharmonic in D if f is the solution of the nonlinear elliptic differential
equation

fz(z) = ω(z)

(
f(z)

f(z)

)
fz(z)

where ω ∈ B(D) and the function ω(z) is called the second dilatation of f.

Remark 1. For f(z) as in the above definition,
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mial of degree n and q(z) is an analytic polynomial of degree m, and q(z) �= αp(z) for
some constant α. The valency of this type of function is an open problem in [6] and
we solve it here.

Definition 1.1. [1] Let D be an open unit disk in the complex plane C. Denote by
H(D) the linear space of all analytic functions in D, and let B(D) be the set of all
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bound is 3n − 2 + m(m − 1) = n2 − 4n + 10. Using techniques 
of complex dynamics, it is still possible to improve for some 
special harmonic polynomials of the form f(z) = p(z)q(z), where 
p(z) is an analytic polynomial of degree n and q(z) is an analytic 
polynomial of degree m, and q(z) ≠ αp(z) for some constant α. 
The valency of this type of function is an open problem in [6] 
and we solve it here.

Definition 1.1. Let ⅅ be an open unit disk in the complex plane 
ℂ [8]. Denote by H(ⅅ) the linear space of all analytic functions 
in ⅅ, and let B(ⅅ) be the set of all functions ω(z) ∈ H(ⅅ) 
satisfying |ω(z)| < 1,z ∈ ⅅ. A non-constant function f is said to 
be logharmonic in D if f is the solution of the nonlinear elliptic 
differential equation

where ω ∈ B (ⅅ) and the function ω(z) is called the second 
dilatation of f.

Remark 1. For f(z) as in the above denition,

i. The Jacobian , Jf of f is given by

which is positive, and therefore, every non-constant log-
harmonic mapping is sense-preserving and open in ⅅ:

ii. If f is a non-vanishing log-harmonic mapping in ⅅ; then f can 
be expressed as

where h(z) and g(z) are non-vanishing analytic functions in ⅅ:

iii. if f vanishes at z = 0 but is not identically zero, then such a 
mapping f admits the following representation

Remark 2 (The previous Conjecture). Let f(z) = p(z)+q(z), 
where degq(z) = m and degp(z) = n, satisfy f(z) → ∞ as z → ∞ 
[5]. By conjugating f(z), if necessary, we may assume that n > 
m. For m = n and m = n−1 it has been shown that the valence 
bound n2 to be sharp, but for m < n−1 it would be surprising if it 
were still possible to obtain n2 valence.The correct bound is m(m 
− 1) + 3n − 2 for 1 < m < n − 1. For m = 1 this becomes z+h(z) 
is at most 3n−2 valent, or equivalently, that the number of fixed 
points of the conjugate of an analytic polynomial of degree n is 
at most 3n−2.

Theorem 1.2. [9] If p(z) is a non constant complex polynomial, 
then p has a zero in the complex field ℂ:

As an immediate consequence of the Fundamental Theorem of 
Algebra, if p(z) is a polynomial and a1; a2; ...., am are its zeros 
with aj having multiplicity kj ; then

for some constant c and k1 + k2 + .... + km is the degree of p:

Theorem 1.3. Let f and g be relatively prime polynomials in the 
real variables x and y with real coecients, and let degh = n and 
degg = m: Then the two algebraic curves f(x; y) = 0 and g(x; y) 
= 0 have at most mn points in common [14].

A Bezout's theorem is very useful to bound the number of zeros 
of complex-valued harmonic polynomials.

Theorem 1.4. For a harmonic polynomial f(z) = p(z) + q(z) with 
real coefficients, the equation f(z) = 0 has at most n2−n solutions 
that satisfy (Rez)(Imz) = 0 where degp = n > m = degq [12].

If we consider p(z) = zn +(z−1)n and q(z) = zn −(z−1)n, then f(z) 
= p(z)+q(z) has n2 number of roots including the root at 0 with 
the multiplicity n. In fact, this is the polynomial that Wilmshurst 
used (with a slight perturbation to split the multiple root at the 
origin) to show that the maximal bound n2 is sharp. This is 
the reason why in Theorem 1.4 we only consider roots of the 
coordinate axes and it yields that the harmonic polynomial with 
real coefficients and with the maximal n2 number of roots should 
have at least n roots on the coordinate axes.

Theorem 1.5. Let f be a function harmonic in the (entire) complex 
plane. If            > 0, then f has finitely many zeros [4].

Theorem 1.6. If f(z) = p(z) + q(z) is a harmonic polynomial such 
that degp = n > m = degq and            then f(z) has at most n2 
zeros [4].

The proof of this result can also readily follows from Bezout’s 
theorem.
The following result is stated and peoved in [Theorem 1] [13].

Theorem 1.7. Let q(z) = z − p(z), where p(z) is an analytic 
polynomial with condition degp = n > 1. Then Zq ≤ 3n − 2.

