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Abstract
The South African rail industry is seeking a critical measure to monitor and save energy usage in the freight rail sector. The 
rail industry is experiencing increasing operational costs and high energy consuming driving records along various coal lines. 
Eco-driving is a modern and efficient way of driving that emphasizes fuel efficiency, speed, and safety. This study provides an 
algorithm to find the optimal trajectory for a freight train hauling a load over a specific distance. Optimized speed profile is 
composed of optimal acceleration, coasting, and deceleration. The Freight Eco-Driving Energy Optimizer (FEDEO) solution is 
not yet applied to freight trains globally, especially in Africa. In this study, the eco-driving strategy of a freight train is formulated 
as an optimization problem, whose objective function is the energy cost. The decision variables are the tractive and braking effort 
notches, and the speed, acceleration and distance limits are formulated as constraints. The formulated eco-driving problem is 
solved by Mixed-Integer Non-Linear Programming (MINLP) from the Opti Solver toolbox. The FEDEO algorithm is applied to 
a train consisting of eight 19E locomotives with two-hundred CCR-9 wagons, over a distance of 90.64 km. The results show up 
to 34.76% reduction in energy costs.

Nevin George, Center of New Energy Systems Department of Electrical 
Electronic and Computer Engineering University of Pretoria Pretoria 
0002 South Africa.

1. Introduction
Eco-driving is a driving practice that focuses on economical, eco-
logical and safe driving, and these factors ensure that rail transpor-
tation is an efficient mode of transport [1, 2]. This study focuses 
on the economical aspect of freight train energy usage by devel-
oping the FEDEO. The FEDEO algorithm aims to find the optimal 
eco-driving speed profile that uses minimal energy, such that the 
train driver can follow an optimal and guided profile. The main 
constraints in developing such a profile are the route profile, speed 
restrictions and the notches required at critical velocity regions [3]. 
The FEDEO solution consists of mixed control and state variable 
constraints that require a decision-making formulation regarding 
the tractive and braking effort notches. The aim of the FEDEO 
algorithm is to build up acceleration on downward sections and 
cruise at the optimal velocity setpoint. The energy usage of the 
train depends on various physical factors such as track condition, 
weather, traction efficiency, and track stability. This study focuses 
on the energy optimization of the velocity trajectory. Driving be-
haviors such as rapid acceleration, braking, and speeding waste 
considerable energy. On a track with varying slopes, it is required 
to drive in an economically optimal manner by anticipating the 
state of the train at fixed intervals of the route profile [4]. Tra-
ditional optimal methods use an acceleration cruise coast-brake 
energy optimization strategy [5]. The FEDEO solution aims to use 
the lowest tractive energy possible, less stop-start driving and effi-
cient driving. The principles of the FEDEO solution include eco-

nomical driving, prediction of the ideal trajectory, and the efficient 
use of train momentum. The core objectives of the FEDEO are 
to increase awareness of eco-driving within the freight sector and 
provide a complete monitoring profile that the driver can use to 
traverse from one station to the next. Primarily, this study formu-
lates the ideal trajectory of the train without any notch changes that 
would be similar to electric vehicles (EVs) with acceleration and 
braking [6]. Secondly, the ideal profile from the first part will be 
used to minimize the speed changes that the train experiences over 
a varying gradient. Lastly, a Mixed-Integer Non-Linear Program-
ming (MINLP) is used to solve the eco-driving problem using the 
‘Opti’ toolbox [1]. The train consisting of eight 19E locomotives 
and 200 CCR-9 wagons is highly energy-consuming train. This 
study optimizes the notch profile and simulates the optimal speed 
using real-time data [7].

This study incorporates several novel aspects, including:
1. The FEDEO algorithm only uses the route profile data: the ele-
vation and distance, which can be generalized to any other routes.
2. The FEDEO algorithm applies to any train or locomotive with 
wagons whose average, minimum and maximum speed, accelera-
tion, train mass, time and resistance coefficients are known.
3. The algorithm does not include any power-electronic related 
variables but focuses on driving behavior. The tractive effort usage 
based on the varying notches is formulated and optimized.
4. The FEDEO algorithm has an idealized trajectory using the ap-
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proach in [6] and then uses a discretized approach using notches to 
reduce the section energy usage.

The prediction of instantaneous energy usage under real world 
situations are required. Previous studies have explored the rela-
tionship between energy consumption and vehicle parameters such 
as velocity, acceleration, auxiliary loads, and braking energy re-
generation [8]. With eco-driving, the energy consumption can be 
decreased by 9% on average, reducing travel time by 3% [9, 10, 
11]. The two-train movement regions where the FEDEO algorithm 
can be applied are to the acceleration and braking regions [12]. For 
EV’s, the machine learning methods perform better when operated 
on complicated real-world direct conditions due to the fitness of the 
non-linear relationships, and the accuracy can be greatly improved 
based on iterative studies [13]. To predict the energy consump-
tion of EV’s, two methods classified are data-driven and physical 
models [14, 15]. The forward models take the driver’s operation 
as inputs. Reference [14] proposed an energy consumption model 
that can be calibrated through multi-level and typical least squares 
regression based on the GPS information. For data-driven mod-
els, real-world driving conditions data in tandem with the weather, 
road and traffic conditions can predict EV’s energy consumption 
under complex direct conditions based on machine-learning and 
statistical algorithms [16]. Many vehicles or route parameters need 
to be assumed (or obtained) to use the data-model driven methods. 
Moreover, it becomes highly complex when the data is required 
for a large fleet or vehicles with many varying parameters. All the 
driving condition factors cannot be considered, which may affect 
the model performance. However, methods under real-world con-
ditions are still not common. The focus would rather be on the 
operation for freight trains, which falls under the specific FEDEO 
application.

The FEDEO problem is based on driver behavior, and the algo-
rithm is based on an EV application developed in [6]. The FED-
EO profile aims to reduce the traction energy usage and re-use the 
kinetic energy gained during de-acceleration for vehicle braking 
[4, 17]. Driving behavior, however, is not the only solution for 
improving vehicle energy efficiency. The power electronics aboard 
the locomotive, such as the traction motors, braking resistors, in-
verter, rectifier, and alternator, contribute to the overall energy 
efficiency [18]. It can be concluded that the four main driving 
behavior factors for a vehicle’s energy usage are velocity, notch 
adjustments, acceleration and deceleration changes, and the mag-
nitude of accelerations and decelerations related to the smoothness 
of driving [8].

Standard techniques used in optimal vehicle control have been 
utilized with detailed insight to solve the FEDEO problem. Train 
driving that requires a Driver Advisory System (DAS) has shown 
that the engines or motors prefer an average speed that is not ma-
jorly changing for measuring the overall energy consumption. 
Critical behaviors such as acceleration and deceleration are vital 
factors that cause a sudden increase in the train’s energy consump-

tion; therefore, aggressive driving should be avoided [19]. The two 
principal contexts for solving eco-driving problems are offline and 
online solutions. An offline solution assumes that all route pro-
file position and characteristic dependent constraints are known; 
in contrast, an online solution uses real-time predictions and esti-
mations, based on a train being in the environment. The FEDEO 
algorithm is an offline solution. The energy usage in the FEDEO of 
a train that consists of locomotives, wagons, and coaches is critical 
in considering energy efficiency, operational cost, and fleet reli-
ability [10].

The topology data and the entire road profile are integrated into 
the hybrid electric power-train to offer a vast potential to opti-
mize the control strategy, as noted in [20]. It is unclear whether 
the solutions in various papers obtain the optimal global solution. 
The noticeable exception is where the problem is convex, which 
guarantees that the globally optimal solution exists.

2. Eco-Driving Application
Many scholars have investigated and studied the eco-driving 
strategy of trains. Solutions provided by literature use analytical 
methods that formalize the train dynamic properties. Pontryagin’s 
maximum principle (PMP) is a collection of conditions that must 
be satisfied by solutions of a class of optimization problems. This 
method involves dynamic constraints called optimal control prob-
lems. PMP was used in one study to analyses energy-efficient 
control regimes, which included maximum acceleration, cruising, 
coasting, and maximum braking [21]. In [22], Asnis et al. took 
regenerative braking and adjusted the objective function by ap-
plying PMP. Howlett [23] considered both the continuous and dis-
crete control problem. In the eco-driving solution of the continu-
ous algorithm, PMP was applied to find the necessary conditions 
on an optimal strategy to determine the optimal switching points. 
Kuhn-Tucker equations were used to find the optimal switching 
points in the eco-driving speed tracking control case. This led to 
the conclusion that driving strategies obtained from the discrete 
control model could be used to approximate closely those found by 
the continuous formulation. Policymakers have used these theories 
to justify electric vehicles as a tool for reducing greenhouse gas 
(GHG) emissions.

In countries such as China and the United States of America 
(USA), coal-fired plants contribute critically to electricity genera-
tion, making the environmental impact of EVs higher than that of 
internal combustion engines (ICEs). There has been a 3% electric-
ity usage growth rate over the last 20 years in South Africa, with 
20 GW of additional generation capacity required by 2020 and up 
to 40 GW by 2030 [24]. Globally, the rail environment’s key target 
should be to transition to a lower-carbon economy, and the concern 
in South Africa is that electricity prices are increasing while being 
wholly reliant on Eskom (South Africa’s primary electricity suppli-
er, generating approximately 90% of the electricity used in South 
Africa and approximately 30% of the electricity generated on the 
African continent) for the provision of baseload electricity to pow-
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er operations [25]. South Africa’s freight rail energy policy com-
mitments include improving energy efficiency, proactively manag-
ing and monitoring energy usage, reducing global GHG emissions 
and energy constants, and improving energy security [25, 26]. The 
current and future energy management initiatives include train 
driver training to reduce energy consumption, improving energy 
efficiency, reducing locomotive idling, and optimizing the setup of 
trains. The rail organization known as Transnet Freight Rail (TFR) 
has the most significant energy gains as new locomotive technol-
ogy is introduced into operations, specifically from regenerative 
braking capability on the 19E and 15E class of locomotives on the 
coal and iron ore export lines. The new technology on these lines 
has resulted in significant efficiency gains, with the regenerated 
electricity used partly by the fleet of locomotives and, where pos-
sible, transmitted back into the Eskom grid [27]. South Africa has 
seen studies that address and formulate algorithms related to EVs’ 
eco-driving and contribute to a greener future [17, 24]. One study 
includes improving route profile operational characteristics that 
involve changes to the train-driving behavior, including lowering 
energy usage by methods such as eco-driving [28]. For EVs, an 
analytical state-constrained control is implemented for eco-driv-
ing control in [29, 30]. The global optimal eco-driving of EVs is 
solved through sequential quadratic programming (SQP) [31, 32].

Eco-driving techniques are employed for energy saving DASs, 
which mainly define energy consumption as a cost function to be 
minimized, allowing a more considerable speed control than those 
commonly found in EVs. Other methods are capable of solving 
the problem, such as the PMP, Dynamic Programming (DP) and 
analytical solutions [13]. The advantages are that the PMP meth-
od will find the best possible control for taking a dynamic system 
from one state to another. It is computationally efficient in that the 
natural conditions specify a need to hold over a particular trajec-
tory. The disadvantage of the PMP is that incorporating state con-
straints is not a simple task and provides the required conditions 
for optimality. The DP algorithm has been used to find a globally 
optimal solution to the end problem in [33]. DP solves a discret-
ized version of the operational control problem. It does this by as-
signing independent variables to time, distance, and position, thus 
discretizing state and control spaces. The Hamiltonian analysis in 
shows that only particular types of control variables can be used 
in an optimal strategy [3]. The choice of control is determined by 
the speed and the quantity of the adjoint variables such as gradient 
and position. The DP method has a high computational time and 
creates a reference trajectory for the vehicle’s driver. In contrast, a 
few methods have attempted to derive and use closed-form speed 
trajectories, which provide a Realtime route profile based on the 
behavior of the train at each interval or time-stamp [29].

By developing the FEDEO algorithm, this study aims to provide 
the South African rail industry with a method for creating and iden-
tifying energy-saving route profiles for track sections [17, 34]. The 
ideal option is to assist the driver through technology such as the 
DAS. The FEDEO algorithm will simulate the longitudinal move-

ment of the train using the dynamic equations of motion [35, 36]. 
A locomotive requires tractive effort for propulsion and braking 
effort for slowing down. A large amount of power is necessary for 
propulsion, and the braking element outputs regeneration energy. 
This is the energy from the locomotive wheels to the overhead cat-
enary that trailing locomotives can use. The FEDEO problem will 
search for the local minimum of the speed profile as the critical 
point [37]. FEDEO will formulate the dynamic parameters that will 
contribute to the train’s operational savings over any route profile 
[38]. The FEDEO solution for the train-handling strategy consists 
of static and dynamic parameters where the static is the input (pri-
mary) data in the formulation. Route static parameters, in this case, 
would include the trip distance, speed restrictions, freight train pa-
rameters (force limits, adhesion curves), and gradient profile. The 
decision variables consist of acceleration (or tractive effort), train 
deceleration (or braking effort), and the speed profile from point A 
to B [39]. The principles that the FEDEO governs mainly include 
acceleration, speeding, deceleration, route choice, idling, external 
factors, and stopping [40]. The eco-driving principle outlined by 
the FEDEO narrows down to the driving behaviors or the control a 
driver has over a vehicle. FEDEO aims to minimize energy usage 
by obtaining optimal speed 𝑣∗

𝑗 and engine’s notches.

3. Problem Formulation
The problem originates with the high energy required for freight 
trains to traverse the South African Ermelo-Richards Bay coal line. 
Electricity usage is costly in South Africa, especially for freight 
operation. The route profile force diagram is shown in Figure 1 
below. The traction motors on board the electric locomotive is 
mainly responsible for the propulsion of the train, where the trail-
ing wagons carry the freight (coal). The braking element or rheo-
stat contributes to the energy regeneration parameter. The FEDEO 
algorithm optimizes the energy usage of the train using only the 
route elevation, gradient angle profile, and distance travelled. The 
FEDEO algorithm aims to lower the energy consumption 𝐽 by op-
timizing the travel speed of the train and determining the tractive 
and braking effort 𝑈𝑗𝑡 and 𝑈𝑗𝑏 notches based on this optimal speed. 
The notches and power 𝑃𝑅(𝑡) represent the control variables. The 
state variables are the train acceleration 𝑎𝑗 and speed 𝑣∗

𝑗. The initial 
parameters refer to the train setup, such as the train mass, speed, 
and the resistance coefficients for the route simulation. The FED-
EO problem is presented separately in both continuous time and 
discrete time. The main target of the eco-driving solution is to op-
timize the velocity profile, with the motion limited by longitudinal 
dynamics; lateral dynamics are not considered.

4. FEDEO Formulation for Eco-Driving Solution
This section formulates the FEDEO algorithm as outlined by [1] 
for the continuous optimal route profile. The energy optimization 
is based on 𝐽1 and 𝐽2 shown in Equations (1) and (2), with the criti-
cal route profile parameters described in Sections from 1 to end. A 
continuous-time formulation of the FEDEO algorithm is provided; 
the algorithm aims to minimizes the energy or the integral of the 
power us age optimize the tractive force 𝑢(𝑡) and velocity profile 
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𝑣(𝑡) that given trajectory 𝑃 by the train over a  time period ts  ∈ [t0, 
tf] over a given trajectory s(t) E [s0, sf] with known geographical 

parameters such as gradient profile lamda [1, 6, 41, 42]
Eco-driving for freight trains

𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡) 𝐽𝐽1 =

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡)) 𝑑𝑑𝑑𝑑𝑑 (1)

Equation (2) further develops Equation (1), where 𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣)
is subject to the gravitational constant g from [6]. The
gravity constant, 𝑔𝑔, is 9.8 m/s2, where 𝑡𝑡𝑠𝑠 is the length of the
sampling interval. In Equations (1), (2), and (5),𝑚𝑚 represents
the total mass of the train in 𝑘𝑘𝑘𝑘; 𝑐𝑐𝑟𝑟 represents the rolling
resistance coefficient of the route section, aerodynamic drag
is represented by 𝜎𝜎𝑑𝑑 = 1

2𝑐𝑐𝑑𝑑𝜌𝜌𝑎𝑎𝐴𝐴𝑓𝑓 with 𝑐𝑐𝑑𝑑 being the drag
coefficient, in which 𝜌𝜌𝑎𝑎 denotes the air density in 𝑘𝑘𝑘𝑘∕𝑚𝑚3;
and 𝐴𝐴𝑓𝑓 is the frontal area of the locomotive in 𝑚𝑚2. The
continuous-time optimal control problem is provided by (1)
[1, 39, 43].

𝐽𝐽2 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡)

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣(𝑡𝑡), 𝑚𝑚𝑚𝑚(𝑡𝑡)+𝑓𝑓 (𝑣𝑣(𝑡𝑡), 𝑠𝑠(𝑡𝑡)))𝑑𝑑𝑑𝑑𝑑 (2)

Equation (2) is subject to:
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎(𝑡𝑡), (3)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣(𝑡𝑡). (4)

Equation (5) has been simplified in reference to [1],
where a, s and v are the critical parameters required for
optimisation.

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣𝑣𝑣𝑣𝑣𝑣  + 𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣)) 𝑑𝑑𝑑𝑑 =

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) 𝑑𝑑𝑑𝑑𝑑 (5)

𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣) = 𝜎𝜎𝑑𝑑𝑣𝑣(𝑡𝑡)2 + 𝑐𝑐𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)) +𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)). (6)
Figure 1 describes the gradient angle derivations shown

in Equation (6). The given gradient angle profile is 𝛼𝛼(𝑠𝑠): [𝑠𝑠0,
𝑠𝑠𝑓𝑓 ] -> [−Π2 , Π

2 ], where 𝛼𝛼(𝑠𝑠) is the gradient angle profile
at position 𝑠𝑠(𝑡𝑡); while being subject to longitudinal vehicle
dynamics, non-negative velocity bounds of the route profile
𝑣𝑣(𝑡𝑡) ∈ [𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚] where 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 0 at rest and boundary
conditions on the position and velocity. The inclination angle
𝛼𝛼(𝑠𝑠) has been based on the height difference, dh, versus the
distal difference, ds. H(s) is the elevation profile and 𝑠𝑠′(𝑡𝑡)
represents the horizontal projection of 𝑠𝑠(𝑡𝑡).

Equation (7) is an approximation of Equation (6) for
electric motors because friction losses, energy usage and
ohmic losses are captured by the terms 𝛽𝛽0𝑣𝑣2, 𝛽𝛽1𝑣𝑣𝑣𝑣 and 𝛽𝛽2𝑢𝑢2,
respectively. It has been assumed to be a quadratic function
of the form [1, 6]:

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) = 𝛽𝛽0𝑣𝑣
2 + 𝛽𝛽1𝑣𝑣𝑣𝑣 + 𝛽𝛽2𝑢𝑢

2. (7)

The reformulation of the problem outlined in Section
5 focuses on discrete-time approximations where the non-
convexity is introduced in Equation (7). Equation (8) for
obtaining the train’s energy usage is further derived from
Equations (1) to (7) as:

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) = 𝛽𝛽0𝑣𝑣
2 + 𝛽𝛽1𝜎𝜎𝑑𝑑𝑣𝑣

3+

2𝛽𝛽2𝑚𝑚2𝑔𝑔𝑔𝑔(𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼(𝑠𝑠)) + 𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼(𝑠𝑠))) + 𝛽𝛽2(𝑚𝑚𝑚𝑚)2+

𝛽𝛽2(𝑚𝑚𝑚𝑚 sin(𝛼𝛼(𝑠𝑠)) + 𝜎𝜎𝑑𝑑𝑣𝑣
2, ∗
𝑗𝑗 + 𝑐𝑐𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)))2,

(8)
where:

1. 𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) is the power requirement of the train (kW).
2. 𝑚𝑚 is the mass of the train including load (kg) and 𝑔𝑔 is

the acceleration caused by gravity (m/s2).
3. 𝜎𝜎𝑑𝑑 is the aerodynamic force constant and 𝑐𝑐𝑟𝑟 is the

rolling resistance coefficient for wheel on steel.
4. 𝑎𝑎 (m/s2), 𝑠𝑠 (km) and 𝑣𝑣 (m/s) are the train’s acceleration,

distance and speed at time 𝑡𝑡𝑠𝑠.
5. 𝛽𝛽0, 𝛽𝛽1 and 𝛽𝛽2 are the friction loss coefficient for the

traction motor, braking loss coefficient and the ohmic
loss coefficient of the brake resistors. respectively, of
which the constants are given in Table 1.

Figure 1: Locomotive force diagram against route
characteristics [6]

The FEDEO algorithm solves the eco-driving problem
using MINLP in the Opti-Toolbox solver from MATLAB as
the problem to be optimised is non-linear owing to the use
of the Davis resistance factor. Section 5 describes the train
dynamics, with the aim of lowering energy consumption
by optimising the train notches. The initial formulation of
FEDEO is provided by the eco-driving algorithm in [1],
which is discretised by incorporating the train notches, trac-
tive and braking efforts, and parameter bounds. Minimum
energy usage is calculated through a search of the local
minima using the points where the energy usage is the
lowest. This algorithm is used in the Matlab Opti-Toolbox
solver to optimise the energy usage of the train.

5. FEDEO formulation for eco-driving speed
tracking control
The eco-driving speed optimisation problem formulated

in Section 4 has been discretised to make it solvable. The
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Equation (2) further develops Equation (1), where 𝑓(𝑣, 𝑠) is subject to the gravitational constant g from [6]. The gravity constant, 𝑔, is 
9.8 m/s2, where 𝑡𝑠 is the length of the sampling interval. In Equations (1), (2), and (5), 𝑚 represents the total mass of the train in 𝑘𝑔; 𝑐𝑟 
represents the rolling resistance coefficient of the route section, aerodynamic drag is represented by 𝜎𝑑 = 1/2 Cd, pa, Af  with 𝑐𝑑 being the 
drag coefficient, in which 𝜌𝑎 denotes the air density in 𝑘𝑔∕𝑚3; and 𝐴𝑓 is the frontal area of the locomotive in 𝑚2. The continuous-time 
optimal control problem is provided by (1) [1, 39, 43].	
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𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡) 𝐽𝐽1 =

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡)) 𝑑𝑑𝑑𝑑𝑑 (1)

Equation (2) further develops Equation (1), where 𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣)
is subject to the gravitational constant g from [6]. The
gravity constant, 𝑔𝑔, is 9.8 m/s2, where 𝑡𝑡𝑠𝑠 is the length of the
sampling interval. In Equations (1), (2), and (5),𝑚𝑚 represents
the total mass of the train in 𝑘𝑘𝑘𝑘; 𝑐𝑐𝑟𝑟 represents the rolling
resistance coefficient of the route section, aerodynamic drag
is represented by 𝜎𝜎𝑑𝑑 = 1

2𝑐𝑐𝑑𝑑𝜌𝜌𝑎𝑎𝐴𝐴𝑓𝑓 with 𝑐𝑐𝑑𝑑 being the drag
coefficient, in which 𝜌𝜌𝑎𝑎 denotes the air density in 𝑘𝑘𝑘𝑘∕𝑚𝑚3;
and 𝐴𝐴𝑓𝑓 is the frontal area of the locomotive in 𝑚𝑚2. The
continuous-time optimal control problem is provided by (1)
[1, 39, 43].

𝐽𝐽2 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡)

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣(𝑡𝑡), 𝑚𝑚𝑚𝑚(𝑡𝑡)+𝑓𝑓 (𝑣𝑣(𝑡𝑡), 𝑠𝑠(𝑡𝑡)))𝑑𝑑𝑑𝑑𝑑 (2)

Equation (2) is subject to:
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎(𝑡𝑡), (3)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣(𝑡𝑡). (4)

Equation (5) has been simplified in reference to [1],
where a, s and v are the critical parameters required for
optimisation.

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣𝑣𝑣𝑣𝑣𝑣  + 𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣)) 𝑑𝑑𝑑𝑑 =

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) 𝑑𝑑𝑑𝑑𝑑 (5)

𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣) = 𝜎𝜎𝑑𝑑𝑣𝑣(𝑡𝑡)2 + 𝑐𝑐𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)) +𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)). (6)
Figure 1 describes the gradient angle derivations shown

in Equation (6). The given gradient angle profile is 𝛼𝛼(𝑠𝑠): [𝑠𝑠0,
𝑠𝑠𝑓𝑓 ] -> [−Π2 , Π

2 ], where 𝛼𝛼(𝑠𝑠) is the gradient angle profile
at position 𝑠𝑠(𝑡𝑡); while being subject to longitudinal vehicle
dynamics, non-negative velocity bounds of the route profile
𝑣𝑣(𝑡𝑡) ∈ [𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚] where 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 0 at rest and boundary
conditions on the position and velocity. The inclination angle
𝛼𝛼(𝑠𝑠) has been based on the height difference, dh, versus the
distal difference, ds. H(s) is the elevation profile and 𝑠𝑠′(𝑡𝑡)
represents the horizontal projection of 𝑠𝑠(𝑡𝑡).

