
 Volume 2 | Issue 6 | 216J Math Techniques Comput Math, 2023

Citation: Vincent, Ng. (2023). Rust vs C++, a Battle of Speed and Efficiency. J Math Techniques Comput Math, 2(6), 216-
220.

Rust vs C++, a Battle of Speed and Efficiency

*Corresponding Author
Vincent Ng, Computer Science St Joseph International School Kuala Lumpur,
57000, Malaysia.

Submitted: 2023, May 18; Accepted: 2023, Jun 17; Published: 2023, June 21

Vincent Ng*

Computer Science St Joseph International School Kuala
Lumpur, 57000, Malaysia.

Abstract
This study compares the performance of two excellent options for system-level development, the programming
languages C++ and Rust. Through a series of tests and experiments using socket servers and various algorithms, this
experiment analyses the speed and efficiency of code written in each language by looking at variables like memory
management, and compilation times. The findings reveal that Rust has a number of advantages over C++, including
quicker compilation times, improved memory safety, and in many situations equivalent or better performance. C++
still performs exceptionally well in several fields, nevertheless, such as low-level hardware programming and backward
compatibility. Overall, the results indicate that Rust is a strong candidate for systems programming jobs, especially for
new projects or those requiring a high level of performance and security.

Research Article

Keywords: Rust, C++, Algorithms, Benchmarking, Compiler, Memory Safety.

1. Introduction
Rust and C++ differ from each other primarily in terms of
efficiency and speed. Rust has established itself as a rival to C++
over the past few years. These factors are particularly crucial
for system-level programmes like socket servers, encryption
algorithms, and even hardware, where even the smallest
performance improvements can have a significant impact on
overall system performance. Understanding the performance
disparities between Rust and C++ and how these languages
compare in terms of their capacity to generate quick and effective
code is therefore of great importance.

1.1 Purpose
This project’s main purpose is to compare how well Rust
performs in direct comparison to its peers such as C++ by
developing similar applications and pushing Rust and C++ to
their limits with sorting algorithms.

1.2 Problem Statement
The aim of this piece of research is to answer the question: Is
Rust or C++ better for performance-based applications?

1.3 Context
My machine is a 2020 Macbook Air with the M1 Chip (8GB
ram), I will be using Rust 1.66.0 and C++ 17 to do the tests. The
M1 chip has 8 cores which are sufficient for experimenting.

1.4 Project Scope
Performance measurements (execution time, compilation time)

and implementation complexity (lines of code) will be used to
assess which language is most appropriate. In this project, I’ll
write an identical programme in both C++ and Rust as a case
study. I’ll quantify software complexity using LOC (lines of
code).

1.5 Outline
In Chapter 2 ‘Method’ I detail the exact implementations of our
programs and how the results are produced. Chapter 3 ‘Results’
presents these results which are then discussed in Chapter 5 ‘The
Analysis’. Chapter 6 ‘The Conclusion’ presents my conclusion.

2. Experiment
2.1 Method
To compare the two languages, testing sorting algorithms like
Counting Sort and Bubble Sort against large inputs will be one of
our methods to measure software complexity and performance.
To avoid advantages/disadvantages given by certain external
libraries in each respective language, all code will be written
using their default built-in libraries.

2.2 Measurements
In this experiment, I will be using the time unix command built-
in Linux with some flags to get the compilation time, as for CPU/
memory consumption measurements I’ll be using Gtime on Mac
(GNU-time). As for LOC, I’ll be just simply counting the lines
of code used to create the program (not including blank lines and
comments). The exact command used can be seen in Figure 1.

Journal of Mathematical Techniques and Computational Mathematics
ISSN: 2834-7706

Volume 2 | Issue 6 | 217J Math Techniques Comput Math, 2023

To ensure maximum performance and disadvantages of using
system libraries for benchmarking, I decided not to include
benchmarking the program in the code itself and instead use
an external program to benchmark the program as I believe it
is more accurate and fair that way. Other than that, to get an

accurate representation the same programs will be run multiple
times and an average will be taken to compare. To summarise,
measurements will be separated into two categories, Category
1, Software Complexity (LOC), and Category 2, Software
Performance (Compilation Time, Execution Time).

Figure 1: Command Used for Measurements

2.3 Code Used
2.3.1 Counting Sort
I will first explain Counting Sort before showing the code.
Counting Sort has a time-space complexity of O(n+k). Counting
Sort works by counting unique elements in an array; the
algorithm makes sure that each element is in a specified range, it
then creates a count array to store the number of occurrences of
each element in the input array. The count array is then modified
such that each element at index I stores the sum of the previous
elements, giving the starting index for each element in the sorted

output array. A separate output array is created to store the sorted
elements, the input array is iterated over and over resulting in a
sorted result array, refer to the pseudocode to see how it should
look in code. For my Rust code for this implementation refer to
Figure 2. As for my C++ implementation look at Figure 3. The
way I came out with these pieces of code is I would write my own
version of the sorting algorithm and consider other developers’
implementation of a similar algorithm and make changes to my
code to fully optimise the program.