2. Result 
Our main result is the following.

Theorem 2.1. Let f(z) = p(z)q(z), where p(z) is an analytic 
polynomial of degree n and q(z) is an analytic polynomial of 
degree m, and let q(z) = αp(z) for some constant
α. Then Zf ≤ m + n.

Proof. Since p(z) is an analytic polynomial of degree n and q(z) 
is an analytic poly-nomial of degree m; we have a power series 
representations:

the family of complex-valued harmonic functions f = u + iv defined in the unit disk
D = {z : |z| < 1}, where u and v are real harmonic in D.

Lewy’s Theorem stipulates that if f is a complex valued harmonic function that is
locally univalent in a domain D ⊂ C, then its Jacobian , Jf (z), never vanish for all
z ∈ D. For more information we can refer to [16]. As an immediate consequence of

Lewy’s Theorem, a complex valued harmonic function f(z) = h(z) + g(z) is locally
univalent and sense-preserving if and only if h′(z) �= 0 and |ω(z)| < 1, where ω(z) is a

dilatation function of f defined by ω(z) = g′(z)
h′(z) .

Determining the number of zeros of complex-valued harmonic polynomial is an inter-
esting research area in complex analysis. Suppose f is a polynomial function of degree
n in two variables and let Zf denote the number of zeros of f, that is, number of
points z ∈ C satisfying f(z) = 0. Then for n > m, we have n ≤ Zf ≤ n2. The lower
bound is based on the generalized argument principle and is sharp for each m and
n. The upper bound follows from applying Bezouts theorem to the real and imagi-
nary parts of f(z) = 0 after noticing that the zeros are isolated, which was shown by
Wilmshurst [17] and this upper bound is sharp in general. For instance as illustrated
by Wilmshurst in the same paper,

(
1
i

)n
Q
(
iz + 1

2

)
is a polynomial with n2 zeros where

Q(z) = zn + (z − 1)n + izn − i(z − 1)n. But it is natural to ask whether or not it can
be improved for some interesting special classes of polynomials.

Wilmshurst [10] considered the cases of complex-valued harmonic polynomials of the

form f(z) = p(z)+q(z). If degp = n > m = degq, then as to the question of improving
the bound Zf ≤ n2 given additional information, Wilmshurst made the conjecture
Zf ≤ 3n− 2 +m(m− 1). This conjecture is stated in [17]. It is also among the list of
open problems in[6]. For m = n− 1 the upper bound follows from Wilmshurst’s theo-
rem and examples were also given in [17] showing that this bound is sharp. For m = 1,
the upper bound was proved by D.Khavinson and G.Swiatek [8], and bound was also
sharp. For m = n− 3, the conjectured bound is 3n− 2 +m(m− 1) = n2 − 4n+ 10.
Using techniques of complex dynamics, it is still possible to improve for some special
harmonic polynomials of the form f(z) = p(z)q(z), where p(z) is an analytic polyno-
mial of degree n and q(z) is an analytic polynomial of degree m, and q(z) �= αp(z) for
some constant α. The valency of this type of function is an open problem in [6] and
we solve it here.

Definition 1.1. [1] Let D be an open unit disk in the complex plane C. Denote by
H(D) the linear space of all analytic functions in D, and let B(D) be the set of all
functions ω(z) ∈ H(D) satisfying |ω(z)| < 1, z ∈ D. A non-constant function f is
said to be logharmonic in D if f is the solution of the nonlinear elliptic differential
equation

fz(z) = ω(z)

(
f(z)

f(z)

)
fz(z)

where ω ∈ B(D) and the function ω(z) is called the second dilatation of f.

Remark 1. For f(z) as in the above definition,
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i. The Jacobian , Jf of f is given by

Jf = |fz|2 − |fz|2 = |fz|(1− |ω|2), (1)

which is positive, and therefore, every non-constant log-harmonic mapping is
sense-preserving and open in D.

ii. If f is a non-vanishing log-harmonic mapping in D, then f can be expressed as

f(z) = h(z)g(z),

where h(z) and g(z) are non-vanishing analytic functions in D.
iii. if f vanishes at z = 0 but is not identically zero, then such a mapping f admits

the following representation

f(z) = z|z|2βh(z)g(z),

where Reβ > −1
2 , h, g ∈ H(D), h(0) �= 0 and g(0) = 1, see [2].

Remark 2 (The previous Conjecture). [10] Let f(z) = p(z)+q(z), where degq(z) = m
and degp(z) = n, satisfy f(z) → ∞ as z → ∞. By conjugating f(z), if necessary, we
may assume that n > m. For m = n and m = n−1 it has been shown that the valence
bound n2 to be sharp, but for m < n− 1 it would be surprising if it were still possible
to obtain n2 valence.The correct bound is m(m− 1) + 3n− 2 for 1 < m < n− 1. For
m = 1 this becomes z+h(z) is at most 3n−2 valent, or equivalently, that the number
of fixed points of the conjugate of an analytic polynomial of degree n is at most 3n−2.