Equation (7) is an approximation of Equation (6) for
electric motors because friction losses, energy usage and
ohmic losses are captured by the terms 𝛽𝛽0𝑣𝑣2, 𝛽𝛽1𝑣𝑣𝑣𝑣 and 𝛽𝛽2𝑢𝑢2,
respectively. It has been assumed to be a quadratic function
of the form [1, 6]:

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) = 𝛽𝛽0𝑣𝑣
2 + 𝛽𝛽1𝑣𝑣𝑣𝑣 + 𝛽𝛽2𝑢𝑢

2. (7)

The reformulation of the problem outlined in Section
5 focuses on discrete-time approximations where the non-
convexity is introduced in Equation (7). Equation (8) for
obtaining the train’s energy usage is further derived from
Equations (1) to (7) as:

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) = 𝛽𝛽0𝑣𝑣
2 + 𝛽𝛽1𝜎𝜎𝑑𝑑𝑣𝑣

3+

2𝛽𝛽2𝑚𝑚2𝑔𝑔𝑔𝑔(𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼(𝑠𝑠)) + 𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼(𝑠𝑠))) + 𝛽𝛽2(𝑚𝑚𝑚𝑚)2+

𝛽𝛽2(𝑚𝑚𝑚𝑚 sin(𝛼𝛼(𝑠𝑠)) + 𝜎𝜎𝑑𝑑𝑣𝑣
2, ∗
𝑗𝑗 + 𝑐𝑐𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)))2,

(8)
where:

1. 𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) is the power requirement of the train (kW).
2. 𝑚𝑚 is the mass of the train including load (kg) and 𝑔𝑔 is

the acceleration caused by gravity (m/s2).
3. 𝜎𝜎𝑑𝑑 is the aerodynamic force constant and 𝑐𝑐𝑟𝑟 is the

rolling resistance coefficient for wheel on steel.
4. 𝑎𝑎 (m/s2), 𝑠𝑠 (km) and 𝑣𝑣 (m/s) are the train’s acceleration,

distance and speed at time 𝑡𝑡𝑠𝑠.
5. 𝛽𝛽0, 𝛽𝛽1 and 𝛽𝛽2 are the friction loss coefficient for the

traction motor, braking loss coefficient and the ohmic
loss coefficient of the brake resistors. respectively, of
which the constants are given in Table 1.

Figure 1: Locomotive force diagram against route
characteristics [6]

The FEDEO algorithm solves the eco-driving problem
using MINLP in the Opti-Toolbox solver from MATLAB as
the problem to be optimised is non-linear owing to the use
of the Davis resistance factor. Section 5 describes the train
dynamics, with the aim of lowering energy consumption
by optimising the train notches. The initial formulation of
FEDEO is provided by the eco-driving algorithm in [1],
which is discretised by incorporating the train notches, trac-
tive and braking efforts, and parameter bounds. Minimum
energy usage is calculated through a search of the local
minima using the points where the energy usage is the
lowest. This algorithm is used in the Matlab Opti-Toolbox
solver to optimise the energy usage of the train.

5. FEDEO formulation for eco-driving speed
tracking control
The eco-driving speed optimisation problem formulated

in Section 4 has been discretised to make it solvable. The
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Equation (5) has been simplified in reference to [1], where a, s and v are the critical parameters required for optimization.

Eco-driving for freight trains

𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡) 𝐽𝐽1 =

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡)) 𝑑𝑑𝑑𝑑𝑑 (1)

Equation (2) further develops Equation (1), where 𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣)
is subject to the gravitational constant g from [6]. The
gravity constant, 𝑔𝑔, is 9.8 m/s2, where 𝑡𝑡𝑠𝑠 is the length of the
sampling interval. In Equations (1), (2), and (5),𝑚𝑚 represents
the total mass of the train in 𝑘𝑘𝑘𝑘; 𝑐𝑐𝑟𝑟 represents the rolling
resistance coefficient of the route section, aerodynamic drag
is represented by 𝜎𝜎𝑑𝑑 = 1

2𝑐𝑐𝑑𝑑𝜌𝜌𝑎𝑎𝐴𝐴𝑓𝑓 with 𝑐𝑐𝑑𝑑 being the drag
coefficient, in which 𝜌𝜌𝑎𝑎 denotes the air density in 𝑘𝑘𝑘𝑘∕𝑚𝑚3;
and 𝐴𝐴𝑓𝑓 is the frontal area of the locomotive in 𝑚𝑚2. The
continuous-time optimal control problem is provided by (1)
[1, 39, 43].

𝐽𝐽2 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡)

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣(𝑡𝑡), 𝑚𝑚𝑚𝑚(𝑡𝑡)+𝑓𝑓 (𝑣𝑣(𝑡𝑡), 𝑠𝑠(𝑡𝑡)))𝑑𝑑𝑑𝑑𝑑 (2)

Equation (2) is subject to:
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎(𝑡𝑡), (3)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣(𝑡𝑡). (4)

Equation (5) has been simplified in reference to [1],
where a, s and v are the critical parameters required for
optimisation.

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣𝑣𝑣𝑣𝑣𝑣  + 𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣)) 𝑑𝑑𝑑𝑑 =

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) 𝑑𝑑𝑑𝑑𝑑 (5)

𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣) = 𝜎𝜎𝑑𝑑𝑣𝑣(𝑡𝑡)2 + 𝑐𝑐𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)) +𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)). (6)
Figure 1 describes the gradient angle derivations shown

in Equation (6). The given gradient angle profile is 𝛼𝛼(𝑠𝑠): [𝑠𝑠0,
𝑠𝑠𝑓𝑓 ] -> [−Π2 , Π

2 ], where 𝛼𝛼(𝑠𝑠) is the gradient angle profile
at position 𝑠𝑠(𝑡𝑡); while being subject to longitudinal vehicle
dynamics, non-negative velocity bounds of the route profile
𝑣𝑣(𝑡𝑡) ∈ [𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚] where 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 0 at rest and boundary
conditions on the position and velocity. The inclination angle
𝛼𝛼(𝑠𝑠) has been based on the height difference, dh, versus the
distal difference, ds. H(s) is the elevation profile and 𝑠𝑠′(𝑡𝑡)
represents the horizontal projection of 𝑠𝑠(𝑡𝑡).

Equation (7) is an approximation of Equation (6) for
electric motors because friction losses, energy usage and
ohmic losses are captured by the terms 𝛽𝛽0𝑣𝑣2, 𝛽𝛽1𝑣𝑣𝑣𝑣 and 𝛽𝛽2𝑢𝑢2,
respectively. It has been assumed to be a quadratic function
of the form [1, 6]:

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) = 𝛽𝛽0𝑣𝑣
2 + 𝛽𝛽1𝑣𝑣𝑣𝑣 + 𝛽𝛽2𝑢𝑢

2. (7)

The reformulation of the problem outlined in Section
5 focuses on discrete-time approximations where the non-
convexity is introduced in Equation (7). Equation (8) for
obtaining the train’s energy usage is further derived from
Equations (1) to (7) as:

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) = 𝛽𝛽0𝑣𝑣
2 + 𝛽𝛽1𝜎𝜎𝑑𝑑𝑣𝑣

3+

2𝛽𝛽2𝑚𝑚2𝑔𝑔𝑔𝑔(𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼(𝑠𝑠)) + 𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼(𝑠𝑠))) + 𝛽𝛽2(𝑚𝑚𝑚𝑚)2+

𝛽𝛽2(𝑚𝑚𝑚𝑚 sin(𝛼𝛼(𝑠𝑠)) + 𝜎𝜎𝑑𝑑𝑣𝑣
2, ∗
𝑗𝑗 + 𝑐𝑐𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)))2,

(8)
where:

1. 𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) is the power requirement of the train (kW).
2. 𝑚𝑚 is the mass of the train including load (kg) and 𝑔𝑔 is

the acceleration caused by gravity (m/s2).
3. 𝜎𝜎𝑑𝑑 is the aerodynamic force constant and 𝑐𝑐𝑟𝑟 is the

rolling resistance coefficient for wheel on steel.
4. 𝑎𝑎 (m/s2), 𝑠𝑠 (km) and 𝑣𝑣 (m/s) are the train’s acceleration,

distance and speed at time 𝑡𝑡𝑠𝑠.
5. 𝛽𝛽0, 𝛽𝛽1 and 𝛽𝛽2 are the friction loss coefficient for the

traction motor, braking loss coefficient and the ohmic
loss coefficient of the brake resistors. respectively, of
which the constants are given in Table 1.

Figure 1: Locomotive force diagram against route
characteristics [6]

The FEDEO algorithm solves the eco-driving problem
using MINLP in the Opti-Toolbox solver from MATLAB as
the problem to be optimised is non-linear owing to the use
of the Davis resistance factor. Section 5 describes the train
dynamics, with the aim of lowering energy consumption
by optimising the train notches. The initial formulation of
FEDEO is provided by the eco-driving algorithm in [1],
which is discretised by incorporating the train notches, trac-
tive and braking efforts, and parameter bounds. Minimum
energy usage is calculated through a search of the local
minima using the points where the energy usage is the
lowest. This algorithm is used in the Matlab Opti-Toolbox
solver to optimise the energy usage of the train.

5. FEDEO formulation for eco-driving speed
tracking control
The eco-driving speed optimisation problem formulated

in Section 4 has been discretised to make it solvable. The
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Figure 1 describes the gradient angle derivations shown in Equa-
tion (6). The given gradient angle profile is 𝛼(𝑠): [𝑠0, 𝑠𝑓] -> [−Π, Π], 
where 𝛼(𝑠) is the gradient angle profile at position  𝑡; while being 
subject to longitudinal vehicle dynamics, non-negative velocity 
bounds of the route profile 𝑣(𝑡) ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥] where 𝑣𝑚𝑖𝑛 = 0 at rest 
and boundary conditions son the position and velocity.The inclina-
tion angle conditions α(s) has been based on the height difference, 
dh, versus the distal difference, ds. H(s) is the elevation profile and 
s′(t) represents the horizontal projection of s(t).

Equation (7) is an approximation of Equation (6) for electric mo-
tors because friction losses, energy usage and ohmic losses are 
captured by the terms β0v

2, β1vu and β2u
2,respectively. It has been 

assumed to be a quadratic function of the form [1, 6]:

The reformulation of the problem outlined in Section 5 focuses 
on discrete-time approximations where the nonconvexity is intro-
duced in Equation (7). Equation (8) for obtaining the train’s energy 
usage is further derived from Equations (1) to (7) as:	

Eco-driving for freight trains

𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡) 𝐽𝐽1 =

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡)) 𝑑𝑑𝑑𝑑𝑑 (1)

Equation (2) further develops Equation (1), where 𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣)
is subject to the gravitational constant g from [6]. The
gravity constant, 𝑔𝑔, is 9.8 m/s2, where 𝑡𝑡𝑠𝑠 is the length of the
sampling interval. In Equations (1), (2), and (5),𝑚𝑚 represents
the total mass of the train in 𝑘𝑘𝑘𝑘; 𝑐𝑐𝑟𝑟 represents the rolling
resistance coefficient of the route section, aerodynamic drag
is represented by 𝜎𝜎𝑑𝑑 = 1

2𝑐𝑐𝑑𝑑𝜌𝜌𝑎𝑎𝐴𝐴𝑓𝑓 with 𝑐𝑐𝑑𝑑 being the drag
coefficient, in which 𝜌𝜌𝑎𝑎 denotes the air density in 𝑘𝑘𝑘𝑘∕𝑚𝑚3;
and 𝐴𝐴𝑓𝑓 is the frontal area of the locomotive in 𝑚𝑚2. The
continuous-time optimal control problem is provided by (1)
[1, 39, 43].

𝐽𝐽2 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡)

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣(𝑡𝑡), 𝑚𝑚𝑚𝑚(𝑡𝑡)+𝑓𝑓 (𝑣𝑣(𝑡𝑡), 𝑠𝑠(𝑡𝑡)))𝑑𝑑𝑑𝑑𝑑 (2)

Equation (2) is subject to:
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎(𝑡𝑡), (3)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣(𝑡𝑡). (4)

Equation (5) has been simplified in reference to [1],
where a, s and v are the critical parameters required for
optimisation.

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣𝑣𝑣𝑣𝑣𝑣  + 𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣)) 𝑑𝑑𝑑𝑑 =

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) 𝑑𝑑𝑑𝑑𝑑 (5)

𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣) = 𝜎𝜎𝑑𝑑𝑣𝑣(𝑡𝑡)2 + 𝑐𝑐𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)) +𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)). (6)
Figure 1 describes the gradient angle derivations shown

in Equation (6). The given gradient angle profile is 𝛼𝛼(𝑠𝑠): [𝑠𝑠0,
𝑠𝑠𝑓𝑓 ] -> [−Π2 , Π

2 ], where 𝛼𝛼(𝑠𝑠) is the gradient angle profile
at position 𝑠𝑠(𝑡𝑡); while being subject to longitudinal vehicle
dynamics, non-negative velocity bounds of the route profile
𝑣𝑣(𝑡𝑡) ∈ [𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚] where 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 0 at rest and boundary
conditions on the position and velocity. The inclination angle
𝛼𝛼(𝑠𝑠) has been based on the height difference, dh, versus the
distal difference, ds. H(s) is the elevation profile and 𝑠𝑠′(𝑡𝑡)
represents the horizontal projection of 𝑠𝑠(𝑡𝑡).

Equation (7) is an approximation of Equation (6) for
electric motors because friction losses, energy usage and
ohmic losses are captured by the terms 𝛽𝛽0𝑣𝑣2, 𝛽𝛽1𝑣𝑣𝑣𝑣 and 𝛽𝛽2𝑢𝑢2,
respectively. It has been assumed to be a quadratic function
of the form [1, 6]:

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) = 𝛽𝛽0𝑣𝑣
2 + 𝛽𝛽1𝑣𝑣𝑣𝑣 + 𝛽𝛽2𝑢𝑢

2. (7)

The reformulation of the problem outlined in Section
5 focuses on discrete-time approximations where the non-
convexity is introduced in Equation (7). Equation (8) for
obtaining the train’s energy usage is further derived from
Equations (1) to (7) as:

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) = 𝛽𝛽0𝑣𝑣
2 + 𝛽𝛽1𝜎𝜎𝑑𝑑𝑣𝑣

3+

2𝛽𝛽2𝑚𝑚2𝑔𝑔𝑔𝑔(𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼(𝑠𝑠)) + 𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼(𝑠𝑠))) + 𝛽𝛽2(𝑚𝑚𝑚𝑚)2+

𝛽𝛽2(𝑚𝑚𝑚𝑚 sin(𝛼𝛼(𝑠𝑠)) + 𝜎𝜎𝑑𝑑𝑣𝑣
2, ∗
𝑗𝑗 + 𝑐𝑐𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)))2,

(8)
where:

1. 𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) is the power requirement of the train (kW).
2. 𝑚𝑚 is the mass of the train including load (kg) and 𝑔𝑔 is

the acceleration caused by gravity (m/s2).
3. 𝜎𝜎𝑑𝑑 is the aerodynamic force constant and 𝑐𝑐𝑟𝑟 is the

rolling resistance coefficient for wheel on steel.
4. 𝑎𝑎 (m/s2), 𝑠𝑠 (km) and 𝑣𝑣 (m/s) are the train’s acceleration,

distance and speed at time 𝑡𝑡𝑠𝑠.
5. 𝛽𝛽0, 𝛽𝛽1 and 𝛽𝛽2 are the friction loss coefficient for the

traction motor, braking loss coefficient and the ohmic
loss coefficient of the brake resistors. respectively, of
which the constants are given in Table 1.

Figure 1: Locomotive force diagram against route
characteristics [6]

The FEDEO algorithm solves the eco-driving problem
using MINLP in the Opti-Toolbox solver from MATLAB as
the problem to be optimised is non-linear owing to the use
of the Davis resistance factor. Section 5 describes the train
dynamics, with the aim of lowering energy consumption
by optimising the train notches. The initial formulation of
FEDEO is provided by the eco-driving algorithm in [1],
which is discretised by incorporating the train notches, trac-
tive and braking efforts, and parameter bounds. Minimum
energy usage is calculated through a search of the local
minima using the points where the energy usage is the
lowest. This algorithm is used in the Matlab Opti-Toolbox
solver to optimise the energy usage of the train.

5. FEDEO formulation for eco-driving speed
tracking control
The eco-driving speed optimisation problem formulated

in Section 4 has been discretised to make it solvable. The

N George: Preprint submitted to Elsevier Page 4 of 13

Eco-driving for freight trains

𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡) 𝐽𝐽1 =

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡)) 𝑑𝑑𝑑𝑑𝑑 (1)

Equation (2) further develops Equation (1), where 𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣)
is subject to the gravitational constant g from [6]. The
gravity constant, 𝑔𝑔, is 9.8 m/s2, where 𝑡𝑡𝑠𝑠 is the length of the
sampling interval. In Equations (1), (2), and (5),𝑚𝑚 represents
the total mass of the train in 𝑘𝑘𝑘𝑘; 𝑐𝑐𝑟𝑟 represents the rolling
resistance coefficient of the route section, aerodynamic drag
is represented by 𝜎𝜎𝑑𝑑 = 1

2𝑐𝑐𝑑𝑑𝜌𝜌𝑎𝑎𝐴𝐴𝑓𝑓 with 𝑐𝑐𝑑𝑑 being the drag
coefficient, in which 𝜌𝜌𝑎𝑎 denotes the air density in 𝑘𝑘𝑘𝑘∕𝑚𝑚3;
and 𝐴𝐴𝑓𝑓 is the frontal area of the locomotive in 𝑚𝑚2. The
continuous-time optimal control problem is provided by (1)
[1, 39, 43].

𝐽𝐽2 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡)

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣(𝑡𝑡), 𝑚𝑚𝑚𝑚(𝑡𝑡)+𝑓𝑓 (𝑣𝑣(𝑡𝑡), 𝑠𝑠(𝑡𝑡)))𝑑𝑑𝑑𝑑𝑑 (2)

Equation (2) is subject to:
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎(𝑡𝑡), (3)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣(𝑡𝑡). (4)

Equation (5) has been simplified in reference to [1],
where a, s and v are the critical parameters required for
optimisation.

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣𝑣𝑣𝑣𝑣𝑣  + 𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣)) 𝑑𝑑𝑑𝑑 =

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) 𝑑𝑑𝑑𝑑𝑑 (5)

𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣) = 𝜎𝜎𝑑𝑑𝑣𝑣(𝑡𝑡)2 + 𝑐𝑐𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)) +𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)). (6)
Figure 1 describes the gradient angle derivations shown

in Equation (6). The given gradient angle profile is 𝛼𝛼(𝑠𝑠): [𝑠𝑠0,
𝑠𝑠𝑓𝑓 ] -> [−Π2 , Π

2 ], where 𝛼𝛼(𝑠𝑠) is the gradient angle profile
at position 𝑠𝑠(𝑡𝑡); while being subject to longitudinal vehicle
dynamics, non-negative velocity bounds of the route profile
𝑣𝑣(𝑡𝑡) ∈ [𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚] where 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 0 at rest and boundary
conditions on the position and velocity. The inclination angle
𝛼𝛼(𝑠𝑠) has been based on the height difference, dh, versus the
distal difference, ds. H(s) is the elevation profile and 𝑠𝑠′(𝑡𝑡)
represents the horizontal projection of 𝑠𝑠(𝑡𝑡).

Equation (7) is an approximation of Equation (6) for
electric motors because friction losses, energy usage and
ohmic losses are captured by the terms 𝛽𝛽0𝑣𝑣2, 𝛽𝛽1𝑣𝑣𝑣𝑣 and 𝛽𝛽2𝑢𝑢2,
respectively. It has been assumed to be a quadratic function
of the form [1, 6]:

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) = 𝛽𝛽0𝑣𝑣
2 + 𝛽𝛽1𝑣𝑣𝑣𝑣 + 𝛽𝛽2𝑢𝑢

2. (7)

The reformulation of the problem outlined in Section
5 focuses on discrete-time approximations where the non-
convexity is introduced in Equation (7). Equation (8) for
obtaining the train’s energy usage is further derived from
Equations (1) to (7) as:

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) = 𝛽𝛽0𝑣𝑣
2 + 𝛽𝛽1𝜎𝜎𝑑𝑑𝑣𝑣

3+

2𝛽𝛽2𝑚𝑚2𝑔𝑔𝑔𝑔(𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼(𝑠𝑠)) + 𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼(𝑠𝑠))) + 𝛽𝛽2(𝑚𝑚𝑚𝑚)2+

𝛽𝛽2(𝑚𝑚𝑚𝑚 sin(𝛼𝛼(𝑠𝑠)) + 𝜎𝜎𝑑𝑑𝑣𝑣
2, ∗
𝑗𝑗 + 𝑐𝑐𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)))2,

(8)
where:

1. 𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) is the power requirement of the train (kW).
2. 𝑚𝑚 is the mass of the train including load (kg) and 𝑔𝑔 is

the acceleration caused by gravity (m/s2).
3. 𝜎𝜎𝑑𝑑 is the aerodynamic force constant and 𝑐𝑐𝑟𝑟 is the

rolling resistance coefficient for wheel on steel.
4. 𝑎𝑎 (m/s2), 𝑠𝑠 (km) and 𝑣𝑣 (m/s) are the train’s acceleration,

distance and speed at time 𝑡𝑡𝑠𝑠.
5. 𝛽𝛽0, 𝛽𝛽1 and 𝛽𝛽2 are the friction loss coefficient for the

traction motor, braking loss coefficient and the ohmic
loss coefficient of the brake resistors. respectively, of
which the constants are given in Table 1.

Figure 1: Locomotive force diagram against route
characteristics [6]

The FEDEO algorithm solves the eco-driving problem
using MINLP in the Opti-Toolbox solver from MATLAB as
the problem to be optimised is non-linear owing to the use
of the Davis resistance factor. Section 5 describes the train
dynamics, with the aim of lowering energy consumption
by optimising the train notches. The initial formulation of
FEDEO is provided by the eco-driving algorithm in [1],
which is discretised by incorporating the train notches, trac-
tive and braking efforts, and parameter bounds. Minimum
energy usage is calculated through a search of the local
minima using the points where the energy usage is the
lowest. This algorithm is used in the Matlab Opti-Toolbox
solver to optimise the energy usage of the train.

5. FEDEO formulation for eco-driving speed
tracking control
The eco-driving speed optimisation problem formulated

in Section 4 has been discretised to make it solvable. The
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where:
1. 𝑃𝑅(𝑎, 𝑠, 𝑣) is the power requirement of the train (kW).
2. 𝑚 is the mass of the train including load (kg) and 𝑔 is the acceleration caused by gravity (m/s2).
3. 𝜎𝑑 is the aerodynamic force constant and 𝑐𝑟 is the rolling resistance coefficient for wheel on steel.
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4. 𝑎 (m/s2), 𝑠 (km) and 𝑣 (m/s) are the train’s acceleration, distance 
and speed at time 𝑡𝑠.
5. 𝛽0, 𝛽1 and 𝛽2 are the friction loss coefficient for the traction 

motor, braking loss coefficient and the ohmic loss coefficient of 
the brake resistors. respectively, of which the constants are given 
in Table 1.

Eco-driving for freight trains

𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡) 𝐽𝐽1 =

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡)) 𝑑𝑑𝑑𝑑𝑑 (1)

Equation (2) further develops Equation (1), where 𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣)
is subject to the gravitational constant g from [6]. The
gravity constant, 𝑔𝑔, is 9.8 m/s2, where 𝑡𝑡𝑠𝑠 is the length of the
sampling interval. In Equations (1), (2), and (5),𝑚𝑚 represents
the total mass of the train in 𝑘𝑘𝑘𝑘; 𝑐𝑐𝑟𝑟 represents the rolling
resistance coefficient of the route section, aerodynamic drag
is represented by 𝜎𝜎𝑑𝑑 = 1

2𝑐𝑐𝑑𝑑𝜌𝜌𝑎𝑎𝐴𝐴𝑓𝑓 with 𝑐𝑐𝑑𝑑 being the drag
coefficient, in which 𝜌𝜌𝑎𝑎 denotes the air density in 𝑘𝑘𝑘𝑘∕𝑚𝑚3;
and 𝐴𝐴𝑓𝑓 is the frontal area of the locomotive in 𝑚𝑚2. The
continuous-time optimal control problem is provided by (1)
[1, 39, 43].

𝐽𝐽2 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣(𝑡𝑡), 𝑢𝑢(𝑡𝑡)

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣(𝑡𝑡), 𝑚𝑚𝑚𝑚(𝑡𝑡)+𝑓𝑓 (𝑣𝑣(𝑡𝑡), 𝑠𝑠(𝑡𝑡)))𝑑𝑑𝑑𝑑𝑑 (2)

Equation (2) is subject to:
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎(𝑡𝑡), (3)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣(𝑡𝑡). (4)

Equation (5) has been simplified in reference to [1],
where a, s and v are the critical parameters required for
optimisation.