Figure 2: Pseudocode for Counting Sort

Figure 3: Code for Rust Implementation of Counting Sort

Volume 2 | Issue 6 | 218J Math Techniques Comput Math, 2023

Figure 4: Code for C++ Implementation of Counting Sort

2.4 Bubble Sort
Like previously I will explain the Bubble Sort algorithm before
I show the code; Bubble sort works via comparing adjacent
elements in an array and swapping them if they are not in the
correct order. The algorithm iterates over every index with the

same checks until in the end there is a sorted list left. Refer to
the pseudocode below to get a better view of how it should look
in code. The code for Rust and the C++ implementation can be
seen below in the pseudocode

Figure 5: Pseudocode for Bubble Sort

Volume 2 | Issue 6 | 219J Math Techniques Comput Math, 2023

2.5 Results/Discussion
Below are the results of the experiment, it is evident that C++
is slightly more efficient than Rust in terms of Compilation
Performance and Execution Performance. Though the difference
is not as much, it can make a massive difference in performance
for programs with larger scales like a search engine or a machine
learning algorithm. In every single algorithm, C++ managed to

outperform Rust even when the C++ code is not as optimised
as the Rust code. This can be regarded as the fact that Rust
implements a lot of memory safety features such as bound
checking, ownership, mutability etc. These functions can lead
to slightly slower execution times compared to C++ with less
memory safety, compilation times are also affected by the same
factors.

Languages Memory Used
(kb)
(Compilation)

Memory Used
(kb)
(Execution)

Compilation Time
(seconds)

Execution Time
(seconds)

LOC
(Lines of Code)

Rust 109392 1621 0.82s 0.011s 26
C++ 77301 1504 0.14s 0.005s 49

Languages Memory Used
(kb)
(Compilation)

Memory Used
(kb)
(Execution)

Compilation Time
(seconds)

Execution Time
(seconds)

LOC
(Lines of Code)

Rust 112384 1584 0.655 0.003 27
C++ 66576 1424 0.499 0.002 38

Table 1: Results for Counting Sort Algorithm

As seen in terms of performance for the Counting Sort algorithm
C++ is outperforming Rust by a little bit, this difference expands
more though with bigger volumes of inputs example 1,000,000

numbers. Below is the table for the Bubble Sort algorithm. Once
again C++ is outperforming Rust in terms of performance but in
this case, the difference is actually

pretty small which shocked me as I expected more difference
in terms of execution time, but turns out they’re pretty close. In
terms of code complexity, Rust wins against C++ because Rust

has so many built-in functions in the standard library that just
makes writing code for these types of programs easier.

Volume 2 | Issue 6 | 220J Math Techniques Comput Math, 2023

To justify why Rust always uses significantly more memory
when compiling, it’s because when Rust compiles to an
executable it optimises the program for runtime execution which
is why it uses more system resources compared to C++ whose
compiler doesn’t optimise its executable as much as Rust. Other
than that, as mentioned before Rust implements many memory
safety functions which is one of the main factors into why it
takes slightly longer to compile and execute.

3. Summary
To answer the question of which language is better for
performance-based applications, both Rust and C++ are fantastic
options for performance-based applications, but each language
has advantages and disadvantages. I believe that C++ is better
suited for low-level performance-based applications like firmware
for washing machines, whereas Rust is better suited for high-
level sophisticated performance-based applications like search
engines. Rust is simpler to develop complicated systems with
than C++ because it has a better "crate" environment and more
memory safety features. Rust’s simplicity of implementation,
which may make code straightforward and simple to manage, is
one of its major advantages. For example, when I was making
the program for Counting Sort, I tried to translate the C++ code
directly into Rust, I looked around the system library and realised
that there was another way to implement the same algorithm
shorter and easier with built-in functions.

However, as the Rust compiler compels programmers to write
"safe" code, and more debugging and programme modifications
result, Rust’s emphasis on safety can occasionally have an
adverse effect on development productivity [1]. Moreover, multi-

threading is difficult in Rust because of ownership limitations
and mutability. As there are fewer memory safety mechanisms in
C++, it enables greater flexibility and gives programmers more
control over memory management and optimisation. In low-
level applications, where programmers must optimise code for
certain hardware, this flexibility might be helpful.

Rust’s "cargo" tool, which comes pre-packaged with building,
testing, and benchmarking, makes development simpler and is
another benefit for high-level complicated systems [2]. The greater
selection of libraries, tools, and frameworks offered by C++,
however, makes it more appropriate for particular applications.
In the end, the demands of the project and development team
will determine whether Rust or C++ should be used. Developers
ought to take into account elements like performance, safety,
adaptability, simplicity of use and accessible information and
tools before selecting the language for their project. In general,
C++ may be a better option for those who value flexibility and
control over memory flow, whereas Rust may be a better option
for those who place a higher priority on safety and simplicity of
implementation, but as Rust improves as a language, there might
be a day where Rust can overtake C++ completely and become
the head of programming as Rust is mostly criticised for its lack
of maturity.

References
1. Bugden, W., & Alahmar, A. (2022). Rust: The programming
language for safety and performance. arXiv preprint
arXiv:2206.05503.
2. MCFALLS, D. (2017). Concurrent algorithms and data
structures in c++ and rust. Technical report, Stanford University.

Copyright: ©2023 Vincent Ng. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

https://opastpublishers.com

https://doi.org/10.48550/arXiv.2206.05503
https://doi.org/10.48550/arXiv.2206.05503
https://doi.org/10.48550/arXiv.2206.05503