Theorem 1.2. [9] If p(z) is a non constant complex polynomial, then p has a zero in
the complex field C.

As an immediate consequence of the Fundamental Theorem of Algebra, if p(z) is a
polynomial and a1, a2, ..., am are its zeros with aj having multiplicity kj , then

p(z) = c(z − a1)
k1(z − a2)

k2 ...(z − am)km

for some constant c and k1 + k2 + ...+ km is the degree of p.

Theorem 1.3. [14] Let f and g be relatively prime polynomials in the real variables
x and y with real coefficients, and let degh = n and degg = m. Then the two algebraic
curves f(x, y) = 0 and g(x, y) = 0 have at most mn points in common.

A Bezout’s theorem is very useful to bound the number of zeros of complex-valued
harmonic polynomials.

Theorem 1.4. [12] For a harmonic polynomial f(z) = p(z) + q(z) with real coeffi-
cients, the equation f(z) = 0 has at most n2−n solutions that satisfy (Rez)(Imz) �= 0
where degp = n > m = degq.

If we consider p(z) = zn+(z−1)n and q(z) = zn− (z−1)n, then f(z) = p(z)+ q(z)
has n2 number of roots including the root at 0 with the multiplicity n. In fact, this is
the polynomial that Wilmshurst used (with a slight perturbation to split the multiple
root at the origin) to show that the maximal bound n2 is sharp. This is the reason
why in Theorem 1.4 we only consider roots of the coordinate axes and it yields that
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the harmonic polynomial with real coefficients and with the maximal n2 number of
roots should have at least n roots on the coordinate axes.

Theorem 1.5. [17] Let f be a function harmonic in the (entire) complex plane. If
liminfz→∞|f | > 0, then f has finitely many zeros.

Theorem 1.6. [17] If f(z) = p(z) + q(z) is a harmonic polynomial such that degp =
n > m = degq and limz→∞ f(z) = ∞, then f(z) has at most n2 zeros.

The proof of this result can also readily follows from Bezout’s theorem.

The following result is stated and peoved in [13, Theorem 1].

Theorem 1.7. Let q(z) = z − p(z), where p(z) is an analytic polynomial with con-
dition degp = n > 1. Then Zq ≤ 3n− 2.

2. RESULT

Our main result is the following.

Theorem 2.1. Let f(z) = p(z)q(z), where p(z) is an analytic polynomial of degree n
and q(z) is an analytic polynomial of degree m, and let q(z) �= αp(z) for some constant
α. Then Zf ≤ m+ n.

Proof. Since p(z) is an analytic polynomial of degree n and q(z) is an analytic poly-
nomial of degree m, we have a power series representations:

p(z) =

n∑
k=0

akz
k and q(z) =

m∑
j=0

bjz
j .

Then by the Fundamental Theorem of Algebra, we can decompose p(z) and q(z) as

p(z) = β(z − a1)(z − a2)...(z − an) and q(z) = γ(z − b1)(z − b2)...(z − bm).

This directly implies that p(z) has at most n distinct complex roots and q(z) has at
most m distinct complex roots. It then follows from

f(z) = (βγ)(z − a1)(z − a2)...(z − an)︸ ︷︷ ︸
≤n distinct zeros

(z − b1)(z − b2)...(z − bm)︸ ︷︷ ︸
≤m distinct zeros

.

︸ ︷︷ ︸
≤n+m distinct zeros.

It is not surprising that q(z) and q(z) have the same number of zeros. Therefore,
Zf ≤ m+ n.

3. SHARPNESS OF THE BOUND

Example 3.1. f(z) = |z|2z+ z is a complex-valued function and can be rewritten as
f(z) = (z2+1)(z). In our case, p(z) = z2+1 and q(z) = z. We have here, z = i, z = −i
and z = 0 are the three distinct zeros of f. Therefore, the valency Zf ≤ m+n is sharp.
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This directly implies that p(z) has at most n distinct complex roots and q(z) has at most m distinct complex roots. It then follows from

It is not surprising that q(z) and q(z) have the same number of 
zeros. Therefore, Zf ≤ m + n.
	
3. Sharpness of the Bound 
Example 3.1. f(z) = |z|2z + z is a complex-valued function and can 
be rewritten as f(z) = (z2+1)(z). In our case, p(z) = z2+1 and q(z) = 
z. We have here, z = i,z = −i and z = 0 are the three distinct zeros 
of f. Therefore, the valency Zf ≤ m+n is sharp.

4. Conclusion 
In this paper we have determined the maximum number of the 
zeros of harmonic polynomial of the form f(z) = p(z)q(z), where 
p(z) is an analytic polynomial of degree n and q(z) is an analytic 
polynomial of degree m, and q(z) ≠ αp(z) for some constant α. 
The result shows that the valence of f(z) is m + n [14-17].
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