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃 (𝑣𝑣𝑣𝑣𝑣𝑣𝑣  + 𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣)) 𝑑𝑑𝑑𝑑 =

𝑡𝑡𝑓𝑓

∫
𝑡𝑡0

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) 𝑑𝑑𝑑𝑑𝑑 (5)

𝑓𝑓 (𝑣𝑣𝑣 𝑣𝑣) = 𝜎𝜎𝑑𝑑𝑣𝑣(𝑡𝑡)2 + 𝑐𝑐𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)) +𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)). (6)
Figure 1 describes the gradient angle derivations shown

in Equation (6). The given gradient angle profile is 𝛼𝛼(𝑠𝑠): [𝑠𝑠0,
𝑠𝑠𝑓𝑓 ] -> [−Π2 , Π

2 ], where 𝛼𝛼(𝑠𝑠) is the gradient angle profile
at position 𝑠𝑠(𝑡𝑡); while being subject to longitudinal vehicle
dynamics, non-negative velocity bounds of the route profile
𝑣𝑣(𝑡𝑡) ∈ [𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚] where 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 0 at rest and boundary
conditions on the position and velocity. The inclination angle
𝛼𝛼(𝑠𝑠) has been based on the height difference, dh, versus the
distal difference, ds. H(s) is the elevation profile and 𝑠𝑠′(𝑡𝑡)
represents the horizontal projection of 𝑠𝑠(𝑡𝑡).

Equation (7) is an approximation of Equation (6) for
electric motors because friction losses, energy usage and
ohmic losses are captured by the terms 𝛽𝛽0𝑣𝑣2, 𝛽𝛽1𝑣𝑣𝑣𝑣 and 𝛽𝛽2𝑢𝑢2,
respectively. It has been assumed to be a quadratic function
of the form [1, 6]:

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) = 𝛽𝛽0𝑣𝑣
2 + 𝛽𝛽1𝑣𝑣𝑣𝑣 + 𝛽𝛽2𝑢𝑢

2. (7)

The reformulation of the problem outlined in Section
5 focuses on discrete-time approximations where the non-
convexity is introduced in Equation (7). Equation (8) for
obtaining the train’s energy usage is further derived from
Equations (1) to (7) as:

𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) = 𝛽𝛽0𝑣𝑣
2 + 𝛽𝛽1𝜎𝜎𝑑𝑑𝑣𝑣

3+

2𝛽𝛽2𝑚𝑚2𝑔𝑔𝑔𝑔(𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼(𝑠𝑠)) + 𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼(𝑠𝑠))) + 𝛽𝛽2(𝑚𝑚𝑚𝑚)2+

𝛽𝛽2(𝑚𝑚𝑚𝑚 sin(𝛼𝛼(𝑠𝑠)) + 𝜎𝜎𝑑𝑑𝑣𝑣
2, ∗
𝑗𝑗 + 𝑐𝑐𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝛼𝛼(𝑠𝑠)))2,

(8)
where:

1. 𝑃𝑃𝑅𝑅(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  ) is the power requirement of the train (kW).
2. 𝑚𝑚 is the mass of the train including load (kg) and 𝑔𝑔 is

the acceleration caused by gravity (m/s2).
3. 𝜎𝜎𝑑𝑑 is the aerodynamic force constant and 𝑐𝑐𝑟𝑟 is the

rolling resistance coefficient for wheel on steel.
4. 𝑎𝑎 (m/s2), 𝑠𝑠 (km) and 𝑣𝑣 (m/s) are the train’s acceleration,

distance and speed at time 𝑡𝑡𝑠𝑠.
5. 𝛽𝛽0, 𝛽𝛽1 and 𝛽𝛽2 are the friction loss coefficient for the

traction motor, braking loss coefficient and the ohmic
loss coefficient of the brake resistors. respectively, of
which the constants are given in Table 1.

Figure 1: Locomotive force diagram against route
characteristics [6]

The FEDEO algorithm solves the eco-driving problem
using MINLP in the Opti-Toolbox solver from MATLAB as
the problem to be optimised is non-linear owing to the use
of the Davis resistance factor. Section 5 describes the train
dynamics, with the aim of lowering energy consumption
by optimising the train notches. The initial formulation of
FEDEO is provided by the eco-driving algorithm in [1],
which is discretised by incorporating the train notches, trac-
tive and braking efforts, and parameter bounds. Minimum
energy usage is calculated through a search of the local
minima using the points where the energy usage is the
lowest. This algorithm is used in the Matlab Opti-Toolbox
solver to optimise the energy usage of the train.

5. FEDEO formulation for eco-driving speed
tracking control
The eco-driving speed optimisation problem formulated

in Section 4 has been discretised to make it solvable. The
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The FEDEO algorithm solves the eco-driving problem using MIN-
LP in the Opti-Toolbox solver from MATLAB as the problem to 
be optimized is non-linear owing to the use of the Davis resistance 
factor. sections or refer to the Section describes the train dynamics, 
with the aim of lowering energy consumption by optimizing the 
train notches. 

The initial formulation of FEDEO is provided by the eco-driving 
algorithm in [1], which is discretized by incorporating the train 
notches, tractive and braking efforts, and parameter bounds. Mini-
mum energy usage is calculated through a search of the local min-
ima using the points where the energy usage is the lowest. This 
algorithm is used in the Matlab Opti-Toolbox solver to optimize 
the energy usage of the train.

5. FEDEO Formulation for Eco-Driving Speed Tracking 
Control
The eco-driving speed optimisation problem formulated in Section 
4 has been discretised to make it solvable. The eco-driving speed 
optimisation problem does not include the tractive and braking 
effort notches, and the reason for discretisation is to transfer the 
continuous function, models, variables, and equations derived in 
Section 4 into discrete counterparts.

5.1 Objective function
The objective of the algorithm is to minimise the energy usage of 
the train within the route profile parameter bounds. In this section, 
vj is the train’s optimal velocity, and v∗

j is the eco-driving speed of 
the train determined by incorporating tractive and braking effort 
notches and the discrete modelling approach. The results from the 
simulation of the parameters in the objective function shown in 
Equation (9) are described in Section 7.

where:
1. 𝐽 is the energy usage (kWh), also known as the objective func-
tion of the eco-driving problem.
2. Δ𝑡𝑠 is the sampling period for the route simulation.
3. 𝑈𝑗

𝑡 is the tractive effort notch of the 19E locomotive respectively 
(0.1 to 1).
4. 𝑎𝑗 (m/s2), 𝑠𝑗 (km) and 𝑣𝑗

∗ (m/s) are the acceleration, distance, and 
optimal speed of the train at time 𝑡𝑠.
5. 𝑁 is the number of samples and 𝑗 is the counter of sampling 
intervals.

5.2 FEDEO Constraints
The constraints used for FEDEO are based on the acceleration and 
tractive and braking decisions. The objective function in Equation 
(9) is subject to the constraints and bounds shown in Equations 
(10) to (18). The acceleration difference for the eco-driving solu-
tion has been calculated from the computed force ∑𝐹𝑗 and vector 
𝑎𝑗. FEDEO is formulated based on the tractive force 𝐹𝑗

𝑡, braking 
force 𝐹𝑗

𝑏, gravitational force 𝐹𝑗
𝑔 and the resistance force 𝐹𝑗

𝑟 over 
N sampling intervals shown in (11) with the train profile shown in 
Figure 3. with the train profile shown∑𝑁

𝑗=1 𝐹𝑗, while the braking 
force or 𝐹𝑗

𝑏 is dependent on two factors, based on the train dynam-
ics suggested by [38]:

1. Adhesion between the wheel and the rail
2. Reaction force of the rail on the wheels during braking
(hence on weight per braked wheel)

Eco-driving for freight trains

eco-driving speed optimisation problem does not include
the tractive and braking effort notches, and the reason for
discretisation is to transfer the continuous function, models,
variables, and equations derived in Section 4 into discrete
counterparts.

5.1. Objective function
The objective of the algorithm is to minimise the energy

usage of the train within the route profile parameter bounds.
In this section, 𝑣𝑣𝑗𝑗 is the train’s optimal velocity, and 𝑣𝑣∗𝑗𝑗 is
the eco-driving speed of the train determined by incorpo-
rating tractive and braking effort notches and the discrete
modelling approach. The results from the simulation of the
parameters in the objective function shown in Equation (9)
are described in Section 7.

𝐽𝐽 =
∑𝑁𝑁

𝑗𝑗=1 𝑃𝑃𝑅𝑅(𝑎𝑎𝑗𝑗𝑗 𝑠𝑠𝑗𝑗 , 𝑣𝑣∗𝑗𝑗 ) × 𝑈𝑈𝑡𝑡
𝑗𝑗 × Δ𝑡𝑡𝑠𝑠, (9)

where:
1. 𝐽𝐽 is the energy usage (kWh), also known as the

objective function of the eco-driving problem.
2. Δ𝑡𝑡𝑠𝑠 is the sampling period for the route simulation.
3. 𝑈𝑈𝑡𝑡

𝑗𝑗 is the tractive effort notch of the 19E locomotive
respectively (0.1 to 1).

4. 𝑎𝑎𝑗𝑗 (m/s2), 𝑠𝑠𝑗𝑗 (km) and 𝑣𝑣∗𝑗𝑗 (m/s) are the acceleration,
distance, and optimal speed of the train at time 𝑡𝑡𝑠𝑠.

5. 𝑁𝑁 is the number of samples and 𝑗𝑗 is the counter of
sampling intervals.

5.2. FEDEO constraints
The constraints used for FEDEO are based on the ac-

celeration and tractive and braking decisions. The objective
function in Equation (9) is subject to the constraints and
bounds shown in Equations (10) to (18). The acceleration
difference for the eco-driving solution has been calculated
from the computed force ∑

𝐹𝐹𝑗𝑗 and vector 𝑎𝑎𝑗𝑗 . FEDEO is
formulated based on the tractive force 𝐹𝐹 𝑡𝑡

𝑗𝑗 , braking force 𝐹𝐹𝑏𝑏
𝑗𝑗 ,

gravitational force 𝐹𝐹𝑔𝑔
𝑗𝑗 and the resistance force 𝐹𝐹 𝑟𝑟

𝑗𝑗 over N
sampling intervals shown in (11) with the train profile shown
in Figure 3. The sum of the forces is given as ∑𝑁𝑁

𝑗𝑗=1 𝐹𝐹𝑗𝑗 , while
the braking force or 𝐹𝐹𝑏𝑏

𝑗𝑗 is dependent on two factors, based
on the train dynamics suggested by [38]:

1. Adhesion between the wheel and the rail
2. Reaction force of the rail on the wheels during braking

(hence on weight per braked wheel)
∑𝑁𝑁

𝑗𝑗=1 𝐹𝐹𝑗𝑗

𝑚𝑚
− 𝑎𝑎𝑗𝑗 = 0, (10)

𝑁𝑁
∑

𝑗𝑗=1
𝐹𝐹𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑗𝑗 = 𝐹𝐹 𝑡𝑡

𝑗𝑗 − 𝐹𝐹𝑔𝑔
𝑗𝑗 − 𝐹𝐹𝑏𝑏

𝑗𝑗 − 𝐹𝐹 𝑟𝑟
𝑗𝑗 . (11)

• ∑𝑁𝑁
𝑗𝑗=1 𝐹𝐹𝑗𝑗 is the sum of the forces in kN where equa-

tions of the forces are provided in Section 5.2.1.

The objective function in Equation (9) is subject to the
following constraints:

𝑈𝑈𝑡𝑡
𝑗𝑗 ∈ {0,… , 10} (1 ≤ 𝑗𝑗 ≤ 𝑁𝑁), (12)

𝑈𝑈𝑏𝑏
𝑗𝑗 ∈ {0 , ... , 10} (1 ≤ 𝑗𝑗 ≤ 𝑁𝑁), (13)

𝑈𝑈𝑡𝑡
𝑗𝑗 × 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0. (14)

𝑣𝑣∗,𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑣𝑣∗𝑗𝑗 ≤ 𝑣𝑣∗,𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (15)

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑠𝑠𝑗𝑗 ≤ 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (16)

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑎𝑎𝑗𝑗 ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (17)

ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ ℎ𝑗𝑗 ≤ ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (18)

where the decision 1 or 0 is the state of movement of the
train, and ℎ𝑗𝑗 is the elevation profile. The MINLP method
uses the decision variables 𝑈𝑈𝑡𝑡

𝑗𝑗 and 𝑈𝑈𝑏𝑏
𝑗𝑗 for optimisation. The

optimisation is updated every 𝑗𝑗𝑡𝑡𝑡 sampling interval [40, 44].
5.2.1. Algorithm to solve the FEDEO formulations

FEDEO aims to minimise 𝑓𝑓𝑇𝑇𝑋𝑋 subject to the equality
constraints (𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 = 𝑏𝑏𝑒𝑒𝑒𝑒) and upper and lower boundaries of
the control variables (𝐿𝐿𝐵𝐵 ≤ X ≤ 𝑈𝑈𝐵𝐵). The control variables
are 𝑈𝑈𝑡𝑡

𝑗𝑗 and 𝑈𝑈𝑏𝑏
𝑗𝑗 , while 𝐴𝐴𝑒𝑒𝑒𝑒 and 𝐵𝐵𝑒𝑒𝑒𝑒 are the equality matrices,

and 𝐿𝐿𝐵𝐵 , 𝑈𝑈𝐵𝐵 , and f are vectors represented below in Equa-
tions (19) and (20). The independent variables are tractive
and braking effort forces 𝐹𝐹 𝑡𝑡

𝑗𝑗 and 𝐹𝐹𝑏𝑏
𝑗𝑗 , dependent variables are

the train acceleration 𝑎𝑎𝑗𝑗 and continuous velocity 𝑣𝑣𝑗𝑗 and the
core state variables are the distance 𝑠𝑠𝑗𝑗 and optimal velocity
𝑣𝑣∗𝑗𝑗 [45]. The objective function is solved using the canonical
form in Equation (9) as the vector 𝑓𝑓𝑇𝑇𝑋𝑋 [17, 46]:

𝒎𝒎𝒎𝒎𝒎𝒎 𝒎𝒎𝑻𝑻𝑿𝑿 (19)
subject to:
{

𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 = 𝑏𝑏𝑒𝑒𝑒𝑒 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)
𝐿𝐿𝐵𝐵 ≤ 𝑋𝑋 ≤ 𝑈𝑈𝐵𝐵 (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢𝑢𝑢)

}

. (20)

Vector X contains all the state and independent variables.
Let matrix 𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 and 𝑏𝑏𝑒𝑒𝑒𝑒𝑋𝑋 be:

𝑨𝑨𝒆𝒆𝒆𝒆 =
⎡

⎢

⎢

⎣

𝑨𝑨𝒆𝒆𝒆𝒆𝟏𝟏
𝑨𝑨𝒆𝒆𝒆𝒆𝟐𝟐
𝑨𝑨𝒆𝒆𝒆𝒆𝟑𝟑

⎤

⎥

⎥

⎦(2𝑁𝑁+4) × (5𝑁𝑁+2)

, (21)

𝒃𝒃𝒆𝒆𝒆𝒆 =
⎡

⎢

⎢

⎣

𝒃𝒃𝒆𝒆𝒆𝒆𝟏𝟏
𝒃𝒃𝒆𝒆𝒆𝒆𝟐𝟐
𝒃𝒃𝒆𝒆𝒆𝒆𝟑𝟑

⎤

⎥

⎥

⎦(2𝑁𝑁+4) × (1)

, (22)

The vector 𝑓𝑓𝑇𝑇 in the canonical form shown in Equation
(23) can be obtained from Equation (9) to calculate the
power required for every route section’s sampling period.
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eco-driving speed optimisation problem does not include
the tractive and braking effort notches, and the reason for
discretisation is to transfer the continuous function, models,
variables, and equations derived in Section 4 into discrete
counterparts.

5.1. Objective function
The objective of the algorithm is to minimise the energy

usage of the train within the route profile parameter bounds.
In this section, 𝑣𝑣𝑗𝑗 is the train’s optimal velocity, and 𝑣𝑣∗𝑗𝑗 is
the eco-driving speed of the train determined by incorpo-
rating tractive and braking effort notches and the discrete
modelling approach. The results from the simulation of the
parameters in the objective function shown in Equation (9)
are described in Section 7.

𝐽𝐽 =
∑𝑁𝑁

𝑗𝑗=1 𝑃𝑃𝑅𝑅(𝑎𝑎𝑗𝑗𝑗 𝑠𝑠𝑗𝑗 , 𝑣𝑣∗𝑗𝑗 ) × 𝑈𝑈𝑡𝑡
𝑗𝑗 × Δ𝑡𝑡𝑠𝑠, (9)

where:
1. 𝐽𝐽 is the energy usage (kWh), also known as the

objective function of the eco-driving problem.
2. Δ𝑡𝑡𝑠𝑠 is the sampling period for the route simulation.
3. 𝑈𝑈𝑡𝑡

𝑗𝑗 is the tractive effort notch of the 19E locomotive
respectively (0.1 to 1).

4. 𝑎𝑎𝑗𝑗 (m/s2), 𝑠𝑠𝑗𝑗 (km) and 𝑣𝑣∗𝑗𝑗 (m/s) are the acceleration,
distance, and optimal speed of the train at time 𝑡𝑡𝑠𝑠.

5. 𝑁𝑁 is the number of samples and 𝑗𝑗 is the counter of
sampling intervals.

5.2. FEDEO constraints
The constraints used for FEDEO are based on the ac-

celeration and tractive and braking decisions. The objective
function in Equation (9) is subject to the constraints and
bounds shown in Equations (10) to (18). The acceleration
difference for the eco-driving solution has been calculated
from the computed force ∑

𝐹𝐹𝑗𝑗 and vector 𝑎𝑎𝑗𝑗 . FEDEO is
formulated based on the tractive force 𝐹𝐹 𝑡𝑡

𝑗𝑗 , braking force 𝐹𝐹𝑏𝑏
𝑗𝑗 ,

gravitational force 𝐹𝐹𝑔𝑔
𝑗𝑗 and the resistance force 𝐹𝐹 𝑟𝑟

𝑗𝑗 over N
sampling intervals shown in (11) with the train profile shown
in Figure 3. The sum of the forces is given as ∑𝑁𝑁

𝑗𝑗=1 𝐹𝐹𝑗𝑗 , while
the braking force or 𝐹𝐹𝑏𝑏

𝑗𝑗 is dependent on two factors, based
on the train dynamics suggested by [38]:

1. Adhesion between the wheel and the rail
2. Reaction force of the rail on the wheels during braking

(hence on weight per braked wheel)
∑𝑁𝑁

𝑗𝑗=1 𝐹𝐹𝑗𝑗

𝑚𝑚
− 𝑎𝑎𝑗𝑗 = 0, (10)

𝑁𝑁
∑

𝑗𝑗=1
𝐹𝐹𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑗𝑗 = 𝐹𝐹 𝑡𝑡

𝑗𝑗 − 𝐹𝐹𝑔𝑔
𝑗𝑗 − 𝐹𝐹𝑏𝑏

𝑗𝑗 − 𝐹𝐹 𝑟𝑟
𝑗𝑗 . (11)

• ∑𝑁𝑁
𝑗𝑗=1 𝐹𝐹𝑗𝑗 is the sum of the forces in kN where equa-

tions of the forces are provided in Section 5.2.1.

The objective function in Equation (9) is subject to the
following constraints:

𝑈𝑈𝑡𝑡
𝑗𝑗 ∈ {0,… , 10} (1 ≤ 𝑗𝑗 ≤ 𝑁𝑁), (12)

𝑈𝑈𝑏𝑏
𝑗𝑗 ∈ {0 , ... , 10} (1 ≤ 𝑗𝑗 ≤ 𝑁𝑁), (13)

𝑈𝑈𝑡𝑡
𝑗𝑗 × 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0. (14)

𝑣𝑣∗,𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑣𝑣∗𝑗𝑗 ≤ 𝑣𝑣∗,𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (15)

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑠𝑠𝑗𝑗 ≤ 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (16)

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑎𝑎𝑗𝑗 ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (17)

ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ ℎ𝑗𝑗 ≤ ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (18)

where the decision 1 or 0 is the state of movement of the
train, and ℎ𝑗𝑗 is the elevation profile. The MINLP method
uses the decision variables 𝑈𝑈𝑡𝑡

𝑗𝑗 and 𝑈𝑈𝑏𝑏
𝑗𝑗 for optimisation. The

optimisation is updated every 𝑗𝑗𝑡𝑡𝑡 sampling interval [40, 44].
5.2.1. Algorithm to solve the FEDEO formulations

FEDEO aims to minimise 𝑓𝑓𝑇𝑇𝑋𝑋 subject to the equality
constraints (𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 = 𝑏𝑏𝑒𝑒𝑒𝑒) and upper and lower boundaries of
the control variables (𝐿𝐿𝐵𝐵 ≤ X ≤ 𝑈𝑈𝐵𝐵). The control variables
are 𝑈𝑈𝑡𝑡

𝑗𝑗 and 𝑈𝑈𝑏𝑏
𝑗𝑗 , while 𝐴𝐴𝑒𝑒𝑒𝑒 and 𝐵𝐵𝑒𝑒𝑒𝑒 are the equality matrices,

and 𝐿𝐿𝐵𝐵 , 𝑈𝑈𝐵𝐵 , and f are vectors represented below in Equa-
tions (19) and (20). The independent variables are tractive
and braking effort forces 𝐹𝐹 𝑡𝑡

𝑗𝑗 and 𝐹𝐹𝑏𝑏
𝑗𝑗 , dependent variables are

the train acceleration 𝑎𝑎𝑗𝑗 and continuous velocity 𝑣𝑣𝑗𝑗 and the
core state variables are the distance 𝑠𝑠𝑗𝑗 and optimal velocity
𝑣𝑣∗𝑗𝑗 [45]. The objective function is solved using the canonical
form in Equation (9) as the vector 𝑓𝑓𝑇𝑇𝑋𝑋 [17, 46]:

𝒎𝒎𝒎𝒎𝒎𝒎 𝒎𝒎𝑻𝑻𝑿𝑿 (19)
subject to:
{

𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 = 𝑏𝑏𝑒𝑒𝑒𝑒 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)
𝐿𝐿𝐵𝐵 ≤ 𝑋𝑋 ≤ 𝑈𝑈𝐵𝐵 (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢𝑢𝑢)

}

. (20)

Vector X contains all the state and independent variables.
Let matrix 𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 and 𝑏𝑏𝑒𝑒𝑒𝑒𝑋𝑋 be:

𝑨𝑨𝒆𝒆𝒆𝒆 =
⎡

⎢

⎢

⎣

𝑨𝑨𝒆𝒆𝒆𝒆𝟏𝟏
𝑨𝑨𝒆𝒆𝒆𝒆𝟐𝟐
𝑨𝑨𝒆𝒆𝒆𝒆𝟑𝟑

⎤

⎥

⎥

⎦(2𝑁𝑁+4) × (5𝑁𝑁+2)

, (21)

𝒃𝒃𝒆𝒆𝒆𝒆 =
⎡

⎢

⎢

⎣

𝒃𝒃𝒆𝒆𝒆𝒆𝟏𝟏
𝒃𝒃𝒆𝒆𝒆𝒆𝟐𝟐
𝒃𝒃𝒆𝒆𝒆𝒆𝟑𝟑

⎤

⎥

⎥

⎦(2𝑁𝑁+4) × (1)

, (22)

The vector 𝑓𝑓𝑇𝑇 in the canonical form shown in Equation
(23) can be obtained from Equation (9) to calculate the
power required for every route section’s sampling period.
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Eco-driving for freight trains

eco-driving speed optimisation problem does not include
the tractive and braking effort notches, and the reason for
discretisation is to transfer the continuous function, models,
variables, and equations derived in Section 4 into discrete
counterparts.

5.1. Objective function
The objective of the algorithm is to minimise the energy

usage of the train within the route profile parameter bounds.
In this section, 𝑣𝑣𝑗𝑗 is the train’s optimal velocity, and 𝑣𝑣∗𝑗𝑗 is
the eco-driving speed of the train determined by incorpo-
rating tractive and braking effort notches and the discrete
modelling approach. The results from the simulation of the
parameters in the objective function shown in Equation (9)
are described in Section 7.

𝐽𝐽 =
∑𝑁𝑁

𝑗𝑗=1 𝑃𝑃𝑅𝑅(𝑎𝑎𝑗𝑗𝑗 𝑠𝑠𝑗𝑗 , 𝑣𝑣∗𝑗𝑗 ) × 𝑈𝑈𝑡𝑡
𝑗𝑗 × Δ𝑡𝑡𝑠𝑠, (9)

where:
1. 𝐽𝐽 is the energy usage (kWh), also known as the

objective function of the eco-driving problem.
2. Δ𝑡𝑡𝑠𝑠 is the sampling period for the route simulation.
3. 𝑈𝑈𝑡𝑡

𝑗𝑗 is the tractive effort notch of the 19E locomotive
respectively (0.1 to 1).

4. 𝑎𝑎𝑗𝑗 (m/s2), 𝑠𝑠𝑗𝑗 (km) and 𝑣𝑣∗𝑗𝑗 (m/s) are the acceleration,
distance, and optimal speed of the train at time 𝑡𝑡𝑠𝑠.

5. 𝑁𝑁 is the number of samples and 𝑗𝑗 is the counter of
sampling intervals.

5.2. FEDEO constraints
The constraints used for FEDEO are based on the ac-

celeration and tractive and braking decisions. The objective
function in Equation (9) is subject to the constraints and
bounds shown in Equations (10) to (18). The acceleration
difference for the eco-driving solution has been calculated
from the computed force ∑

𝐹𝐹𝑗𝑗 and vector 𝑎𝑎𝑗𝑗 . FEDEO is
formulated based on the tractive force 𝐹𝐹 𝑡𝑡

𝑗𝑗 , braking force 𝐹𝐹𝑏𝑏
𝑗𝑗 ,

gravitational force 𝐹𝐹𝑔𝑔
𝑗𝑗 and the resistance force 𝐹𝐹 𝑟𝑟

𝑗𝑗 over N
sampling intervals shown in (11) with the train profile shown
in Figure 3. The sum of the forces is given as ∑𝑁𝑁

𝑗𝑗=1 𝐹𝐹𝑗𝑗 , while
the braking force or 𝐹𝐹𝑏𝑏

𝑗𝑗 is dependent on two factors, based
on the train dynamics suggested by [38]:

1. Adhesion between the wheel and the rail
2. Reaction force of the rail on the wheels during braking

(hence on weight per braked wheel)
∑𝑁𝑁

𝑗𝑗=1 𝐹𝐹𝑗𝑗

𝑚𝑚
− 𝑎𝑎𝑗𝑗 = 0, (10)

𝑁𝑁
∑

𝑗𝑗=1
𝐹𝐹𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑗𝑗 = 𝐹𝐹 𝑡𝑡

𝑗𝑗 − 𝐹𝐹𝑔𝑔
𝑗𝑗 − 𝐹𝐹𝑏𝑏

𝑗𝑗 − 𝐹𝐹 𝑟𝑟
𝑗𝑗 . (11)

• ∑𝑁𝑁
𝑗𝑗=1 𝐹𝐹𝑗𝑗 is the sum of the forces in kN where equa-

tions of the forces are provided in Section 5.2.1.

The objective function in Equation (9) is subject to the
following constraints:

𝑈𝑈𝑡𝑡
𝑗𝑗 ∈ {0,… , 10} (1 ≤ 𝑗𝑗 ≤ 𝑁𝑁), (12)

𝑈𝑈𝑏𝑏
𝑗𝑗 ∈ {0 , ... , 10} (1 ≤ 𝑗𝑗 ≤ 𝑁𝑁), (13)

𝑈𝑈𝑡𝑡
𝑗𝑗 × 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0. (14)

𝑣𝑣∗,𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑣𝑣∗𝑗𝑗 ≤ 𝑣𝑣∗,𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (15)

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑠𝑠𝑗𝑗 ≤ 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (16)

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑎𝑎𝑗𝑗 ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (17)

ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ ℎ𝑗𝑗 ≤ ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (18)

where the decision 1 or 0 is the state of movement of the
train, and ℎ𝑗𝑗 is the elevation profile. The MINLP method
uses the decision variables 𝑈𝑈𝑡𝑡

𝑗𝑗 and 𝑈𝑈𝑏𝑏
𝑗𝑗 for optimisation. The

optimisation is updated every 𝑗𝑗𝑡𝑡𝑡 sampling interval [40, 44].
5.2.1. Algorithm to solve the FEDEO formulations

FEDEO aims to minimise 𝑓𝑓𝑇𝑇𝑋𝑋 subject to the equality
constraints (𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 = 𝑏𝑏𝑒𝑒𝑒𝑒) and upper and lower boundaries of
the control variables (𝐿𝐿𝐵𝐵 ≤ X ≤ 𝑈𝑈𝐵𝐵). The control variables
are 𝑈𝑈𝑡𝑡

𝑗𝑗 and 𝑈𝑈𝑏𝑏
𝑗𝑗 , while 𝐴𝐴𝑒𝑒𝑒𝑒 and 𝐵𝐵𝑒𝑒𝑒𝑒 are the equality matrices,

and 𝐿𝐿𝐵𝐵 , 𝑈𝑈𝐵𝐵 , and f are vectors represented below in Equa-
tions (19) and (20). The independent variables are tractive
and braking effort forces 𝐹𝐹 𝑡𝑡

𝑗𝑗 and 𝐹𝐹𝑏𝑏
𝑗𝑗 , dependent variables are

the train acceleration 𝑎𝑎𝑗𝑗 and continuous velocity 𝑣𝑣𝑗𝑗 and the
core state variables are the distance 𝑠𝑠𝑗𝑗 and optimal velocity
𝑣𝑣∗𝑗𝑗 [45]. The objective function is solved using the canonical
form in Equation (9) as the vector 𝑓𝑓𝑇𝑇𝑋𝑋 [17, 46]:

𝒎𝒎𝒎𝒎𝒎𝒎 𝒎𝒎𝑻𝑻𝑿𝑿 (19)
subject to:
{

𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 = 𝑏𝑏𝑒𝑒𝑒𝑒 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)
𝐿𝐿𝐵𝐵 ≤ 𝑋𝑋 ≤ 𝑈𝑈𝐵𝐵 (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢𝑢𝑢)

}

. (20)

Vector X contains all the state and independent variables.
Let matrix 𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 and 𝑏𝑏𝑒𝑒𝑒𝑒𝑋𝑋 be:

𝑨𝑨𝒆𝒆𝒆𝒆 =
⎡

⎢

⎢

⎣

𝑨𝑨𝒆𝒆𝒆𝒆𝟏𝟏
𝑨𝑨𝒆𝒆𝒆𝒆𝟐𝟐
𝑨𝑨𝒆𝒆𝒆𝒆𝟑𝟑

⎤

⎥

⎥

⎦(2𝑁𝑁+4) × (5𝑁𝑁+2)

, (21)

𝒃𝒃𝒆𝒆𝒆𝒆 =
⎡

⎢

⎢

⎣

𝒃𝒃𝒆𝒆𝒆𝒆𝟏𝟏
𝒃𝒃𝒆𝒆𝒆𝒆𝟐𝟐
𝒃𝒃𝒆𝒆𝒆𝒆𝟑𝟑

⎤

⎥

⎥

⎦(2𝑁𝑁+4) × (1)

, (22)

The vector 𝑓𝑓𝑇𝑇 in the canonical form shown in Equation
(23) can be obtained from Equation (9) to calculate the
power required for every route section’s sampling period.
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• ∑𝑁𝑗=1 𝐹𝑗 is the sum of the forces in kN where equations of the forces are provided in Section 5.2.1.
The objective function in Equation (9) is subject to the following constraints:

Eco-driving for freight trains

eco-driving speed optimisation problem does not include
the tractive and braking effort notches, and the reason for
discretisation is to transfer the continuous function, models,
variables, and equations derived in Section 4 into discrete
counterparts.

5.1. Objective function
The objective of the algorithm is to minimise the energy

usage of the train within the route profile parameter bounds.
In this section, 𝑣𝑣𝑗𝑗 is the train’s optimal velocity, and 𝑣𝑣∗𝑗𝑗 is
the eco-driving speed of the train determined by incorpo-
rating tractive and braking effort notches and the discrete
modelling approach. The results from the simulation of the
parameters in the objective function shown in Equation (9)
are described in Section 7.

𝐽𝐽 =
∑𝑁𝑁

𝑗𝑗=1 𝑃𝑃𝑅𝑅(𝑎𝑎𝑗𝑗𝑗 𝑠𝑠𝑗𝑗 , 𝑣𝑣∗𝑗𝑗 ) × 𝑈𝑈𝑡𝑡
𝑗𝑗 × Δ𝑡𝑡𝑠𝑠, (9)

where:
1. 𝐽𝐽 is the energy usage (kWh), also known as the

objective function of the eco-driving problem.
2. Δ𝑡𝑡𝑠𝑠 is the sampling period for the route simulation.
3. 𝑈𝑈𝑡𝑡

𝑗𝑗 is the tractive effort notch of the 19E locomotive
respectively (0.1 to 1).

4. 𝑎𝑎𝑗𝑗 (m/s2), 𝑠𝑠𝑗𝑗 (km) and 𝑣𝑣∗𝑗𝑗 (m/s) are the acceleration,
distance, and optimal speed of the train at time 𝑡𝑡𝑠𝑠.

5. 𝑁𝑁 is the number of samples and 𝑗𝑗 is the counter of
sampling intervals.

5.2. FEDEO constraints
The constraints used for FEDEO are based on the ac-

celeration and tractive and braking decisions. The objective
function in Equation (9) is subject to the constraints and
bounds shown in Equations (10) to (18). The acceleration
difference for the eco-driving solution has been calculated
from the computed force ∑

𝐹𝐹𝑗𝑗 and vector 𝑎𝑎𝑗𝑗 . FEDEO is
formulated based on the tractive force 𝐹𝐹 𝑡𝑡

𝑗𝑗 , braking force 𝐹𝐹𝑏𝑏
𝑗𝑗 ,

gravitational force 𝐹𝐹𝑔𝑔
𝑗𝑗 and the resistance force 𝐹𝐹 𝑟𝑟

𝑗𝑗 over N
sampling intervals shown in (11) with the train profile shown
in Figure 3. The sum of the forces is given as ∑𝑁𝑁

𝑗𝑗=1 𝐹𝐹𝑗𝑗 , while
the braking force or 𝐹𝐹𝑏𝑏

𝑗𝑗 is dependent on two factors, based
on the train dynamics suggested by [38]:

1. Adhesion between the wheel and the rail
2. Reaction force of the rail on the wheels during braking

(hence on weight per braked wheel)
∑𝑁𝑁

𝑗𝑗=1 𝐹𝐹𝑗𝑗

𝑚𝑚
− 𝑎𝑎𝑗𝑗 = 0, (10)

𝑁𝑁
∑

𝑗𝑗=1
𝐹𝐹𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑗𝑗 = 𝐹𝐹 𝑡𝑡

𝑗𝑗 − 𝐹𝐹𝑔𝑔
𝑗𝑗 − 𝐹𝐹𝑏𝑏

𝑗𝑗 − 𝐹𝐹 𝑟𝑟
𝑗𝑗 . (11)

• ∑𝑁𝑁
𝑗𝑗=1 𝐹𝐹𝑗𝑗 is the sum of the forces in kN where equa-

tions of the forces are provided in Section 5.2.1.

The objective function in Equation (9) is subject to the
following constraints:

𝑈𝑈𝑡𝑡
𝑗𝑗 ∈ {0,… , 10} (1 ≤ 𝑗𝑗 ≤ 𝑁𝑁), (12)

𝑈𝑈𝑏𝑏
𝑗𝑗 ∈ {0 , ... , 10} (1 ≤ 𝑗𝑗 ≤ 𝑁𝑁), (13)

𝑈𝑈𝑡𝑡
𝑗𝑗 × 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0. (14)

𝑣𝑣∗,𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑣𝑣∗𝑗𝑗 ≤ 𝑣𝑣∗,𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (15)

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑠𝑠𝑗𝑗 ≤ 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (16)

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑎𝑎𝑗𝑗 ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (17)

ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ ℎ𝑗𝑗 ≤ ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (18)

where the decision 1 or 0 is the state of movement of the
train, and ℎ𝑗𝑗 is the elevation profile. The MINLP method
uses the decision variables 𝑈𝑈𝑡𝑡

𝑗𝑗 and 𝑈𝑈𝑏𝑏
𝑗𝑗 for optimisation. The

optimisation is updated every 𝑗𝑗𝑡𝑡𝑡 sampling interval [40, 44].
5.2.1. Algorithm to solve the FEDEO formulations

FEDEO aims to minimise 𝑓𝑓𝑇𝑇𝑋𝑋 subject to the equality
constraints (𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 = 𝑏𝑏𝑒𝑒𝑒𝑒) and upper and lower boundaries of
the control variables (𝐿𝐿𝐵𝐵 ≤ X ≤ 𝑈𝑈𝐵𝐵). The control variables
are 𝑈𝑈𝑡𝑡

𝑗𝑗 and 𝑈𝑈𝑏𝑏
𝑗𝑗 , while 𝐴𝐴𝑒𝑒𝑒𝑒 and 𝐵𝐵𝑒𝑒𝑒𝑒 are the equality matrices,

and 𝐿𝐿𝐵𝐵 , 𝑈𝑈𝐵𝐵 , and f are vectors represented below in Equa-
tions (19) and (20). The independent variables are tractive
and braking effort forces 𝐹𝐹 𝑡𝑡

𝑗𝑗 and 𝐹𝐹𝑏𝑏
𝑗𝑗 , dependent variables are

the train acceleration 𝑎𝑎𝑗𝑗 and continuous velocity 𝑣𝑣𝑗𝑗 and the
core state variables are the distance 𝑠𝑠𝑗𝑗 and optimal velocity
𝑣𝑣∗𝑗𝑗 [45]. The objective function is solved using the canonical
form in Equation (9) as the vector 𝑓𝑓𝑇𝑇𝑋𝑋 [17, 46]:

𝒎𝒎𝒎𝒎𝒎𝒎 𝒎𝒎𝑻𝑻𝑿𝑿 (19)
subject to:
{

𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 = 𝑏𝑏𝑒𝑒𝑒𝑒 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)
𝐿𝐿𝐵𝐵 ≤ 𝑋𝑋 ≤ 𝑈𝑈𝐵𝐵 (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢𝑢𝑢)

}

. (20)

Vector X contains all the state and independent variables.
Let matrix 𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 and 𝑏𝑏𝑒𝑒𝑒𝑒𝑋𝑋 be:

𝑨𝑨𝒆𝒆𝒆𝒆 =
⎡

⎢

⎢

⎣

𝑨𝑨𝒆𝒆𝒆𝒆𝟏𝟏
𝑨𝑨𝒆𝒆𝒆𝒆𝟐𝟐
𝑨𝑨𝒆𝒆𝒆𝒆𝟑𝟑

⎤

⎥

⎥

⎦(2𝑁𝑁+4) × (5𝑁𝑁+2)

, (21)

𝒃𝒃𝒆𝒆𝒆𝒆 =
⎡

⎢

⎢

⎣

𝒃𝒃𝒆𝒆𝒆𝒆𝟏𝟏
𝒃𝒃𝒆𝒆𝒆𝒆𝟐𝟐
𝒃𝒃𝒆𝒆𝒆𝒆𝟑𝟑

⎤

⎥

⎥

⎦(2𝑁𝑁+4) × (1)

, (22)

The vector 𝑓𝑓𝑇𝑇 in the canonical form shown in Equation
(23) can be obtained from Equation (9) to calculate the
power required for every route section’s sampling period.
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Where the decision 1 or 0 is the state of movement of the train, and ℎ𝑗 is the elevation profile. The MINLP method uses the decision 
variables 𝑈𝑗

𝑡 and 𝑈𝑗
𝑏 for optimization. The optimization is updated every 𝑗𝑡ℎ sampling interval [40, 44].

5.2.1. Algorithm to Solve the FEDEO Formulations
FEDEO aims to minimize 𝑓𝑇 𝑋 subject to the equality constraints (𝐴𝑒𝑞𝑋 = 𝑏𝑒𝑞) and upper and lower boundaries of the control variables 
(𝐿𝐵 ≤ X ≤ 𝑈𝐵). The control variables are 𝑈𝑗

𝑡 and 𝑈𝑗
𝑏, while 𝐴𝑒𝑞 and 𝐵𝑒𝑞 are the equality matrices, and 𝐿𝐵, 𝑈𝐵, and f are vectors represented 

below in Equations (19) and (20). The independent variables are tractive and braking effort forces 𝐹𝑗
𝑡 and 𝐹𝑗

𝑏, dependent variables are the 
train acceleration 𝑎𝑗 and continuous velocity 𝑣𝑗 and the core state variables are the distance 𝑠𝑗 and optimal velocity 𝑣∗

𝑗 [45]. The objective 

function is solved using the canonical form in Equation (9) as the vector 𝑓𝑇
𝑋 [17, 46]:

Eco-driving for freight trains

eco-driving speed optimisation problem does not include
the tractive and braking effort notches, and the reason for
discretisation is to transfer the continuous function, models,
variables, and equations derived in Section 4 into discrete
counterparts.

5.1. Objective function
The objective of the algorithm is to minimise the energy

usage of the train within the route profile parameter bounds.
In this section, 𝑣𝑣𝑗𝑗 is the train’s optimal velocity, and 𝑣𝑣∗𝑗𝑗 is
the eco-driving speed of the train determined by incorpo-
rating tractive and braking effort notches and the discrete
modelling approach. The results from the simulation of the
parameters in the objective function shown in Equation (9)
are described in Section 7.

𝐽𝐽 =
∑𝑁𝑁

𝑗𝑗=1 𝑃𝑃𝑅𝑅(𝑎𝑎𝑗𝑗𝑗 𝑠𝑠𝑗𝑗 , 𝑣𝑣∗𝑗𝑗 ) × 𝑈𝑈𝑡𝑡
𝑗𝑗 × Δ𝑡𝑡𝑠𝑠, (9)

where:
1. 𝐽𝐽 is the energy usage (kWh), also known as the

objective function of the eco-driving problem.
2. Δ𝑡𝑡𝑠𝑠 is the sampling period for the route simulation.
3. 𝑈𝑈𝑡𝑡

𝑗𝑗 is the tractive effort notch of the 19E locomotive
respectively (0.1 to 1).

4. 𝑎𝑎𝑗𝑗 (m/s2), 𝑠𝑠𝑗𝑗 (km) and 𝑣𝑣∗𝑗𝑗 (m/s) are the acceleration,
distance, and optimal speed of the train at time 𝑡𝑡𝑠𝑠.

5. 𝑁𝑁 is the number of samples and 𝑗𝑗 is the counter of
sampling intervals.

5.2. FEDEO constraints
The constraints used for FEDEO are based on the ac-

celeration and tractive and braking decisions. The objective
function in Equation (9) is subject to the constraints and
bounds shown in Equations (10) to (18). The acceleration
difference for the eco-driving solution has been calculated
from the computed force ∑

𝐹𝐹𝑗𝑗 and vector 𝑎𝑎𝑗𝑗 . FEDEO is
formulated based on the tractive force 𝐹𝐹 𝑡𝑡

𝑗𝑗 , braking force 𝐹𝐹𝑏𝑏
𝑗𝑗 ,

gravitational force 𝐹𝐹𝑔𝑔
𝑗𝑗 and the resistance force 𝐹𝐹 𝑟𝑟

𝑗𝑗 over N
sampling intervals shown in (11) with the train profile shown
in Figure 3. The sum of the forces is given as ∑𝑁𝑁

𝑗𝑗=1 𝐹𝐹𝑗𝑗 , while
the braking force or 𝐹𝐹𝑏𝑏

𝑗𝑗 is dependent on two factors, based
on the train dynamics suggested by [38]:

1. Adhesion between the wheel and the rail
2. Reaction force of the rail on the wheels during braking

(hence on weight per braked wheel)
∑𝑁𝑁

𝑗𝑗=1 𝐹𝐹𝑗𝑗

𝑚𝑚
− 𝑎𝑎𝑗𝑗 = 0, (10)

𝑁𝑁
∑

𝑗𝑗=1
𝐹𝐹𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑗𝑗 = 𝐹𝐹 𝑡𝑡

𝑗𝑗 − 𝐹𝐹𝑔𝑔
𝑗𝑗 − 𝐹𝐹𝑏𝑏

𝑗𝑗 − 𝐹𝐹 𝑟𝑟
𝑗𝑗 . (11)

• ∑𝑁𝑁
𝑗𝑗=1 𝐹𝐹𝑗𝑗 is the sum of the forces in kN where equa-

tions of the forces are provided in Section 5.2.1.

The objective function in Equation (9) is subject to the
following constraints:

𝑈𝑈𝑡𝑡
𝑗𝑗 ∈ {0,… , 10} (1 ≤ 𝑗𝑗 ≤ 𝑁𝑁), (12)

𝑈𝑈𝑏𝑏
𝑗𝑗 ∈ {0 , ... , 10} (1 ≤ 𝑗𝑗 ≤ 𝑁𝑁), (13)

𝑈𝑈𝑡𝑡
𝑗𝑗 × 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0. (14)

𝑣𝑣∗,𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑣𝑣∗𝑗𝑗 ≤ 𝑣𝑣∗,𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (15)

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑠𝑠𝑗𝑗 ≤ 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (16)

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑎𝑎𝑗𝑗 ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (17)

ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ ℎ𝑗𝑗 ≤ ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (18)

where the decision 1 or 0 is the state of movement of the
train, and ℎ𝑗𝑗 is the elevation profile. The MINLP method
uses the decision variables 𝑈𝑈𝑡𝑡

𝑗𝑗 and 𝑈𝑈𝑏𝑏
𝑗𝑗 for optimisation. The

optimisation is updated every 𝑗𝑗𝑡𝑡𝑡 sampling interval [40, 44].
5.2.1. Algorithm to solve the FEDEO formulations

FEDEO aims to minimise 𝑓𝑓𝑇𝑇𝑋𝑋 subject to the equality
constraints (𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 = 𝑏𝑏𝑒𝑒𝑒𝑒) and upper and lower boundaries of
the control variables (𝐿𝐿𝐵𝐵 ≤ X ≤ 𝑈𝑈𝐵𝐵). The control variables
are 𝑈𝑈𝑡𝑡

𝑗𝑗 and 𝑈𝑈𝑏𝑏
𝑗𝑗 , while 𝐴𝐴𝑒𝑒𝑒𝑒 and 𝐵𝐵𝑒𝑒𝑒𝑒 are the equality matrices,

and 𝐿𝐿𝐵𝐵 , 𝑈𝑈𝐵𝐵 , and f are vectors represented below in Equa-
tions (19) and (20). The independent variables are tractive
and braking effort forces 𝐹𝐹 𝑡𝑡

𝑗𝑗 and 𝐹𝐹𝑏𝑏
𝑗𝑗 , dependent variables are

the train acceleration 𝑎𝑎𝑗𝑗 and continuous velocity 𝑣𝑣𝑗𝑗 and the
core state variables are the distance 𝑠𝑠𝑗𝑗 and optimal velocity
𝑣𝑣∗𝑗𝑗 [45]. The objective function is solved using the canonical
form in Equation (9) as the vector 𝑓𝑓𝑇𝑇𝑋𝑋 [17, 46]:

𝒎𝒎𝒎𝒎𝒎𝒎 𝒎𝒎𝑻𝑻𝑿𝑿 (19)
subject to:
{

𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 = 𝑏𝑏𝑒𝑒𝑒𝑒 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)
𝐿𝐿𝐵𝐵 ≤ 𝑋𝑋 ≤ 𝑈𝑈𝐵𝐵 (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢𝑢𝑢)

}

. (20)

Vector X contains all the state and independent variables.
Let matrix 𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 and 𝑏𝑏𝑒𝑒𝑒𝑒𝑋𝑋 be:

𝑨𝑨𝒆𝒆𝒆𝒆 =
⎡

⎢

⎢

⎣

𝑨𝑨𝒆𝒆𝒆𝒆𝟏𝟏
𝑨𝑨𝒆𝒆𝒆𝒆𝟐𝟐
𝑨𝑨𝒆𝒆𝒆𝒆𝟑𝟑

⎤

⎥

⎥

⎦(2𝑁𝑁+4) × (5𝑁𝑁+2)

, (21)

𝒃𝒃𝒆𝒆𝒆𝒆 =
⎡

⎢

⎢

⎣

𝒃𝒃𝒆𝒆𝒆𝒆𝟏𝟏
𝒃𝒃𝒆𝒆𝒆𝒆𝟐𝟐
𝒃𝒃𝒆𝒆𝒆𝒆𝟑𝟑

⎤

⎥

⎥

⎦(2𝑁𝑁+4) × (1)

, (22)

The vector 𝑓𝑓𝑇𝑇 in the canonical form shown in Equation
(23) can be obtained from Equation (9) to calculate the
power required for every route section’s sampling period.
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Vector X contains all the state and in dependent variables.
Let matrix 𝐴𝑒𝑞𝑋 and 𝑏𝑒𝑞𝑋 be:

Eco-driving for freight trains

eco-driving speed optimisation problem does not include
the tractive and braking effort notches, and the reason for
discretisation is to transfer the continuous function, models,
variables, and equations derived in Section 4 into discrete
counterparts.

5.1. Objective function
The objective of the algorithm is to minimise the energy

usage of the train within the route profile parameter bounds.
In this section, 𝑣𝑣𝑗𝑗 is the train’s optimal velocity, and 𝑣𝑣∗𝑗𝑗 is
the eco-driving speed of the train determined by incorpo-
rating tractive and braking effort notches and the discrete
modelling approach. The results from the simulation of the
parameters in the objective function shown in Equation (9)
are described in Section 7.

𝐽𝐽 =
∑𝑁𝑁

𝑗𝑗=1 𝑃𝑃𝑅𝑅(𝑎𝑎𝑗𝑗𝑗 𝑠𝑠𝑗𝑗 , 𝑣𝑣∗𝑗𝑗 ) × 𝑈𝑈𝑡𝑡
𝑗𝑗 × Δ𝑡𝑡𝑠𝑠, (9)

where:
1. 𝐽𝐽 is the energy usage (kWh), also known as the

objective function of the eco-driving problem.
2. Δ𝑡𝑡𝑠𝑠 is the sampling period for the route simulation.
3. 𝑈𝑈𝑡𝑡

𝑗𝑗 is the tractive effort notch of the 19E locomotive
respectively (0.1 to 1).

4. 𝑎𝑎𝑗𝑗 (m/s2), 𝑠𝑠𝑗𝑗 (km) and 𝑣𝑣∗𝑗𝑗 (m/s) are the acceleration,
distance, and optimal speed of the train at time 𝑡𝑡𝑠𝑠.

5. 𝑁𝑁 is the number of samples and 𝑗𝑗 is the counter of
sampling intervals.

5.2. FEDEO constraints
The constraints used for FEDEO are based on the ac-

celeration and tractive and braking decisions. The objective
function in Equation (9) is subject to the constraints and
bounds shown in Equations (10) to (18). The acceleration
difference for the eco-driving solution has been calculated
from the computed force ∑

𝐹𝐹𝑗𝑗 and vector 𝑎𝑎𝑗𝑗 . FEDEO is
formulated based on the tractive force 𝐹𝐹 𝑡𝑡

𝑗𝑗 , braking force 𝐹𝐹𝑏𝑏
𝑗𝑗 ,

gravitational force 𝐹𝐹𝑔𝑔
𝑗𝑗 and the resistance force 𝐹𝐹 𝑟𝑟

𝑗𝑗 over N
sampling intervals shown in (11) with the train profile shown
in Figure 3. The sum of the forces is given as ∑𝑁𝑁

𝑗𝑗=1 𝐹𝐹𝑗𝑗 , while
the braking force or 𝐹𝐹𝑏𝑏

𝑗𝑗 is dependent on two factors, based
on the train dynamics suggested by [38]:

1. Adhesion between the wheel and the rail
2. Reaction force of the rail on the wheels during braking

(hence on weight per braked wheel)
∑𝑁𝑁

𝑗𝑗=1 𝐹𝐹𝑗𝑗

𝑚𝑚
− 𝑎𝑎𝑗𝑗 = 0, (10)

𝑁𝑁
∑

𝑗𝑗=1
𝐹𝐹𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑗𝑗 = 𝐹𝐹 𝑡𝑡

𝑗𝑗 − 𝐹𝐹𝑔𝑔
𝑗𝑗 − 𝐹𝐹𝑏𝑏

𝑗𝑗 − 𝐹𝐹 𝑟𝑟
𝑗𝑗 . (11)

• ∑𝑁𝑁
𝑗𝑗=1 𝐹𝐹𝑗𝑗 is the sum of the forces in kN where equa-

tions of the forces are provided in Section 5.2.1.

The objective function in Equation (9) is subject to the
following constraints:

𝑈𝑈𝑡𝑡
𝑗𝑗 ∈ {0,… , 10} (1 ≤ 𝑗𝑗 ≤ 𝑁𝑁), (12)

𝑈𝑈𝑏𝑏
𝑗𝑗 ∈ {0 , ... , 10} (1 ≤ 𝑗𝑗 ≤ 𝑁𝑁), (13)

𝑈𝑈𝑡𝑡
𝑗𝑗 × 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0. (14)

𝑣𝑣∗,𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑣𝑣∗𝑗𝑗 ≤ 𝑣𝑣∗,𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (15)

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑠𝑠𝑗𝑗 ≤ 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (16)

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ 𝑎𝑎𝑗𝑗 ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (17)

ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 ≤ ℎ𝑗𝑗 ≤ ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 . (18)

where the decision 1 or 0 is the state of movement of the
train, and ℎ𝑗𝑗 is the elevation profile. The MINLP method
uses the decision variables 𝑈𝑈𝑡𝑡

𝑗𝑗 and 𝑈𝑈𝑏𝑏
𝑗𝑗 for optimisation. The

optimisation is updated every 𝑗𝑗𝑡𝑡𝑡 sampling interval [40, 44].
5.2.1. Algorithm to solve the FEDEO formulations

FEDEO aims to minimise 𝑓𝑓𝑇𝑇𝑋𝑋 subject to the equality
constraints (𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 = 𝑏𝑏𝑒𝑒𝑒𝑒) and upper and lower boundaries of
the control variables (𝐿𝐿𝐵𝐵 ≤ X ≤ 𝑈𝑈𝐵𝐵). The control variables
are 𝑈𝑈𝑡𝑡

𝑗𝑗 and 𝑈𝑈𝑏𝑏
𝑗𝑗 , while 𝐴𝐴𝑒𝑒𝑒𝑒 and 𝐵𝐵𝑒𝑒𝑒𝑒 are the equality matrices,

and 𝐿𝐿𝐵𝐵 , 𝑈𝑈𝐵𝐵 , and f are vectors represented below in Equa-
tions (19) and (20). The independent variables are tractive
and braking effort forces 𝐹𝐹 𝑡𝑡

𝑗𝑗 and 𝐹𝐹𝑏𝑏
𝑗𝑗 , dependent variables are

the train acceleration 𝑎𝑎𝑗𝑗 and continuous velocity 𝑣𝑣𝑗𝑗 and the
core state variables are the distance 𝑠𝑠𝑗𝑗 and optimal velocity
𝑣𝑣∗𝑗𝑗 [45]. The objective function is solved using the canonical
form in Equation (9) as the vector 𝑓𝑓𝑇𝑇𝑋𝑋 [17, 46]:

𝒎𝒎𝒎𝒎𝒎𝒎 𝒎𝒎𝑻𝑻𝑿𝑿 (19)
subject to:
{

𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 = 𝑏𝑏𝑒𝑒𝑒𝑒 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)
𝐿𝐿𝐵𝐵 ≤ 𝑋𝑋 ≤ 𝑈𝑈𝐵𝐵 (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢𝑢𝑢)

}

. (20)

Vector X contains all the state and independent variables.
Let matrix 𝐴𝐴𝑒𝑒𝑒𝑒𝑋𝑋 and 𝑏𝑏𝑒𝑒𝑒𝑒𝑋𝑋 be:

𝑨𝑨𝒆𝒆𝒆𝒆 =
⎡

⎢

⎢

⎣

𝑨𝑨𝒆𝒆𝒆𝒆𝟏𝟏
𝑨𝑨𝒆𝒆𝒆𝒆𝟐𝟐
𝑨𝑨𝒆𝒆𝒆𝒆𝟑𝟑

⎤

⎥

⎥

⎦(2𝑁𝑁+4) × (5𝑁𝑁+2)

, (21)

𝒃𝒃𝒆𝒆𝒆𝒆 =
⎡

⎢

⎢

⎣

𝒃𝒃𝒆𝒆𝒆𝒆𝟏𝟏
𝒃𝒃𝒆𝒆𝒆𝒆𝟐𝟐
𝒃𝒃𝒆𝒆𝒆𝒆𝟑𝟑

⎤

⎥

⎥

⎦(2𝑁𝑁+4) × (1)

, (22)

The vector 𝑓𝑓𝑇𝑇 in the canonical form shown in Equation
(23) can be obtained from Equation (9) to calculate the
power required for every route section’s sampling period.
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The vector 𝑓𝑇 in the canonical form shown in Equation (23) can be obtained from Equation (9) to calculate the power required 
for every route section’s sampling period.
 

Equation (24) is the unknown vector we are trying to solve for using the FEDEO algorithm.

Eco-driving for freight trains

𝑓𝑓𝑇𝑇 = [𝑃𝑃𝑅𝑅(1) … 𝑃𝑃𝑅𝑅(𝑁𝑁)]1 × (5𝑁𝑁+2). (23)
Equation (24) is the unknown vector we are trying to

solve for using the FEDEO algorithm.

𝑿𝑿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗𝑗𝑗

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗𝑗𝑗

𝑣𝑣∗𝑗𝑗𝑗0
⋮

𝑣𝑣∗𝑗𝑗𝑗𝑗𝑗+1

𝑎𝑎𝑗𝑗𝑗0
⋮

𝑎𝑎𝑗𝑗𝑗𝑗𝑗

𝑠𝑠𝑗𝑗𝑗0
⋮

𝑠𝑠𝑗𝑗𝑗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5𝑁𝑁+2) × 1

, (24)

The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒1 is:

𝐴𝐴𝑒𝑒𝑒𝑒1 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3]𝑁𝑁 × (5𝑁𝑁+2). (25)

The dynamic equation in its continuous form is discretised
for use in 𝐴𝐴𝑒𝑒𝑒𝑒1 as:

𝑉𝑉 𝑖𝑖𝑖∗
𝑗𝑗 − 𝑉𝑉 𝑓𝑓𝑓∗

𝑗𝑗 + (𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑) = 0. (26)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒1 are shown in Equa-
tions (27) to (31):
𝑈𝑈𝑡𝑡
𝑗𝑗 = 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0𝑁𝑁 × 𝑁𝑁. (27)

𝐴𝐴1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … 0
0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(28)

𝐴𝐴2 =

⎡

⎢

⎢

⎢

⎣

𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 0 … 0
0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 … 0
0 0 ⋱ 0
0 0 0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑

⎤

⎥

⎥

⎥

⎦

𝑁𝑁 ×𝑁𝑁

, (29)

𝐴𝐴3 = 𝑆𝑆𝑗𝑗 = 0𝑁𝑁 × (𝑁𝑁+1), (30)
𝑏𝑏𝑒𝑒𝑒𝑒1 = 0𝑁𝑁 × 1. (31)
The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒2 is:

𝐴𝐴𝑒𝑒𝑒𝑒2 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴5, 𝐴𝐴6, 𝐴𝐴7]𝑁𝑁 × (5𝑁𝑁+2). (32)

The longitudinal movement in its continuous form must be
discretised as shown below for use in 𝐴𝐴𝑒𝑒𝑒𝑒2:

𝑠𝑠𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑓𝑓𝑗𝑗 + (1
2

× 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2) = 0. (33)

(𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 × 𝑑𝑑𝑑𝑑) − 𝑠𝑠𝑖𝑖𝑗𝑗 = 0. (34)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒2 are shown in Equa-
tions (35) to (38):

𝐴𝐴5 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 … 0
0 0 ⋱ 0
0 0 0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(35)

𝐴𝐴6 =

⎡

⎢

⎢

⎢

⎢

⎣

1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 0 … 0

0 1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 … 0

0 0 ⋱ 0
0 0 0 1

2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × 𝑁𝑁

,

(36)

𝐴𝐴7 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 0 … 0
0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

, (37)

𝑏𝑏𝑒𝑒𝑒𝑒2 = 0𝑁𝑁 × 1. (38)

The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒3 are formulated as:

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 = 𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 , 𝑠𝑠𝑖𝑖𝑗𝑗 = 0𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑓𝑓𝑗𝑗 = 90.64 𝑘𝑘𝑘𝑘𝑘 (39)
The linear matrices for 𝐴𝐴𝑒𝑒𝑒𝑒3 are below in Equations (40) to
(43) :

𝐴𝐴𝑒𝑒𝑒𝑒3 = [𝑈𝑈𝑡𝑡
𝑗𝑗(4 × 𝑁𝑁), 𝑈𝑈

𝑏𝑏
𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴8, 𝑎𝑎𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴9]4 × (5𝑁𝑁+2).

(40)

𝐴𝐴8 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗
0 0 … 0
0 0 … 0

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (41)

𝐴𝐴9 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 … 0
0 0 … 0
𝑠𝑠𝑖𝑖𝑗𝑗 0 … 0
0 0 … 𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (42)
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Eco-driving for freight trains

𝑓𝑓𝑇𝑇 = [𝑃𝑃𝑅𝑅(1) … 𝑃𝑃𝑅𝑅(𝑁𝑁)]1 × (5𝑁𝑁+2). (23)
Equation (24) is the unknown vector we are trying to

solve for using the FEDEO algorithm.

𝑿𝑿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗𝑗𝑗

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗𝑗𝑗

𝑣𝑣∗𝑗𝑗𝑗0
⋮

𝑣𝑣∗𝑗𝑗𝑗𝑗𝑗+1

𝑎𝑎𝑗𝑗𝑗0
⋮

𝑎𝑎𝑗𝑗𝑗𝑗𝑗

𝑠𝑠𝑗𝑗𝑗0
⋮

𝑠𝑠𝑗𝑗𝑗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5𝑁𝑁+2) × 1

, (24)

The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒1 is:

𝐴𝐴𝑒𝑒𝑒𝑒1 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3]𝑁𝑁 × (5𝑁𝑁+2). (25)

The dynamic equation in its continuous form is discretised
for use in 𝐴𝐴𝑒𝑒𝑒𝑒1 as:

𝑉𝑉 𝑖𝑖𝑖∗
𝑗𝑗 − 𝑉𝑉 𝑓𝑓𝑓∗

𝑗𝑗 + (𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑) = 0. (26)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒1 are shown in Equa-
tions (27) to (31):
𝑈𝑈𝑡𝑡
𝑗𝑗 = 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0𝑁𝑁 × 𝑁𝑁. (27)

𝐴𝐴1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … 0
0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(28)

𝐴𝐴2 =

⎡

⎢

⎢

⎢

⎣

𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 0 … 0
0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 … 0
0 0 ⋱ 0
0 0 0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑

⎤

⎥

⎥

⎥

⎦

𝑁𝑁 ×𝑁𝑁

, (29)

𝐴𝐴3 = 𝑆𝑆𝑗𝑗 = 0𝑁𝑁 × (𝑁𝑁+1), (30)
𝑏𝑏𝑒𝑒𝑒𝑒1 = 0𝑁𝑁 × 1. (31)
The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒2 is:

𝐴𝐴𝑒𝑒𝑒𝑒2 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴5, 𝐴𝐴6, 𝐴𝐴7]𝑁𝑁 × (5𝑁𝑁+2). (32)

The longitudinal movement in its continuous form must be
discretised as shown below for use in 𝐴𝐴𝑒𝑒𝑒𝑒2:

𝑠𝑠𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑓𝑓𝑗𝑗 + (1
2

× 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2) = 0. (33)

(𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 × 𝑑𝑑𝑑𝑑) − 𝑠𝑠𝑖𝑖𝑗𝑗 = 0. (34)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒2 are shown in Equa-
tions (35) to (38):

𝐴𝐴5 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 … 0
0 0 ⋱ 0
0 0 0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(35)

𝐴𝐴6 =

⎡

⎢

⎢

⎢

⎢

⎣

1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 0 … 0

0 1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 … 0

0 0 ⋱ 0
0 0 0 1

2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × 𝑁𝑁

,

(36)

𝐴𝐴7 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 0 … 0
0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

, (37)

𝑏𝑏𝑒𝑒𝑒𝑒2 = 0𝑁𝑁 × 1. (38)

The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒3 are formulated as:

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 = 𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 , 𝑠𝑠𝑖𝑖𝑗𝑗 = 0𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑓𝑓𝑗𝑗 = 90.64 𝑘𝑘𝑘𝑘𝑘 (39)
The linear matrices for 𝐴𝐴𝑒𝑒𝑒𝑒3 are below in Equations (40) to
(43) :

𝐴𝐴𝑒𝑒𝑒𝑒3 = [𝑈𝑈𝑡𝑡
𝑗𝑗(4 × 𝑁𝑁), 𝑈𝑈

𝑏𝑏
𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴8, 𝑎𝑎𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴9]4 × (5𝑁𝑁+2).

(40)

𝐴𝐴8 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗
0 0 … 0
0 0 … 0

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (41)

𝐴𝐴9 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 … 0
0 0 … 0
𝑠𝑠𝑖𝑖𝑗𝑗 0 … 0
0 0 … 𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (42)
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The linear matrix for 𝐴𝑒𝑞1 is

The dynamic equation in its continuous form is discretized for use in 𝐴𝑒𝑞1 as:

The equality matrices required for 𝐴𝑒𝑞1 are shown in Equations (27) to (31):

Eco-driving for freight trains

𝑓𝑓𝑇𝑇 = [𝑃𝑃𝑅𝑅(1) … 𝑃𝑃𝑅𝑅(𝑁𝑁)]1 × (5𝑁𝑁+2). (23)
Equation (24) is the unknown vector we are trying to

solve for using the FEDEO algorithm.

𝑿𝑿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗𝑗𝑗

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗𝑗𝑗

𝑣𝑣∗𝑗𝑗𝑗0
⋮

𝑣𝑣∗𝑗𝑗𝑗𝑗𝑗+1

𝑎𝑎𝑗𝑗𝑗0
⋮

𝑎𝑎𝑗𝑗𝑗𝑗𝑗

𝑠𝑠𝑗𝑗𝑗0
⋮

𝑠𝑠𝑗𝑗𝑗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5𝑁𝑁+2) × 1

, (24)

The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒1 is:

𝐴𝐴𝑒𝑒𝑒𝑒1 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3]𝑁𝑁 × (5𝑁𝑁+2). (25)

The dynamic equation in its continuous form is discretised
for use in 𝐴𝐴𝑒𝑒𝑒𝑒1 as:

𝑉𝑉 𝑖𝑖𝑖∗
𝑗𝑗 − 𝑉𝑉 𝑓𝑓𝑓∗

𝑗𝑗 + (𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑) = 0. (26)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒1 are shown in Equa-
tions (27) to (31):
𝑈𝑈𝑡𝑡
𝑗𝑗 = 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0𝑁𝑁 × 𝑁𝑁. (27)

𝐴𝐴1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … 0
0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(28)

𝐴𝐴2 =

⎡

⎢

⎢

⎢

⎣

𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 0 … 0
0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 … 0
0 0 ⋱ 0
0 0 0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑

⎤

⎥

⎥

⎥

⎦

𝑁𝑁 ×𝑁𝑁

, (29)

𝐴𝐴3 = 𝑆𝑆𝑗𝑗 = 0𝑁𝑁 × (𝑁𝑁+1), (30)
𝑏𝑏𝑒𝑒𝑒𝑒1 = 0𝑁𝑁 × 1. (31)
The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒2 is:

𝐴𝐴𝑒𝑒𝑒𝑒2 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴5, 𝐴𝐴6, 𝐴𝐴7]𝑁𝑁 × (5𝑁𝑁+2). (32)

The longitudinal movement in its continuous form must be
discretised as shown below for use in 𝐴𝐴𝑒𝑒𝑒𝑒2:

𝑠𝑠𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑓𝑓𝑗𝑗 + (1
2

× 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2) = 0. (33)

(𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 × 𝑑𝑑𝑑𝑑) − 𝑠𝑠𝑖𝑖𝑗𝑗 = 0. (34)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒2 are shown in Equa-
tions (35) to (38):

𝐴𝐴5 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 … 0
0 0 ⋱ 0
0 0 0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(35)

𝐴𝐴6 =

⎡

⎢

⎢

⎢

⎢

⎣

1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 0 … 0

0 1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 … 0

0 0 ⋱ 0
0 0 0 1

2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × 𝑁𝑁

,

(36)

𝐴𝐴7 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 0 … 0
0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

, (37)

𝑏𝑏𝑒𝑒𝑒𝑒2 = 0𝑁𝑁 × 1. (38)

The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒3 are formulated as:

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 = 𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 , 𝑠𝑠𝑖𝑖𝑗𝑗 = 0𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑓𝑓𝑗𝑗 = 90.64 𝑘𝑘𝑘𝑘𝑘 (39)
The linear matrices for 𝐴𝐴𝑒𝑒𝑒𝑒3 are below in Equations (40) to
(43) :

𝐴𝐴𝑒𝑒𝑒𝑒3 = [𝑈𝑈𝑡𝑡
𝑗𝑗(4 × 𝑁𝑁), 𝑈𝑈

𝑏𝑏
𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴8, 𝑎𝑎𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴9]4 × (5𝑁𝑁+2).

(40)

𝐴𝐴8 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗
0 0 … 0
0 0 … 0

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (41)

𝐴𝐴9 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 … 0
0 0 … 0
𝑠𝑠𝑖𝑖𝑗𝑗 0 … 0
0 0 … 𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (42)
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Eco-driving for freight trains

𝑓𝑓𝑇𝑇 = [𝑃𝑃𝑅𝑅(1) … 𝑃𝑃𝑅𝑅(𝑁𝑁)]1 × (5𝑁𝑁+2). (23)
Equation (24) is the unknown vector we are trying to

solve for using the FEDEO algorithm.

𝑿𝑿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗𝑗𝑗

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗𝑗𝑗

𝑣𝑣∗𝑗𝑗𝑗0
⋮

𝑣𝑣∗𝑗𝑗𝑗𝑗𝑗+1

𝑎𝑎𝑗𝑗𝑗0
⋮

𝑎𝑎𝑗𝑗𝑗𝑗𝑗

𝑠𝑠𝑗𝑗𝑗0
⋮

𝑠𝑠𝑗𝑗𝑗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5𝑁𝑁+2) × 1

, (24)

The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒1 is:

𝐴𝐴𝑒𝑒𝑒𝑒1 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3]𝑁𝑁 × (5𝑁𝑁+2). (25)

The dynamic equation in its continuous form is discretised
for use in 𝐴𝐴𝑒𝑒𝑒𝑒1 as:

𝑉𝑉 𝑖𝑖𝑖∗
𝑗𝑗 − 𝑉𝑉 𝑓𝑓𝑓∗

𝑗𝑗 + (𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑) = 0. (26)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒1 are shown in Equa-
tions (27) to (31):
𝑈𝑈𝑡𝑡
𝑗𝑗 = 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0𝑁𝑁 × 𝑁𝑁. (27)

𝐴𝐴1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … 0
0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(28)

𝐴𝐴2 =

⎡

⎢

⎢

⎢

⎣

𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 0 … 0
0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 … 0
0 0 ⋱ 0
0 0 0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑

⎤

⎥

⎥

⎥

⎦

𝑁𝑁 ×𝑁𝑁

, (29)

𝐴𝐴3 = 𝑆𝑆𝑗𝑗 = 0𝑁𝑁 × (𝑁𝑁+1), (30)
𝑏𝑏𝑒𝑒𝑒𝑒1 = 0𝑁𝑁 × 1. (31)
The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒2 is:

𝐴𝐴𝑒𝑒𝑒𝑒2 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴5, 𝐴𝐴6, 𝐴𝐴7]𝑁𝑁 × (5𝑁𝑁+2). (32)

The longitudinal movement in its continuous form must be
discretised as shown below for use in 𝐴𝐴𝑒𝑒𝑒𝑒2:

𝑠𝑠𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑓𝑓𝑗𝑗 + (1
2

× 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2) = 0. (33)

(𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 × 𝑑𝑑𝑑𝑑) − 𝑠𝑠𝑖𝑖𝑗𝑗 = 0. (34)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒2 are shown in Equa-
tions (35) to (38):

𝐴𝐴5 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 … 0
0 0 ⋱ 0
0 0 0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(35)

𝐴𝐴6 =

⎡

⎢

⎢

⎢

⎢

⎣

1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 0 … 0

0 1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 … 0

0 0 ⋱ 0
0 0 0 1

2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × 𝑁𝑁

,

(36)

𝐴𝐴7 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 0 … 0
0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

, (37)

𝑏𝑏𝑒𝑒𝑒𝑒2 = 0𝑁𝑁 × 1. (38)

The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒3 are formulated as:

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 = 𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 , 𝑠𝑠𝑖𝑖𝑗𝑗 = 0𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑓𝑓𝑗𝑗 = 90.64 𝑘𝑘𝑘𝑘𝑘 (39)
The linear matrices for 𝐴𝐴𝑒𝑒𝑒𝑒3 are below in Equations (40) to
(43) :

𝐴𝐴𝑒𝑒𝑒𝑒3 = [𝑈𝑈𝑡𝑡
𝑗𝑗(4 × 𝑁𝑁), 𝑈𝑈

𝑏𝑏
𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴8, 𝑎𝑎𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴9]4 × (5𝑁𝑁+2).

(40)

𝐴𝐴8 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗
0 0 … 0
0 0 … 0

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (41)

𝐴𝐴9 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 … 0
0 0 … 0
𝑠𝑠𝑖𝑖𝑗𝑗 0 … 0
0 0 … 𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (42)
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𝑓𝑓𝑇𝑇 = [𝑃𝑃𝑅𝑅(1) … 𝑃𝑃𝑅𝑅(𝑁𝑁)]1 × (5𝑁𝑁+2). (23)
Equation (24) is the unknown vector we are trying to

solve for using the FEDEO algorithm.

𝑿𝑿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗𝑗𝑗

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗𝑗𝑗

𝑣𝑣∗𝑗𝑗𝑗0
⋮

𝑣𝑣∗𝑗𝑗𝑗𝑗𝑗+1

𝑎𝑎𝑗𝑗𝑗0
⋮

𝑎𝑎𝑗𝑗𝑗𝑗𝑗

𝑠𝑠𝑗𝑗𝑗0
⋮

𝑠𝑠𝑗𝑗𝑗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5𝑁𝑁+2) × 1

, (24)

The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒1 is:

𝐴𝐴𝑒𝑒𝑒𝑒1 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3]𝑁𝑁 × (5𝑁𝑁+2). (25)

The dynamic equation in its continuous form is discretised
for use in 𝐴𝐴𝑒𝑒𝑒𝑒1 as:

𝑉𝑉 𝑖𝑖𝑖∗
𝑗𝑗 − 𝑉𝑉 𝑓𝑓𝑓∗

𝑗𝑗 + (𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑) = 0. (26)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒1 are shown in Equa-
tions (27) to (31):
𝑈𝑈𝑡𝑡
𝑗𝑗 = 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0𝑁𝑁 × 𝑁𝑁. (27)

𝐴𝐴1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … 0
0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(28)

𝐴𝐴2 =

⎡

⎢

⎢

⎢

⎣

𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 0 … 0
0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 … 0
0 0 ⋱ 0
0 0 0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑

⎤

⎥

⎥

⎥

⎦

𝑁𝑁 ×𝑁𝑁

, (29)

𝐴𝐴3 = 𝑆𝑆𝑗𝑗 = 0𝑁𝑁 × (𝑁𝑁+1), (30)
𝑏𝑏𝑒𝑒𝑒𝑒1 = 0𝑁𝑁 × 1. (31)
The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒2 is:

𝐴𝐴𝑒𝑒𝑒𝑒2 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴5, 𝐴𝐴6, 𝐴𝐴7]𝑁𝑁 × (5𝑁𝑁+2). (32)

The longitudinal movement in its continuous form must be
discretised as shown below for use in 𝐴𝐴𝑒𝑒𝑒𝑒2:

𝑠𝑠𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑓𝑓𝑗𝑗 + (1
2

× 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2) = 0. (33)

(𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 × 𝑑𝑑𝑑𝑑) − 𝑠𝑠𝑖𝑖𝑗𝑗 = 0. (34)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒2 are shown in Equa-
tions (35) to (38):

𝐴𝐴5 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 … 0
0 0 ⋱ 0
0 0 0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(35)

𝐴𝐴6 =

⎡

⎢

⎢

⎢

⎢

⎣

1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 0 … 0

0 1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 … 0

0 0 ⋱ 0
0 0 0 1

2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × 𝑁𝑁

,

(36)

𝐴𝐴7 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 0 … 0
0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

, (37)

𝑏𝑏𝑒𝑒𝑒𝑒2 = 0𝑁𝑁 × 1. (38)

The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒3 are formulated as:

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 = 𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 , 𝑠𝑠𝑖𝑖𝑗𝑗 = 0𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑓𝑓𝑗𝑗 = 90.64 𝑘𝑘𝑘𝑘𝑘 (39)
The linear matrices for 𝐴𝐴𝑒𝑒𝑒𝑒3 are below in Equations (40) to
(43) :

𝐴𝐴𝑒𝑒𝑒𝑒3 = [𝑈𝑈𝑡𝑡
𝑗𝑗(4 × 𝑁𝑁), 𝑈𝑈

𝑏𝑏
𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴8, 𝑎𝑎𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴9]4 × (5𝑁𝑁+2).

(40)

𝐴𝐴8 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗
0 0 … 0
0 0 … 0

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (41)

𝐴𝐴9 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 … 0
0 0 … 0
𝑠𝑠𝑖𝑖𝑗𝑗 0 … 0
0 0 … 𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (42)
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𝑓𝑓𝑇𝑇 = [𝑃𝑃𝑅𝑅(1) … 𝑃𝑃𝑅𝑅(𝑁𝑁)]1 × (5𝑁𝑁+2). (23)
Equation (24) is the unknown vector we are trying to

solve for using the FEDEO algorithm.

𝑿𝑿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗𝑗𝑗

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗𝑗𝑗

𝑣𝑣∗𝑗𝑗𝑗0
⋮

𝑣𝑣∗𝑗𝑗𝑗𝑗𝑗+1

𝑎𝑎𝑗𝑗𝑗0
⋮

𝑎𝑎𝑗𝑗𝑗𝑗𝑗

𝑠𝑠𝑗𝑗𝑗0
⋮

𝑠𝑠𝑗𝑗𝑗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5𝑁𝑁+2) × 1

, (24)

The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒1 is:

𝐴𝐴𝑒𝑒𝑒𝑒1 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3]𝑁𝑁 × (5𝑁𝑁+2). (25)

The dynamic equation in its continuous form is discretised
for use in 𝐴𝐴𝑒𝑒𝑒𝑒1 as:

𝑉𝑉 𝑖𝑖𝑖∗
𝑗𝑗 − 𝑉𝑉 𝑓𝑓𝑓∗

𝑗𝑗 + (𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑) = 0. (26)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒1 are shown in Equa-
tions (27) to (31):
𝑈𝑈𝑡𝑡
𝑗𝑗 = 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0𝑁𝑁 × 𝑁𝑁. (27)

𝐴𝐴1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … 0
0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(28)

𝐴𝐴2 =

⎡

⎢

⎢

⎢

⎣

𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 0 … 0
0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 … 0
0 0 ⋱ 0
0 0 0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑

⎤

⎥

⎥

⎥

⎦

𝑁𝑁 ×𝑁𝑁

, (29)

𝐴𝐴3 = 𝑆𝑆𝑗𝑗 = 0𝑁𝑁 × (𝑁𝑁+1), (30)
𝑏𝑏𝑒𝑒𝑒𝑒1 = 0𝑁𝑁 × 1. (31)
The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒2 is:

𝐴𝐴𝑒𝑒𝑒𝑒2 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴5, 𝐴𝐴6, 𝐴𝐴7]𝑁𝑁 × (5𝑁𝑁+2). (32)

The longitudinal movement in its continuous form must be
discretised as shown below for use in 𝐴𝐴𝑒𝑒𝑒𝑒2:

𝑠𝑠𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑓𝑓𝑗𝑗 + (1
2

× 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2) = 0. (33)

(𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 × 𝑑𝑑𝑑𝑑) − 𝑠𝑠𝑖𝑖𝑗𝑗 = 0. (34)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒2 are shown in Equa-
tions (35) to (38):

𝐴𝐴5 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 … 0
0 0 ⋱ 0
0 0 0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(35)

𝐴𝐴6 =

⎡

⎢

⎢

⎢

⎢

⎣

1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 0 … 0

0 1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 … 0

0 0 ⋱ 0
0 0 0 1

2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × 𝑁𝑁

,

(36)

𝐴𝐴7 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 0 … 0
0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

, (37)

𝑏𝑏𝑒𝑒𝑒𝑒2 = 0𝑁𝑁 × 1. (38)

The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒3 are formulated as:

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 = 𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 , 𝑠𝑠𝑖𝑖𝑗𝑗 = 0𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑓𝑓𝑗𝑗 = 90.64 𝑘𝑘𝑘𝑘𝑘 (39)
The linear matrices for 𝐴𝐴𝑒𝑒𝑒𝑒3 are below in Equations (40) to
(43) :

𝐴𝐴𝑒𝑒𝑒𝑒3 = [𝑈𝑈𝑡𝑡
𝑗𝑗(4 × 𝑁𝑁), 𝑈𝑈

𝑏𝑏
𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴8, 𝑎𝑎𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴9]4 × (5𝑁𝑁+2).

(40)

𝐴𝐴8 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗
0 0 … 0
0 0 … 0

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (41)

𝐴𝐴9 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 … 0
0 0 … 0
𝑠𝑠𝑖𝑖𝑗𝑗 0 … 0
0 0 … 𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (42)
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The linear matrix for 𝐴𝑒𝑞2 is:

Eco-driving for freight trains

𝑓𝑓𝑇𝑇 = [𝑃𝑃𝑅𝑅(1) … 𝑃𝑃𝑅𝑅(𝑁𝑁)]1 × (5𝑁𝑁+2). (23)
Equation (24) is the unknown vector we are trying to

solve for using the FEDEO algorithm.

𝑿𝑿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗𝑗𝑗

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗𝑗𝑗

𝑣𝑣∗𝑗𝑗𝑗0
⋮

𝑣𝑣∗𝑗𝑗𝑗𝑗𝑗+1

𝑎𝑎𝑗𝑗𝑗0
⋮

𝑎𝑎𝑗𝑗𝑗𝑗𝑗

𝑠𝑠𝑗𝑗𝑗0
⋮

𝑠𝑠𝑗𝑗𝑗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5𝑁𝑁+2) × 1

, (24)

The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒1 is:

𝐴𝐴𝑒𝑒𝑒𝑒1 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3]𝑁𝑁 × (5𝑁𝑁+2). (25)

The dynamic equation in its continuous form is discretised
for use in 𝐴𝐴𝑒𝑒𝑒𝑒1 as:

𝑉𝑉 𝑖𝑖𝑖∗
𝑗𝑗 − 𝑉𝑉 𝑓𝑓𝑓∗

𝑗𝑗 + (𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑) = 0. (26)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒1 are shown in Equa-
tions (27) to (31):
𝑈𝑈𝑡𝑡
𝑗𝑗 = 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0𝑁𝑁 × 𝑁𝑁. (27)

𝐴𝐴1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … 0
0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(28)

𝐴𝐴2 =

⎡

⎢

⎢

⎢

⎣

𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 0 … 0
0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 … 0
0 0 ⋱ 0
0 0 0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑

⎤

⎥

⎥

⎥

⎦

𝑁𝑁 ×𝑁𝑁

, (29)

𝐴𝐴3 = 𝑆𝑆𝑗𝑗 = 0𝑁𝑁 × (𝑁𝑁+1), (30)
𝑏𝑏𝑒𝑒𝑒𝑒1 = 0𝑁𝑁 × 1. (31)
The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒2 is:

𝐴𝐴𝑒𝑒𝑒𝑒2 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴5, 𝐴𝐴6, 𝐴𝐴7]𝑁𝑁 × (5𝑁𝑁+2). (32)

The longitudinal movement in its continuous form must be
discretised as shown below for use in 𝐴𝐴𝑒𝑒𝑒𝑒2:

𝑠𝑠𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑓𝑓𝑗𝑗 + (1
2

× 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2) = 0. (33)

(𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 × 𝑑𝑑𝑑𝑑) − 𝑠𝑠𝑖𝑖𝑗𝑗 = 0. (34)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒2 are shown in Equa-
tions (35) to (38):

𝐴𝐴5 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 … 0
0 0 ⋱ 0
0 0 0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(35)

𝐴𝐴6 =

⎡

⎢

⎢

⎢

⎢

⎣

1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 0 … 0

0 1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 … 0

0 0 ⋱ 0
0 0 0 1

2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × 𝑁𝑁

,

(36)

𝐴𝐴7 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 0 … 0
0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

, (37)

𝑏𝑏𝑒𝑒𝑒𝑒2 = 0𝑁𝑁 × 1. (38)

The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒3 are formulated as:

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 = 𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 , 𝑠𝑠𝑖𝑖𝑗𝑗 = 0𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑓𝑓𝑗𝑗 = 90.64 𝑘𝑘𝑘𝑘𝑘 (39)
The linear matrices for 𝐴𝐴𝑒𝑒𝑒𝑒3 are below in Equations (40) to
(43) :

𝐴𝐴𝑒𝑒𝑒𝑒3 = [𝑈𝑈𝑡𝑡
𝑗𝑗(4 × 𝑁𝑁), 𝑈𝑈

𝑏𝑏
𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴8, 𝑎𝑎𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴9]4 × (5𝑁𝑁+2).

(40)

𝐴𝐴8 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗
0 0 … 0
0 0 … 0

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (41)

𝐴𝐴9 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 … 0
0 0 … 0
𝑠𝑠𝑖𝑖𝑗𝑗 0 … 0
0 0 … 𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (42)
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Eco-driving for freight trains

𝑓𝑓𝑇𝑇 = [𝑃𝑃𝑅𝑅(1) … 𝑃𝑃𝑅𝑅(𝑁𝑁)]1 × (5𝑁𝑁+2). (23)
Equation (24) is the unknown vector we are trying to

solve for using the FEDEO algorithm.

𝑿𝑿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗𝑗𝑗

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗𝑗𝑗

𝑣𝑣∗𝑗𝑗𝑗0
⋮

𝑣𝑣∗𝑗𝑗𝑗𝑗𝑗+1

𝑎𝑎𝑗𝑗𝑗0
⋮

𝑎𝑎𝑗𝑗𝑗𝑗𝑗

𝑠𝑠𝑗𝑗𝑗0
⋮

𝑠𝑠𝑗𝑗𝑗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5𝑁𝑁+2) × 1

, (24)

The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒1 is:

𝐴𝐴𝑒𝑒𝑒𝑒1 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3]𝑁𝑁 × (5𝑁𝑁+2). (25)

The dynamic equation in its continuous form is discretised
for use in 𝐴𝐴𝑒𝑒𝑒𝑒1 as:

𝑉𝑉 𝑖𝑖𝑖∗
𝑗𝑗 − 𝑉𝑉 𝑓𝑓𝑓∗

𝑗𝑗 + (𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑) = 0. (26)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒1 are shown in Equa-
tions (27) to (31):
𝑈𝑈𝑡𝑡
𝑗𝑗 = 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0𝑁𝑁 × 𝑁𝑁. (27)

𝐴𝐴1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … 0
0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(28)

𝐴𝐴2 =

⎡

⎢

⎢

⎢

⎣

𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 0 … 0
0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 … 0
0 0 ⋱ 0
0 0 0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑

⎤

⎥

⎥

⎥

⎦

𝑁𝑁 ×𝑁𝑁

, (29)

𝐴𝐴3 = 𝑆𝑆𝑗𝑗 = 0𝑁𝑁 × (𝑁𝑁+1), (30)
𝑏𝑏𝑒𝑒𝑒𝑒1 = 0𝑁𝑁 × 1. (31)
The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒2 is:

𝐴𝐴𝑒𝑒𝑒𝑒2 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴5, 𝐴𝐴6, 𝐴𝐴7]𝑁𝑁 × (5𝑁𝑁+2). (32)

The longitudinal movement in its continuous form must be
discretised as shown below for use in 𝐴𝐴𝑒𝑒𝑒𝑒2:

𝑠𝑠𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑓𝑓𝑗𝑗 + (1
2

× 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2) = 0. (33)

(𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 × 𝑑𝑑𝑑𝑑) − 𝑠𝑠𝑖𝑖𝑗𝑗 = 0. (34)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒2 are shown in Equa-
tions (35) to (38):

𝐴𝐴5 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 … 0
0 0 ⋱ 0
0 0 0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(35)

𝐴𝐴6 =

⎡

⎢

⎢

⎢

⎢

⎣

1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 0 … 0

0 1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 … 0

0 0 ⋱ 0
0 0 0 1

2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × 𝑁𝑁

,

(36)

𝐴𝐴7 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 0 … 0
0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

, (37)

𝑏𝑏𝑒𝑒𝑒𝑒2 = 0𝑁𝑁 × 1. (38)

The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒3 are formulated as:

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 = 𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 , 𝑠𝑠𝑖𝑖𝑗𝑗 = 0𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑓𝑓𝑗𝑗 = 90.64 𝑘𝑘𝑘𝑘𝑘 (39)
The linear matrices for 𝐴𝐴𝑒𝑒𝑒𝑒3 are below in Equations (40) to
(43) :

𝐴𝐴𝑒𝑒𝑒𝑒3 = [𝑈𝑈𝑡𝑡
𝑗𝑗(4 × 𝑁𝑁), 𝑈𝑈

𝑏𝑏
𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴8, 𝑎𝑎𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴9]4 × (5𝑁𝑁+2).

(40)

𝐴𝐴8 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗
0 0 … 0
0 0 … 0

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (41)

𝐴𝐴9 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 … 0
0 0 … 0
𝑠𝑠𝑖𝑖𝑗𝑗 0 … 0
0 0 … 𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (42)
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The equality matrices required for 𝐴𝑒𝑞2 are shown in Equations (35) to (38):

Eco-driving for freight trains

𝑓𝑓𝑇𝑇 = [𝑃𝑃𝑅𝑅(1) … 𝑃𝑃𝑅𝑅(𝑁𝑁)]1 × (5𝑁𝑁+2). (23)
Equation (24) is the unknown vector we are trying to

solve for using the FEDEO algorithm.

𝑿𝑿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗𝑗𝑗

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗𝑗𝑗

𝑣𝑣∗𝑗𝑗𝑗0
⋮

𝑣𝑣∗𝑗𝑗𝑗𝑗𝑗+1

𝑎𝑎𝑗𝑗𝑗0
⋮

𝑎𝑎𝑗𝑗𝑗𝑗𝑗

𝑠𝑠𝑗𝑗𝑗0
⋮

𝑠𝑠𝑗𝑗𝑗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5𝑁𝑁+2) × 1

, (24)

The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒1 is:

𝐴𝐴𝑒𝑒𝑒𝑒1 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3]𝑁𝑁 × (5𝑁𝑁+2). (25)

The dynamic equation in its continuous form is discretised
for use in 𝐴𝐴𝑒𝑒𝑒𝑒1 as:

𝑉𝑉 𝑖𝑖𝑖∗
𝑗𝑗 − 𝑉𝑉 𝑓𝑓𝑓∗

𝑗𝑗 + (𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑) = 0. (26)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒1 are shown in Equa-
tions (27) to (31):
𝑈𝑈𝑡𝑡
𝑗𝑗 = 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0𝑁𝑁 × 𝑁𝑁. (27)

𝐴𝐴1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … 0
0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(28)

𝐴𝐴2 =

⎡

⎢

⎢

⎢

⎣

𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 0 … 0
0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 … 0
0 0 ⋱ 0
0 0 0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑

⎤

⎥

⎥

⎥

⎦

𝑁𝑁 ×𝑁𝑁

, (29)

𝐴𝐴3 = 𝑆𝑆𝑗𝑗 = 0𝑁𝑁 × (𝑁𝑁+1), (30)
𝑏𝑏𝑒𝑒𝑒𝑒1 = 0𝑁𝑁 × 1. (31)
The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒2 is:

𝐴𝐴𝑒𝑒𝑒𝑒2 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴5, 𝐴𝐴6, 𝐴𝐴7]𝑁𝑁 × (5𝑁𝑁+2). (32)

The longitudinal movement in its continuous form must be
discretised as shown below for use in 𝐴𝐴𝑒𝑒𝑒𝑒2:

𝑠𝑠𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑓𝑓𝑗𝑗 + (1
2

× 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2) = 0. (33)

(𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 × 𝑑𝑑𝑑𝑑) − 𝑠𝑠𝑖𝑖𝑗𝑗 = 0. (34)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒2 are shown in Equa-
tions (35) to (38):

𝐴𝐴5 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 … 0
0 0 ⋱ 0
0 0 0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(35)

𝐴𝐴6 =

⎡

⎢

⎢

⎢

⎢

⎣

1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 0 … 0

0 1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 … 0

0 0 ⋱ 0
0 0 0 1

2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × 𝑁𝑁

,

(36)

𝐴𝐴7 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 0 … 0
0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

, (37)

𝑏𝑏𝑒𝑒𝑒𝑒2 = 0𝑁𝑁 × 1. (38)

The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒3 are formulated as:

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 = 𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 , 𝑠𝑠𝑖𝑖𝑗𝑗 = 0𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑓𝑓𝑗𝑗 = 90.64 𝑘𝑘𝑘𝑘𝑘 (39)
The linear matrices for 𝐴𝐴𝑒𝑒𝑒𝑒3 are below in Equations (40) to
(43) :

𝐴𝐴𝑒𝑒𝑒𝑒3 = [𝑈𝑈𝑡𝑡
𝑗𝑗(4 × 𝑁𝑁), 𝑈𝑈

𝑏𝑏
𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴8, 𝑎𝑎𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴9]4 × (5𝑁𝑁+2).

(40)

𝐴𝐴8 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗
0 0 … 0
0 0 … 0

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (41)

𝐴𝐴9 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 … 0
0 0 … 0
𝑠𝑠𝑖𝑖𝑗𝑗 0 … 0
0 0 … 𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (42)
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The equality matrices required for 𝐴𝑒𝑞3 are formulated as:

Eco-driving for freight trains

𝑓𝑓𝑇𝑇 = [𝑃𝑃𝑅𝑅(1) … 𝑃𝑃𝑅𝑅(𝑁𝑁)]1 × (5𝑁𝑁+2). (23)
Equation (24) is the unknown vector we are trying to

solve for using the FEDEO algorithm.

𝑿𝑿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗𝑗𝑗

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗𝑗𝑗

𝑣𝑣∗𝑗𝑗𝑗0
⋮

𝑣𝑣∗𝑗𝑗𝑗𝑗𝑗+1

𝑎𝑎𝑗𝑗𝑗0
⋮

𝑎𝑎𝑗𝑗𝑗𝑗𝑗

𝑠𝑠𝑗𝑗𝑗0
⋮

𝑠𝑠𝑗𝑗𝑗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5𝑁𝑁+2) × 1

, (24)

The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒1 is:

𝐴𝐴𝑒𝑒𝑒𝑒1 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3]𝑁𝑁 × (5𝑁𝑁+2). (25)

The dynamic equation in its continuous form is discretised
for use in 𝐴𝐴𝑒𝑒𝑒𝑒1 as:

𝑉𝑉 𝑖𝑖𝑖∗
𝑗𝑗 − 𝑉𝑉 𝑓𝑓𝑓∗

𝑗𝑗 + (𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑) = 0. (26)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒1 are shown in Equa-
tions (27) to (31):
𝑈𝑈𝑡𝑡
𝑗𝑗 = 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0𝑁𝑁 × 𝑁𝑁. (27)

𝐴𝐴1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … 0
0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(28)

𝐴𝐴2 =

⎡

⎢

⎢

⎢

⎣

𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 0 … 0
0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 … 0
0 0 ⋱ 0
0 0 0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑

⎤

⎥

⎥

⎥

⎦

𝑁𝑁 ×𝑁𝑁

, (29)

𝐴𝐴3 = 𝑆𝑆𝑗𝑗 = 0𝑁𝑁 × (𝑁𝑁+1), (30)
𝑏𝑏𝑒𝑒𝑒𝑒1 = 0𝑁𝑁 × 1. (31)
The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒2 is:

𝐴𝐴𝑒𝑒𝑒𝑒2 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴5, 𝐴𝐴6, 𝐴𝐴7]𝑁𝑁 × (5𝑁𝑁+2). (32)

The longitudinal movement in its continuous form must be
discretised as shown below for use in 𝐴𝐴𝑒𝑒𝑒𝑒2:

𝑠𝑠𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑓𝑓𝑗𝑗 + (1
2

× 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2) = 0. (33)

(𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 × 𝑑𝑑𝑑𝑑) − 𝑠𝑠𝑖𝑖𝑗𝑗 = 0. (34)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒2 are shown in Equa-
tions (35) to (38):

𝐴𝐴5 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 … 0
0 0 ⋱ 0
0 0 0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(35)

𝐴𝐴6 =

⎡

⎢

⎢

⎢

⎢

⎣

1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 0 … 0

0 1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 … 0

0 0 ⋱ 0
0 0 0 1

2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × 𝑁𝑁

,

(36)

𝐴𝐴7 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 0 … 0
0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

, (37)

𝑏𝑏𝑒𝑒𝑒𝑒2 = 0𝑁𝑁 × 1. (38)

The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒3 are formulated as:

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 = 𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 , 𝑠𝑠𝑖𝑖𝑗𝑗 = 0𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑓𝑓𝑗𝑗 = 90.64 𝑘𝑘𝑘𝑘𝑘 (39)
The linear matrices for 𝐴𝐴𝑒𝑒𝑒𝑒3 are below in Equations (40) to
(43) :

𝐴𝐴𝑒𝑒𝑒𝑒3 = [𝑈𝑈𝑡𝑡
𝑗𝑗(4 × 𝑁𝑁), 𝑈𝑈

𝑏𝑏
𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴8, 𝑎𝑎𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴9]4 × (5𝑁𝑁+2).

(40)

𝐴𝐴8 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗
0 0 … 0
0 0 … 0

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (41)

𝐴𝐴9 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 … 0
0 0 … 0
𝑠𝑠𝑖𝑖𝑗𝑗 0 … 0
0 0 … 𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (42)

N George: Preprint submitted to Elsevier Page 6 of 13

The linear matrices for 𝐴𝑒𝑞3 are below in Equations (40) to (43):
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𝑓𝑓𝑇𝑇 = [𝑃𝑃𝑅𝑅(1) … 𝑃𝑃𝑅𝑅(𝑁𝑁)]1 × (5𝑁𝑁+2). (23)
Equation (24) is the unknown vector we are trying to

solve for using the FEDEO algorithm.

𝑿𝑿 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑡𝑡
𝑗𝑗𝑗𝑗𝑗

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗0
⋮

𝑈𝑈𝑏𝑏
𝑗𝑗𝑗𝑗𝑗

𝑣𝑣∗𝑗𝑗𝑗0
⋮

𝑣𝑣∗𝑗𝑗𝑗𝑗𝑗+1

𝑎𝑎𝑗𝑗𝑗0
⋮

𝑎𝑎𝑗𝑗𝑗𝑗𝑗

𝑠𝑠𝑗𝑗𝑗0
⋮

𝑠𝑠𝑗𝑗𝑗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5𝑁𝑁+2) × 1

, (24)

The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒1 is:

𝐴𝐴𝑒𝑒𝑒𝑒1 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3]𝑁𝑁 × (5𝑁𝑁+2). (25)

The dynamic equation in its continuous form is discretised
for use in 𝐴𝐴𝑒𝑒𝑒𝑒1 as:

𝑉𝑉 𝑖𝑖𝑖∗
𝑗𝑗 − 𝑉𝑉 𝑓𝑓𝑓∗

𝑗𝑗 + (𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑) = 0. (26)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒1 are shown in Equa-
tions (27) to (31):
𝑈𝑈𝑡𝑡
𝑗𝑗 = 𝑈𝑈𝑏𝑏

𝑗𝑗 = 0𝑁𝑁 × 𝑁𝑁. (27)

𝐴𝐴1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … 0
0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(28)

𝐴𝐴2 =

⎡

⎢

⎢

⎢

⎣

𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 0 … 0
0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑 … 0
0 0 ⋱ 0
0 0 0 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑

⎤

⎥

⎥

⎥

⎦

𝑁𝑁 ×𝑁𝑁

, (29)

𝐴𝐴3 = 𝑆𝑆𝑗𝑗 = 0𝑁𝑁 × (𝑁𝑁+1), (30)
𝑏𝑏𝑒𝑒𝑒𝑒1 = 0𝑁𝑁 × 1. (31)
The linear matrix for 𝐴𝐴𝑒𝑒𝑒𝑒2 is:

𝐴𝐴𝑒𝑒𝑒𝑒2 = [𝑈𝑈𝑡𝑡
𝑗𝑗 , 𝑈𝑈

𝑏𝑏
𝑗𝑗 , 𝐴𝐴5, 𝐴𝐴6, 𝐴𝐴7]𝑁𝑁 × (5𝑁𝑁+2). (32)

The longitudinal movement in its continuous form must be
discretised as shown below for use in 𝐴𝐴𝑒𝑒𝑒𝑒2:

𝑠𝑠𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑓𝑓𝑗𝑗 + (1
2

× 𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2) = 0. (33)

(𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 × 𝑑𝑑𝑑𝑑) − 𝑠𝑠𝑖𝑖𝑗𝑗 = 0. (34)
The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒2 are shown in Equa-
tions (35) to (38):

𝐴𝐴5 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 … 0
0 0 ⋱ 0
0 0 0 𝑑𝑑𝑑𝑑 × 𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

,

(35)

𝐴𝐴6 =

⎡

⎢

⎢

⎢

⎢

⎣

1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 0 … 0

0 1
2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2 … 0

0 0 ⋱ 0
0 0 0 1

2𝑎𝑎𝑗𝑗 × 𝑑𝑑𝑑𝑑2

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × 𝑁𝑁

,

(36)

𝐴𝐴7 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 0 … 0
0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗 … 0
0 0 ⋱ ⋱ 0
0 0 0 𝑠𝑠𝑖𝑖𝑗𝑗 −𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑁𝑁 × (𝑁𝑁+1)

, (37)

𝑏𝑏𝑒𝑒𝑒𝑒2 = 0𝑁𝑁 × 1. (38)

The equality matrices required for 𝐴𝐴𝑒𝑒𝑒𝑒3 are formulated as:

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 = 𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 , 𝑠𝑠𝑖𝑖𝑗𝑗 = 0𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑓𝑓𝑗𝑗 = 90.64 𝑘𝑘𝑘𝑘𝑘 (39)
The linear matrices for 𝐴𝐴𝑒𝑒𝑒𝑒3 are below in Equations (40) to
(43) :

𝐴𝐴𝑒𝑒𝑒𝑒3 = [𝑈𝑈𝑡𝑡
𝑗𝑗(4 × 𝑁𝑁), 𝑈𝑈

𝑏𝑏
𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴8, 𝑎𝑎𝑗𝑗(4 × 𝑁𝑁), 𝐴𝐴9]4 × (5𝑁𝑁+2).

(40)

𝐴𝐴8 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗 0 … 0
𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗 0 … −𝑣𝑣𝑓𝑓𝑓∗𝑗𝑗
0 0 … 0
0 0 … 0

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (41)

𝐴𝐴9 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 … 0
0 0 … 0
𝑠𝑠𝑖𝑖𝑗𝑗 0 … 0
0 0 … 𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦

4 × (𝑁𝑁+1)

, (42)
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𝑏𝑏𝑒𝑒𝑒𝑒3 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑣𝑖𝑖𝑖∗𝑗𝑗
𝑣𝑣𝑓𝑓 𝑓∗𝑗𝑗
𝑠𝑠𝑖𝑖𝑗𝑗
𝑠𝑠𝑓𝑓𝑗𝑗

⎤

⎥

⎥

⎥

⎥

⎦4 × 1

. (43)

The lower bounds (𝐿𝐿𝐵𝐵) and upper bounds (𝑈𝑈𝐵𝐵) are
shown in Equations (44) to (45). The simulation results
shown in Section 7 using the MATLAB Opti-Toolbox are
used to validate the FEDEO algorithm.

𝐿𝐿𝐵𝐵 = [0,…0, 0,…0,−2.87,…− 2.87, 0,…
0, 0,…0]𝑇𝑇(5𝑁𝑁+2) × 1,

(44)

𝑈𝑈𝐵𝐵 = [10,…10, 10,…10, 2.03,…2.03, 80,…
80, 90.64,…90.64]𝑇𝑇(5𝑁𝑁+2) × 1.

(45)

6. Case study
A case study of the 19E train profile with CCR-9 wagons

has been investigated to validate the optimisation algorithm.
The assumption is that the maximum travel time in the
present work is 1.45 hours, divided into sampling period 𝑡𝑡𝑠𝑠
or 𝑑𝑑𝑑𝑑, of 1.05 minute, which is 62.70 seconds, yielding total
samples of N is (1.45 × 60∕1.05) = 83. The average time
between data points is 1.05 minute or 62.70 seconds. This
data is based on existing route profile data, where trains have
traversed the Ermelo-Richards Bay section route profile. The
FEDEO parameters are shown in Table 1. The route map
for the Ermelo-Richard’s Bay section is shown in Figure 2.
The train setup between Ermelo and Richard’s Bay is shown
in Figure 3, and the elevation profile is shown in Figure 4
[1, 8, 12].

Figure 2: Richard’s Bay Coal Line Route Map [2]

Table 1
FEDEO simulation route profile parameters

Parameter Value
Minimum speed 0 km/h
Maximum speed 80 km/h
Cruising speed 70 km/h
Acceleration (maximum) 2.03 m∕𝑠𝑠2
Acceleration (minimum) -2.87 m∕𝑠𝑠2
Starting point 0 km
Final distance 90.64 km
Train mass 21,742,000 kg
Acceleration due to gravity 9.81 m∕𝑠𝑠2
Rolling resistance coefficient (Crr) 0.001
Drag coefficient (Cd) 1.8
Friction loss coefficient (𝛽𝛽0) 0.2
Braking loss coefficient (𝛽𝛽1) 0.9
Ohmic loss coefficient (𝛽𝛽2) 0.00602

Figure 3: Test configuration for section Ermelo-Richards Bay

Figure 4: Graph of relative elevation profile section
Ermelo-Richards Bay

6.1. Tractive and braking effort data
During operation of the train, only one of either 𝑈𝑈𝑏𝑏

𝑗𝑗
or 𝑈𝑈𝑡𝑡

𝑗𝑗 can be applied. All the train efforts will be zero
when the locomotive is idle or to save energy when on a
decline. This means that 𝑈𝑈𝑡𝑡

𝑗𝑗 and 𝑈𝑈𝑏𝑏
𝑗𝑗 is zero. The reason

for the tractive effort 𝑈𝑈𝑡𝑡
𝑗𝑗 solely contributing to the energy

usage is that the braking effort energy is fed back into the
overhead line as regeneration energy. In regeneration, the
torque reduces the motor speed and generates the electrical
power. The energy that is regenerative will be converted by
power electronic equipment into electrical energy that is fed
back into the overhead line. Globally, trains that incorporate
regeneration of energy have a high capacity for eco-driving
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The lower bounds (𝐿𝐵) and upper bounds (𝑈𝐵) are shown in Equations (44) to (45). The simulation results shown in Section 7 
using the MATLAB Opti-Toolbox are used to validate the FEDEO algorithm.
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⎢

⎢

⎢

⎣
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⎥

⎥
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shown in Section 7 using the MATLAB Opti-Toolbox are
used to validate the FEDEO algorithm.
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80, 90.64,…90.64]𝑇𝑇(5𝑁𝑁+2) × 1.

(45)

6. Case study
A case study of the 19E train profile with CCR-9 wagons

has been investigated to validate the optimisation algorithm.
The assumption is that the maximum travel time in the
present work is 1.45 hours, divided into sampling period 𝑡𝑡𝑠𝑠
or 𝑑𝑑𝑑𝑑, of 1.05 minute, which is 62.70 seconds, yielding total
samples of N is (1.45 × 60∕1.05) = 83. The average time
between data points is 1.05 minute or 62.70 seconds. This
data is based on existing route profile data, where trains have
traversed the Ermelo-Richards Bay section route profile. The
FEDEO parameters are shown in Table 1. The route map
for the Ermelo-Richard’s Bay section is shown in Figure 2.
The train setup between Ermelo and Richard’s Bay is shown
in Figure 3, and the elevation profile is shown in Figure 4
[1, 8, 12].
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Cruising speed 70 km/h
Acceleration (maximum) 2.03 m∕𝑠𝑠2
Acceleration (minimum) -2.87 m∕𝑠𝑠2
Starting point 0 km
Final distance 90.64 km
Train mass 21,742,000 kg
Acceleration due to gravity 9.81 m∕𝑠𝑠2
Rolling resistance coefficient (Crr) 0.001
Drag coefficient (Cd) 1.8
Friction loss coefficient (𝛽𝛽0) 0.2
Braking loss coefficient (𝛽𝛽1) 0.9
Ohmic loss coefficient (𝛽𝛽2) 0.00602

Figure 3: Test configuration for section Ermelo-Richards Bay

Figure 4: Graph of relative elevation profile section
Ermelo-Richards Bay

6.1. Tractive and braking effort data
During operation of the train, only one of either 𝑈𝑈𝑏𝑏

𝑗𝑗
or 𝑈𝑈𝑡𝑡

𝑗𝑗 can be applied. All the train efforts will be zero
when the locomotive is idle or to save energy when on a
decline. This means that 𝑈𝑈𝑡𝑡

𝑗𝑗 and 𝑈𝑈𝑏𝑏
𝑗𝑗 is zero. The reason

for the tractive effort 𝑈𝑈𝑡𝑡
𝑗𝑗 solely contributing to the energy

usage is that the braking effort energy is fed back into the
overhead line as regeneration energy. In regeneration, the
torque reduces the motor speed and generates the electrical
power. The energy that is regenerative will be converted by
power electronic equipment into electrical energy that is fed
back into the overhead line. Globally, trains that incorporate
regeneration of energy have a high capacity for eco-driving
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6. Case Study
A case study of the 19E train profile with CCR-9 wagons has been investigated to validate the optimization algorithm. The assumption 
is that the maximum travel time in the present work is 1.45 hours, divided into sampling period 𝑡𝑠 or 𝑑𝑡, of 1.05 minute, which is 62.70 
seconds, yielding total samples of N is (1.45 × 60∕1.05) = 83. The average time between data points is 1.05 minute or 62.70 seconds. 
This data is based on existing route profile data, where trains have traversed the Ermelo-Richards Bay section route profile. The FEDEO 
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⎢

⎢

⎢

⎣
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⎥

⎥

⎦4 × 1
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The lower bounds (𝐿𝐿𝐵𝐵) and upper bounds (𝑈𝑈𝐵𝐵) are
shown in Equations (44) to (45). The simulation results
shown in Section 7 using the MATLAB Opti-Toolbox are
used to validate the FEDEO algorithm.

𝐿𝐿𝐵𝐵 = [0,…0, 0,…0,−2.87,…− 2.87, 0,…
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present work is 1.45 hours, divided into sampling period 𝑡𝑡𝑠𝑠
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samples of N is (1.45 × 60∕1.05) = 83. The average time
between data points is 1.05 minute or 62.70 seconds. This
data is based on existing route profile data, where trains have
traversed the Ermelo-Richards Bay section route profile. The
FEDEO parameters are shown in Table 1. The route map
for the Ermelo-Richard’s Bay section is shown in Figure 2.
The train setup between Ermelo and Richard’s Bay is shown
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back into the overhead line. Globally, trains that incorporate
regeneration of energy have a high capacity for eco-driving
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Table 1: FEDEO simulation route profile parameters

Parameter Value
Minimum speed 0 km/h
Maximum speed 80 km/h
Cruising speed 70 km/h
Acceleration (maximum) 2.03 m∕𝑠2

Acceleration (minimum) -2.87 m∕𝑠2

Starting point 0 km
Final distance 90.64 km
Train mass 21,742,000 kg
Acceleration due to gravity 9.81 m∕𝑠2

Rolling resistance coefficient (Crr) 0.001
Drag coefficient (Cd) 1.8
Friction loss coefficient (𝛽0) 0.2

Braking loss coefficient (𝛽1) 0.9

Ohmic loss coefficient (𝛽2) 0.00602

Eco-driving for freight trains
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The lower bounds (𝐿𝐿𝐵𝐵) and upper bounds (𝑈𝑈𝐵𝐵) are
shown in Equations (44) to (45). The simulation results
shown in Section 7 using the MATLAB Opti-Toolbox are
used to validate the FEDEO algorithm.

𝐿𝐿𝐵𝐵 = [0,…0, 0,…0,−2.87,…− 2.87, 0,…
0, 0,…0]𝑇𝑇(5𝑁𝑁+2) × 1,

(44)

𝑈𝑈𝐵𝐵 = [10,…10, 10,…10, 2.03,…2.03, 80,…
80, 90.64,…90.64]𝑇𝑇(5𝑁𝑁+2) × 1.

(45)

6. Case study
A case study of the 19E train profile with CCR-9 wagons

has been investigated to validate the optimisation algorithm.
The assumption is that the maximum travel time in the
present work is 1.45 hours, divided into sampling period 𝑡𝑡𝑠𝑠
or 𝑑𝑑𝑑𝑑, of 1.05 minute, which is 62.70 seconds, yielding total
samples of N is (1.45 × 60∕1.05) = 83. The average time
between data points is 1.05 minute or 62.70 seconds. This
data is based on existing route profile data, where trains have
traversed the Ermelo-Richards Bay section route profile. The
FEDEO parameters are shown in Table 1. The route map
for the Ermelo-Richard’s Bay section is shown in Figure 2.
The train setup between Ermelo and Richard’s Bay is shown
in Figure 3, and the elevation profile is shown in Figure 4
[1, 8, 12].

Figure 2: Richard’s Bay Coal Line Route Map [2]
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Figure 3: Test configuration for section Ermelo-Richards Bay

Figure 4: Graph of relative elevation profile section
Ermelo-Richards Bay

6.1. Tractive and braking effort data
During operation of the train, only one of either 𝑈𝑈𝑏𝑏

𝑗𝑗
or 𝑈𝑈𝑡𝑡

𝑗𝑗 can be applied. All the train efforts will be zero
when the locomotive is idle or to save energy when on a
decline. This means that 𝑈𝑈𝑡𝑡

𝑗𝑗 and 𝑈𝑈𝑏𝑏
𝑗𝑗 is zero. The reason

for the tractive effort 𝑈𝑈𝑡𝑡
𝑗𝑗 solely contributing to the energy

usage is that the braking effort energy is fed back into the
overhead line as regeneration energy. In regeneration, the
torque reduces the motor speed and generates the electrical
power. The energy that is regenerative will be converted by
power electronic equipment into electrical energy that is fed
back into the overhead line. Globally, trains that incorporate
regeneration of energy have a high capacity for eco-driving
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The assumption is that the maximum travel time in the
present work is 1.45 hours, divided into sampling period 𝑡𝑡𝑠𝑠
or 𝑑𝑑𝑑𝑑, of 1.05 minute, which is 62.70 seconds, yielding total
samples of N is (1.45 × 60∕1.05) = 83. The average time
between data points is 1.05 minute or 62.70 seconds. This
data is based on existing route profile data, where trains have
traversed the Ermelo-Richards Bay section route profile. The
FEDEO parameters are shown in Table 1. The route map
for the Ermelo-Richard’s Bay section is shown in Figure 2.
The train setup between Ermelo and Richard’s Bay is shown
in Figure 3, and the elevation profile is shown in Figure 4
[1, 8, 12].
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6.1. Tractive and braking effort data
During operation of the train, only one of either 𝑈𝑈𝑏𝑏

𝑗𝑗
or 𝑈𝑈𝑡𝑡

𝑗𝑗 can be applied. All the train efforts will be zero
when the locomotive is idle or to save energy when on a
decline. This means that 𝑈𝑈𝑡𝑡

𝑗𝑗 and 𝑈𝑈𝑏𝑏
𝑗𝑗 is zero. The reason

for the tractive effort 𝑈𝑈𝑡𝑡
𝑗𝑗 solely contributing to the energy

usage is that the braking effort energy is fed back into the
overhead line as regeneration energy. In regeneration, the
torque reduces the motor speed and generates the electrical
power. The energy that is regenerative will be converted by
power electronic equipment into electrical energy that is fed
back into the overhead line. Globally, trains that incorporate
regeneration of energy have a high capacity for eco-driving
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6.1 Tractive and Braking Effort Data
During operation of the train, only one of either 𝑈𝑗

𝑏 or 𝑈𝑗
𝑡 can be 

applied. All the train efforts will be zero when the locomotive is 
idle or to save energy when on a decline. This means that 𝑈𝑗

𝑡 and 
𝑈𝑗

𝑏 is zero. The reason usage is that the braking effort energy is 
fed back into the for the tractive effort 𝑈𝑗

𝑡 solely contributing to 
the energy overhead line as regeneration energy. In regeneration, 
the torque reduces the motor speed and generates the electrical 
power. The energy that is regenerative will be converted by power 

electronic equipment into electrical energy that is fed back into 
the overhead line. Globally, trains that incorporate regeneration 
of energy have a high capacity for eco-driving and for being eco-
nomical, based on the driver behaviour. The incorporation of the 
tractive and braking  of the tractive and braking effort requires 
the vehicle dynamics that are discussed in Section 3.The tractive 
and braking effort reference plots for the 19E locomotive fleet is 
shown in Figure 5 and 6. The tractive and braking effort decision 
regions are shown in Table 2.
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Eco-driving for freight trains

and for being economical, based on the driver behaviour. The
incorporation of the tractive and braking effort requires the
vehicle dynamics that are discussed in Section 3. The tractive
and braking effort reference plots for the 19E locomotive
fleet is shown in Figure 5 and 6. The tractive and braking
effort decision regions are shown in Table 2.

Figure 5: Notches of 19E tractive effort

Figure 6: Notches of 19E braking effort

Table 2
Tractive and braking effort decision regions

Velocity (km/h) Tractive effort (kN) Braking effort (kN)

0 ≤ 𝑣𝑣∗𝑗𝑗 < 2 ( −31
16

× 𝑣𝑣∗𝑗𝑗 ) + 392 125.5 × 𝑣𝑣∗𝑗𝑗

2 ≤ 𝑣𝑣∗𝑗𝑗 < 32 ( −31
16

× 𝑣𝑣∗𝑗𝑗 ) + 392 251

32 ≤ 𝑣𝑣∗𝑗𝑗 < 50 595.793 × (0.982)𝑣𝑣
∗
𝑗𝑗 251

50 ≤ 𝑣𝑣∗𝑗𝑗 < 80 595.793 × (0.982)𝑣𝑣
∗
𝑗𝑗 568.036 × (0.984)𝑣𝑣

∗
𝑗𝑗

6.2. Davis and gravitational resistance
The Davis equation by W.J. Davis (1926) proposes an

experimental formula for computing tractive resistance of
electric locomotives and cars moving on a flat track, which
is straight and level. 𝐹𝐹 𝑟𝑟

𝑗𝑗 is the train resistance (kN), A is
the rolling resistance component independent of the train
speed (2.415 for the 19E and 2.409 for the CCR-9), B is
the coefficient used to define the train resistance dependant
on train speed (0.03 for locomotives and 0.045 for the

CCR-9 wagon), W is the axle weight in tonnes per axle of
locomotive or car (26 tonnes for the 19E and 26.1375 for the
CCR-9 wagon), N is the number of axles (four for the 19E); a
is the frontal cross-sectional area of the locomotive in square
meteres (11.1484𝑚𝑚2 for 19E and 8.8258𝑚𝑚2 for the CCR-
9 wagon); C is the streamlining coefficient used to define
train resistance (0.0024 for 19E and 0.0005 for the CCR-
9 wagon); and D is the resistance due to the force of wind
called the aerodynamic coefficient. The force due to gravity
is shown in Equation (48) and is dependent on the train mass
(m) in kg, gravity (g) at 9.81𝑚𝑚∕𝑠𝑠2 and gradient angle profile
𝛼𝛼 [38, 39].

𝐴𝐴 = 1.3 + 29
𝑊𝑊

,𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶
𝑊𝑊𝑊𝑊

, (46)

𝐹𝐹 𝑟𝑟
𝑗𝑗 = [𝐴𝐴 + 𝐵𝐵𝐵𝐵∗𝑗𝑗 + 𝐶𝐶𝐶𝐶𝐶𝐶2, ∗𝑗𝑗 ], (47)

𝐹𝐹𝑔𝑔
𝑗𝑗 = 𝑀𝑀 × 𝑔𝑔 × 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼(𝑠𝑠)). (48)

7. Simulation results

The FEDEO algorithm performs a discrete iteration to
find the global minimum, as shown in Figure 8. Figure 8
shows that the train will try to accelerate rapidly, then cruise
for a distance, coast, and finally apply the brakes at the stop.
Figure 10 follows a similar trajectory as the mass is used
to determine the force experienced by the train. Figure 11
shows cumulative energy usage of the train. The elevation
smoothing profile is used to incorporate a data set that is
simplified for the FEDEO algorithm to optimise energy use.
The actual speed data was obtained from the black box
located within the locomotive cab. The data was recorded
during March 2015 between the stations of Ermelo and
Kempton Park.

7.1. Eco-driving solution for [0, 90.64 km]
This section presents a simulation of the FEDEO al-

gorithm for the entire section of the route from Ermelo to
Kempton Park.

Figure 7: Elevation smoothing profile for [0, 90.64] km
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Figure 5: Notches of 19E tractive effort

Eco-driving for freight trains

and for being economical, based on the driver behaviour. The
incorporation of the tractive and braking effort requires the
vehicle dynamics that are discussed in Section 3. The tractive
and braking effort reference plots for the 19E locomotive
fleet is shown in Figure 5 and 6. The tractive and braking
effort decision regions are shown in Table 2.

Figure 5: Notches of 19E tractive effort

Figure 6: Notches of 19E braking effort

Table 2
Tractive and braking effort decision regions

Velocity (km/h) Tractive effort (kN) Braking effort (kN)

0 ≤ 𝑣𝑣∗𝑗𝑗 < 2 ( −31
16

× 𝑣𝑣∗𝑗𝑗 ) + 392 125.5 × 𝑣𝑣∗𝑗𝑗

2 ≤ 𝑣𝑣∗𝑗𝑗 < 32 ( −31
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× 𝑣𝑣∗𝑗𝑗 ) + 392 251

32 ≤ 𝑣𝑣∗𝑗𝑗 < 50 595.793 × (0.982)𝑣𝑣
∗
𝑗𝑗 251

50 ≤ 𝑣𝑣∗𝑗𝑗 < 80 595.793 × (0.982)𝑣𝑣
∗
𝑗𝑗 568.036 × (0.984)𝑣𝑣

∗
𝑗𝑗

6.2. Davis and gravitational resistance
The Davis equation by W.J. Davis (1926) proposes an

experimental formula for computing tractive resistance of
electric locomotives and cars moving on a flat track, which
is straight and level. 𝐹𝐹 𝑟𝑟

𝑗𝑗 is the train resistance (kN), A is
the rolling resistance component independent of the train
speed (2.415 for the 19E and 2.409 for the CCR-9), B is
the coefficient used to define the train resistance dependant
on train speed (0.03 for locomotives and 0.045 for the

CCR-9 wagon), W is the axle weight in tonnes per axle of
locomotive or car (26 tonnes for the 19E and 26.1375 for the
CCR-9 wagon), N is the number of axles (four for the 19E); a
is the frontal cross-sectional area of the locomotive in square
meteres (11.1484𝑚𝑚2 for 19E and 8.8258𝑚𝑚2 for the CCR-
9 wagon); C is the streamlining coefficient used to define
train resistance (0.0024 for 19E and 0.0005 for the CCR-
9 wagon); and D is the resistance due to the force of wind
called the aerodynamic coefficient. The force due to gravity
is shown in Equation (48) and is dependent on the train mass
(m) in kg, gravity (g) at 9.81𝑚𝑚∕𝑠𝑠2 and gradient angle profile
𝛼𝛼 [38, 39].

𝐴𝐴 = 1.3 + 29
𝑊𝑊

,𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶
𝑊𝑊𝑊𝑊

, (46)

𝐹𝐹 𝑟𝑟
𝑗𝑗 = [𝐴𝐴 + 𝐵𝐵𝐵𝐵∗𝑗𝑗 + 𝐶𝐶𝐶𝐶𝐶𝐶2, ∗𝑗𝑗 ], (47)

𝐹𝐹𝑔𝑔
𝑗𝑗 = 𝑀𝑀 × 𝑔𝑔 × 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼(𝑠𝑠)). (48)

7. Simulation results

The FEDEO algorithm performs a discrete iteration to
find the global minimum, as shown in Figure 8. Figure 8
shows that the train will try to accelerate rapidly, then cruise
for a distance, coast, and finally apply the brakes at the stop.
Figure 10 follows a similar trajectory as the mass is used
to determine the force experienced by the train. Figure 11
shows cumulative energy usage of the train. The elevation
smoothing profile is used to incorporate a data set that is
simplified for the FEDEO algorithm to optimise energy use.
The actual speed data was obtained from the black box
located within the locomotive cab. The data was recorded
during March 2015 between the stations of Ermelo and
Kempton Park.

7.1. Eco-driving solution for [0, 90.64 km]
This section presents a simulation of the FEDEO al-

gorithm for the entire section of the route from Ermelo to
Kempton Park.

Figure 7: Elevation smoothing profile for [0, 90.64] km
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Figure 6: Notches of 19E braking effort

Table 2: Tractive and braking effort decision regions

Eco-driving for freight trains

and for being economical, based on the driver behaviour. The
incorporation of the tractive and braking effort requires the
vehicle dynamics that are discussed in Section 3. The tractive
and braking effort reference plots for the 19E locomotive
fleet is shown in Figure 5 and 6. The tractive and braking
effort decision regions are shown in Table 2.

Figure 5: Notches of 19E tractive effort

Figure 6: Notches of 19E braking effort
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7. Simulation results

The FEDEO algorithm performs a discrete iteration to
find the global minimum, as shown in Figure 8. Figure 8
shows that the train will try to accelerate rapidly, then cruise
for a distance, coast, and finally apply the brakes at the stop.
Figure 10 follows a similar trajectory as the mass is used
to determine the force experienced by the train. Figure 11
shows cumulative energy usage of the train. The elevation
smoothing profile is used to incorporate a data set that is
simplified for the FEDEO algorithm to optimise energy use.
The actual speed data was obtained from the black box
located within the locomotive cab. The data was recorded
during March 2015 between the stations of Ermelo and
Kempton Park.
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This section presents a simulation of the FEDEO al-

gorithm for the entire section of the route from Ermelo to
Kempton Park.
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CCR-9 wagon), W is the axle weight in tones per axle of loco-
motive or car (26 tones for the 19E and 26.1375 for the CCR-
9 wagon), N is the number of axles (four for the 19E); a is the 
frontal cross-sectional area of the locomotive in square meters 
(11.1484𝑚2 for 19E and 8.8258𝑚2 for the CCR9 wagon); C is the 
streamlining coefficient used to define train resistance (0.0024 for 

19E and 0.0005 for the CCR9 wagon); and D is the resistance due 
to the force of wind called the aerodynamic coefficient. The force 
due to gravity is shown in Equation (48) and is dependent on the 
train mass (m) in kg, gravity (g) at 9.81𝑚∕𝑠2 and gradient angle 
profile 𝛼 [38, 39].

Eco-driving for freight trains

and for being economical, based on the driver behaviour. The
incorporation of the tractive and braking effort requires the
vehicle dynamics that are discussed in Section 3. The tractive
and braking effort reference plots for the 19E locomotive
fleet is shown in Figure 5 and 6. The tractive and braking
effort decision regions are shown in Table 2.

Figure 5: Notches of 19E tractive effort

Figure 6: Notches of 19E braking effort
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6.2. Davis and gravitational resistance
The Davis equation by W.J. Davis (1926) proposes an

experimental formula for computing tractive resistance of
electric locomotives and cars moving on a flat track, which
is straight and level. 𝐹𝐹 𝑟𝑟

𝑗𝑗 is the train resistance (kN), A is
the rolling resistance component independent of the train
speed (2.415 for the 19E and 2.409 for the CCR-9), B is
the coefficient used to define the train resistance dependant
on train speed (0.03 for locomotives and 0.045 for the

CCR-9 wagon), W is the axle weight in tonnes per axle of
locomotive or car (26 tonnes for the 19E and 26.1375 for the
CCR-9 wagon), N is the number of axles (four for the 19E); a
is the frontal cross-sectional area of the locomotive in square
meteres (11.1484𝑚𝑚2 for 19E and 8.8258𝑚𝑚2 for the CCR-
9 wagon); C is the streamlining coefficient used to define
train resistance (0.0024 for 19E and 0.0005 for the CCR-
9 wagon); and D is the resistance due to the force of wind
called the aerodynamic coefficient. The force due to gravity
is shown in Equation (48) and is dependent on the train mass
(m) in kg, gravity (g) at 9.81𝑚𝑚∕𝑠𝑠2 and gradient angle profile
𝛼𝛼 [38, 39].

𝐴𝐴 = 1.3 + 29
𝑊𝑊

,𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶
𝑊𝑊𝑊𝑊

, (46)

𝐹𝐹 𝑟𝑟
𝑗𝑗 = [𝐴𝐴 + 𝐵𝐵𝐵𝐵∗𝑗𝑗 + 𝐶𝐶𝐶𝐶𝐶𝐶2, ∗𝑗𝑗 ], (47)

𝐹𝐹𝑔𝑔
𝑗𝑗 = 𝑀𝑀 × 𝑔𝑔 × 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼(𝑠𝑠)). (48)

7. Simulation results

The FEDEO algorithm performs a discrete iteration to
find the global minimum, as shown in Figure 8. Figure 8
shows that the train will try to accelerate rapidly, then cruise
for a distance, coast, and finally apply the brakes at the stop.
Figure 10 follows a similar trajectory as the mass is used
to determine the force experienced by the train. Figure 11
shows cumulative energy usage of the train. The elevation
smoothing profile is used to incorporate a data set that is
simplified for the FEDEO algorithm to optimise energy use.
The actual speed data was obtained from the black box
located within the locomotive cab. The data was recorded
during March 2015 between the stations of Ermelo and
Kempton Park.

7.1. Eco-driving solution for [0, 90.64 km]
This section presents a simulation of the FEDEO al-

gorithm for the entire section of the route from Ermelo to
Kempton Park.

Figure 7: Elevation smoothing profile for [0, 90.64] km
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7. Simulation Results
The FEDEO algorithm performs a discrete iteration to find the 
global minimum, as shown in Figure 8. Figure 8 shows that the 
train will try to accelerate rapidly, then cruise for a distance, coast, 
and finally apply the brakes at the stop. Figure 10 follows a similar 
trajectory as the mass is used to determine the force experienced 
by the train. Figure 11 shows cumulative energy usage of the train. 
The elevation smoothing profile is used to incorporate a data set 
that is simplified for the FEDEO algorithm to optimize energy use. 

The actual speed data was obtained from the black box located 
within the locomotive cab. The data was recorded during March 
2015 between the stations of Ermelo and Kempton Park.

7.1. Eco-Driving Solution for [0, 90.64 km]
This section presents a simulation of the FEDEO algorithm for the 
entire section of the route from Ermelo to Kempton Park.

Eco-driving for freight trains

and for being economical, based on the driver behaviour. The
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Figure 5: Notches of 19E tractive effort

Figure 6: Notches of 19E braking effort

Table 2
Tractive and braking effort decision regions
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0 ≤ 𝑣𝑣∗𝑗𝑗 < 2 ( −31
16

× 𝑣𝑣∗𝑗𝑗 ) + 392 125.5 × 𝑣𝑣∗𝑗𝑗

2 ≤ 𝑣𝑣∗𝑗𝑗 < 32 ( −31
16

× 𝑣𝑣∗𝑗𝑗 ) + 392 251

32 ≤ 𝑣𝑣∗𝑗𝑗 < 50 595.793 × (0.982)𝑣𝑣
∗
𝑗𝑗 251

50 ≤ 𝑣𝑣∗𝑗𝑗 < 80 595.793 × (0.982)𝑣𝑣
∗
𝑗𝑗 568.036 × (0.984)𝑣𝑣

∗
𝑗𝑗

6.2. Davis and gravitational resistance
The Davis equation by W.J. Davis (1926) proposes an

experimental formula for computing tractive resistance of
electric locomotives and cars moving on a flat track, which
is straight and level. 𝐹𝐹 𝑟𝑟

𝑗𝑗 is the train resistance (kN), A is
the rolling resistance component independent of the train
speed (2.415 for the 19E and 2.409 for the CCR-9), B is
the coefficient used to define the train resistance dependant
on train speed (0.03 for locomotives and 0.045 for the

CCR-9 wagon), W is the axle weight in tonnes per axle of
locomotive or car (26 tonnes for the 19E and 26.1375 for the
CCR-9 wagon), N is the number of axles (four for the 19E); a
is the frontal cross-sectional area of the locomotive in square
meteres (11.1484𝑚𝑚2 for 19E and 8.8258𝑚𝑚2 for the CCR-
9 wagon); C is the streamlining coefficient used to define
train resistance (0.0024 for 19E and 0.0005 for the CCR-
9 wagon); and D is the resistance due to the force of wind
called the aerodynamic coefficient. The force due to gravity
is shown in Equation (48) and is dependent on the train mass
(m) in kg, gravity (g) at 9.81𝑚𝑚∕𝑠𝑠2 and gradient angle profile
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𝐴𝐴 = 1.3 + 29
𝑊𝑊

,𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶
𝑊𝑊𝑊𝑊

, (46)

𝐹𝐹 𝑟𝑟
𝑗𝑗 = [𝐴𝐴 + 𝐵𝐵𝐵𝐵∗𝑗𝑗 + 𝐶𝐶𝐶𝐶𝐶𝐶2, ∗𝑗𝑗 ], (47)

𝐹𝐹𝑔𝑔
𝑗𝑗 = 𝑀𝑀 × 𝑔𝑔 × 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼(𝑠𝑠)). (48)

7. Simulation results

The FEDEO algorithm performs a discrete iteration to
find the global minimum, as shown in Figure 8. Figure 8
shows that the train will try to accelerate rapidly, then cruise
for a distance, coast, and finally apply the brakes at the stop.
Figure 10 follows a similar trajectory as the mass is used
to determine the force experienced by the train. Figure 11
shows cumulative energy usage of the train. The elevation
smoothing profile is used to incorporate a data set that is
simplified for the FEDEO algorithm to optimise energy use.
The actual speed data was obtained from the black box
located within the locomotive cab. The data was recorded
during March 2015 between the stations of Ermelo and
Kempton Park.

7.1. Eco-driving solution for [0, 90.64 km]
This section presents a simulation of the FEDEO al-

gorithm for the entire section of the route from Ermelo to
Kempton Park.
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Figure 8: Speed profile for [0, 90.64] km

Figure 9: Route profile against forces for [0, 90.64] km

The tractive effort force of the train shown in Figure 9
indicates a maximum value of 2839 kN, while the braking
effort is significant for regeneration. 𝐹𝐹 𝐹𝐹 represents the trac-
tive force, 𝐹𝐹𝐹𝐹 is the gravitational force, 𝐹𝐹𝐹𝐹 represents the
braking force, 𝐹𝐹𝐹𝐹 is the rolling resistance force, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is the
net force or summation of all the forces and Route Profile is
the elevation profile. The train comes to a stop at the 40 km
point as this is a security checkpoint. The power used for the
90.64 km section is 11,369 kW, where the critical parameters
are shown in Table 3. The maximum acceleration is lower at
0.4739 𝑚𝑚∕𝑠𝑠2 for the 90.64 km section.

Figure 10: Net force, acceleration and velocity simulation for
[0, 86.74] minutes

Figure 11: Cumulative energy plot for [0, 90.64] km

7.2. Eco-driving solution for [70, 90.64 km] with
start and end speed at 0 km/h

This section presents the results of applying the FEDEO
algorithm over a specific distance of 20.64 km, which is the
last part of the route from 70 km to 90.64 km. The plots
shown in Figures 12 to 16 simulate the speed at the start to
be 0 km/h and the final speed to be 0 km/h.

Figure 12: Elevation smoothing profile for [70, 90.64] km

Figure 13: Speed profile for [70, 90.64] km

The energy consumption for the section [70, 90.64 km]
with start and end speed at 0 km/h is higher than the
measured route energy usage owing to the train speed being
required to start and end at 0 km/h. The forced start and
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are shown in Table 3. The maximum acceleration is lower at
0.4739 𝑚𝑚∕𝑠𝑠2 for the 90.64 km section.
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This section presents the results of applying the FEDEO
algorithm over a specific distance of 20.64 km, which is the
last part of the route from 70 km to 90.64 km. The plots
shown in Figures 12 to 16 simulate the speed at the start to
be 0 km/h and the final speed to be 0 km/h.

Figure 12: Elevation smoothing profile for [70, 90.64] km

Figure 13: Speed profile for [70, 90.64] km

The energy consumption for the section [70, 90.64 km]
with start and end speed at 0 km/h is higher than the
measured route energy usage owing to the train speed being
required to start and end at 0 km/h. The forced start and
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The tractive effort force of the train shown in Figure 9 indicates a 
maximum value of 2839 kN, while the braking effort is significant 
for regeneration. 𝐹𝑡 represents the tractive force, 𝐹𝑔 is the gravi-
tational force, 𝐹𝑏 represents the braking force, 𝐹𝑟 is the rolling re-
sistance force, 𝐹𝑛𝑒𝑡 is the net force or summation of all the forces 

and Route Profile is the elevation profile. The train comes to a stop 
at the 40 km point as this is a security checkpoint. The power used 
for the 90.64 km section is 11,369 kW, where the critical parame-
ters are shown in Table 3. The maximum acceleration is lower at
0.4739 𝑚∕𝑠2 for the 90.64 km section.

Eco-driving for freight trains

Figure 8: Speed profile for [0, 90.64] km

Figure 9: Route profile against forces for [0, 90.64] km

The tractive effort force of the train shown in Figure 9
indicates a maximum value of 2839 kN, while the braking
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braking force, 𝐹𝐹𝐹𝐹 is the rolling resistance force, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is the
net force or summation of all the forces and Route Profile is
the elevation profile. The train comes to a stop at the 40 km
point as this is a security checkpoint. The power used for the
90.64 km section is 11,369 kW, where the critical parameters
are shown in Table 3. The maximum acceleration is lower at
0.4739 𝑚𝑚∕𝑠𝑠2 for the 90.64 km section.

Figure 10: Net force, acceleration and velocity simulation for
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7.2. Eco-driving solution for [70, 90.64 km] with
start and end speed at 0 km/h

This section presents the results of applying the FEDEO
algorithm over a specific distance of 20.64 km, which is the
last part of the route from 70 km to 90.64 km. The plots
shown in Figures 12 to 16 simulate the speed at the start to
be 0 km/h and the final speed to be 0 km/h.
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Figure 13: Speed profile for [70, 90.64] km

The energy consumption for the section [70, 90.64 km]
with start and end speed at 0 km/h is higher than the
measured route energy usage owing to the train speed being
required to start and end at 0 km/h. The forced start and
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Figure 11: Cumulative energy plot for [0, 90.64] km

7.2. Eco-Driving Solution for [70, 90.64 km] with Start and End Speed at 0 km/h
This section presents the results of applying the FEDEO algorithm over a specific distance of 20.64 km, which is the last part of the route 
from 70 km to 90.64 km. The plots shown in Figures 12 to 16 simulate the speed at the start to be 0 km/h and the final speed to be 0 km/h.
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Figure 9: Route profile against forces for [0, 90.64] km
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indicates a maximum value of 2839 kN, while the braking
effort is significant for regeneration. 𝐹𝐹 𝐹𝐹 represents the trac-
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net force or summation of all the forces and Route Profile is
the elevation profile. The train comes to a stop at the 40 km
point as this is a security checkpoint. The power used for the
90.64 km section is 11,369 kW, where the critical parameters
are shown in Table 3. The maximum acceleration is lower at
0.4739 𝑚𝑚∕𝑠𝑠2 for the 90.64 km section.
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The energy consumption for the section [70, 90.64 km]
with start and end speed at 0 km/h is higher than the
measured route energy usage owing to the train speed being
required to start and end at 0 km/h. The forced start and
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The energy consumption for the section [70, 90.64 km]
with start and end speed at 0 km/h is higher than the
measured route energy usage owing to the train speed being
required to start and end at 0 km/h. The forced start and
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Figure 13: Speed profile for [70, 90.64] km
The energy consumption for the section [70, 90.64 km] with start 
and end speed at 0 km/h is higher than the measured route energy 
usage owing to the train speed being required to start and end at 
0 km/h. The forced start and end speed simulated in MATLAB 
makes the energy usage 47% higher. The time taken for the opti-

mized route profile is 6.37% less than the actual time. The optimal 
route profile validates that energy can be saved if there is less ac-
celeration and braking, and more cruising and coasting. This can 
be seen in the speed profile shown in Figure 13.
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end speed simulated in MATLAB makes the energy usage
47% higher. The time taken for the optimised route profile
is 6.37% less than the actual time. The optimal route profile
validates that energy can be saved if there is less acceleration
and braking, and more cruising and coasting. This can be
seen in the speed profile shown in Figure 13.

Figure 14: Route profile against forces for [70, 90.64] km

Figure 15: Net force, acceleration and velocity simulation for
[0, 17.63] minutes

Figure 16: Cumulative energy plot for [70, 90.64] km

The force profiles shown in Figure 14 describe the ad-
justments to the train trajectory with regard to the tractive
and braking forces as the elevation changes. The optimal
energy usage of 7448.9 kWh is higher than the actual 5097
kWh used. The true representation of this optimal trajectory

is presented in Section 7.3, where the FEDEO algorithm is
applied. The duration of the optimal trip is lower than the
actual trip because of sudden changes in acceleration and
braking.

7.3. Eco-driving solution for [70, 90.64 km] with
start and end speed at 60 km/h

In this section, results for [70, 90.64 km] are presented
with a simulated train speed that starts at 60 km/h and ends
at 60 km/h.

Figure 17: Speed profile for [70, 90.64] km

Figure 18: Route profile against forces for [70, 90.64] km

Figure 19: Net force, acceleration and velocity for [0, 17.63]
minutes

The energy consumption reduces by 25.17% compared
to the measured route profile. The energy usage calculated
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end speed simulated in MATLAB makes the energy usage
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energy usage of 7448.9 kWh is higher than the actual 5097
kWh used. The true representation of this optimal trajectory

is presented in Section 7.3, where the FEDEO algorithm is
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Figure 15: Net force, acceleration and velocity simulation for [0, 17.63] minutes



     Volume 1 | Issue 3 | 201J Math Techniques Comput Math, 2022

Eco-driving for freight trains

end speed simulated in MATLAB makes the energy usage
47% higher. The time taken for the optimised route profile
is 6.37% less than the actual time. The optimal route profile
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and braking forces as the elevation changes. The optimal
energy usage of 7448.9 kWh is higher than the actual 5097
kWh used. The true representation of this optimal trajectory

is presented in Section 7.3, where the FEDEO algorithm is
applied. The duration of the optimal trip is lower than the
actual trip because of sudden changes in acceleration and
braking.

7.3. Eco-driving solution for [70, 90.64 km] with
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In this section, results for [70, 90.64 km] are presented
with a simulated train speed that starts at 60 km/h and ends
at 60 km/h.
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The energy consumption reduces by 25.17% compared
to the measured route profile. The energy usage calculated
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Figure 16: Cumulative energy plot for [70, 90.64] km
The force profiles shown in Figure 14 describe the adjustments to the train trajectory with regard to the tractive and braking forces as 
the elevation changes. The optimal energy usage of 7448.9 kWh is higher than the actual 5097 kWh used. The true representation of this 
optimal trajectory is presented in Section 7.3, where the FEDEO algorithm is applied. The duration of the optimal trip is lower than the 
actual trip because of sudden changes in acceleration and braking.

7.3. Eco-Driving Solution for [70, 90.64 km] with Start and End Speed at 60 km/h
Needs section number or reference, results for [70, 90.64 km] are presented with a simulated train speed that starts at 60 km/h and ends 
at 60 km/h.
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end speed simulated in MATLAB makes the energy usage
47% higher. The time taken for the optimised route profile
is 6.37% less than the actual time. The optimal route profile
validates that energy can be saved if there is less acceleration
and braking, and more cruising and coasting. This can be
seen in the speed profile shown in Figure 13.

Figure 14: Route profile against forces for [70, 90.64] km

Figure 15: Net force, acceleration and velocity simulation for
[0, 17.63] minutes

Figure 16: Cumulative energy plot for [70, 90.64] km
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is presented in Section 7.3, where the FEDEO algorithm is
applied. The duration of the optimal trip is lower than the
actual trip because of sudden changes in acceleration and
braking.
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In this section, results for [70, 90.64 km] are presented
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justments to the train trajectory with regard to the tractive
and braking forces as the elevation changes. The optimal
energy usage of 7448.9 kWh is higher than the actual 5097
kWh used. The true representation of this optimal trajectory

is presented in Section 7.3, where the FEDEO algorithm is
applied. The duration of the optimal trip is lower than the
actual trip because of sudden changes in acceleration and
braking.

7.3. Eco-driving solution for [70, 90.64 km] with
start and end speed at 60 km/h

In this section, results for [70, 90.64 km] are presented
with a simulated train speed that starts at 60 km/h and ends
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Figure 19: Net force, acceleration and velocity for [0, 17.63] minutes
The energy consumption reduces by 25.17% compared to the measured route profile. The energy usage calculated is based on the ac-
celeration 𝑎(𝑡) in 𝑚∕𝑠2, power 𝑃(𝑡) in Watts(W) or N.m∕s and energy E(t) measured in Wh. The negative acceleration is braking, and 
acceleration that is positive is used for traction.
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is based on the acceleration 𝑎𝑎(𝑡𝑡) in 𝑚𝑚∕𝑠𝑠2, power 𝑃𝑃 (𝑡𝑡) in
𝑊𝑊 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝑊𝑊 ) or 𝑁𝑁𝑁𝑁𝑁∕𝑠𝑠 and energy 𝐸𝐸(𝑡𝑡) measured in 𝑊𝑊 𝑊.
The negative acceleration is braking, and acceleration that
is positive is used for traction.

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎(𝑡𝑡) , 𝐹𝐹 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹 (𝑡𝑡) = 𝑚𝑚𝑚𝑚(𝑡𝑡), (49)

𝑃𝑃 (𝑡𝑡) = 𝐹𝐹 (𝑡𝑡) 𝑥𝑥 𝑥𝑥(𝑡𝑡), (50)

𝐸𝐸(𝑡𝑡) = 𝑃𝑃 (𝑡𝑡) × 𝑑𝑑𝑑𝑑𝑑 (51)

Figure 20: Cumulative energy plot for [70,90.64] km

The results were plotted according to the theoretical
algorithms presented in Section 4. Figures 7 to 20 describe
the results of the FEDEO optimisation after the speed-
tracking control is applied. The results presented in this
chapter are interpreted and discussed in Section 7.4, where
the optimised sections of the route profile are presented and
the savings achieved described.

7.4. Discussion of results
The first finding of the study is that the FEDEO algo-

rithm shows results with a signficant reduction in energy
usage over the complete journey, which is affected by train
acceleration, speed, and gradient constraints. This means
it has achieved energy savings using the MINLP method,
which leads to improvement in overall efficiency. The profile
prediction horizon of the eco-driving solution was broken
down into N intervals within the discretised prediction hori-
zon in the FEDEO algorithm. An EV will realistically follow
the continuous algorithm since the route profile will follow
a continuous path. However, in the case of the 19E electric
locomotive with regeneration, the simulation has shown that
driving can be improved at gradients requiring higher speeds
and substantial energy savings can be achieved by the simple
application of the train notch decisions. The braking force
combines the mechanical and electrical braking, and the
braking force is low when the train runs at high speed owing
to the reliance on coasting for movement.

The second finding is that the FEDEO algorithm utilises
the optimal notch at each time interval of the journey. This
means that the best suited algorithm has been found when

distance and elevation are known. It also allows more brak-
ing as this force is responsible for regenerative energy. The
typical gradient varies from -3 to +3% for the route profile
regarding freight sections globally; this is because freight
trains cannot carry an excessive load over specific gradients
for reasons such as possible stalling, loss of cargo, higher
energy usage required to overcome higher gradients, and
onboard power electronics of the locomotive not having the
required traction. The algorithm developed using MINLP
can allow the train control centre to advise the driver about
which route profile behaviour to follow regarding the train at
gradients with a high energy usage requirement [1, 44].

The third finding is that the FEDEO algorithm utilises
more coasting and cruising, and fewer changes in the ac-
celeration and braking. The specific eco-driving solution
introduced in this study uses a significant acceleration in
the beginning, lower gradient resistance in the middle of the
section (coasting), and fast braking at the end of the section.
The FEDEO algorithm reduces journey time, finds the op-
timal velocity and implements speed-tracking control. The
train requires the traction energy to achieve the gravitational
energy on sections that are uphill and uses the gravitational
energy on downhill sections. The quality of the trip is
optimised by using minimal traction energy on the middle
sections of the route. The eco-driving solution depends on
the train mass, acceleration and speed limitations, and the
gradient profile of the route.

The fourth finding is that the solution can be used for any
freight train, provided that the route profile and train coeffi-
cient parameters are known. The maximum speed limits also
have a critical impact on the optimal route profile and the
energy savings. The static parameters such as the gradient
profile, speed and acceleration limits, and train mass can-
not be modified. However, dynamic parameters have been
optimised using the MINLP algorithm or eco-driving. The
formulation reduces the difference in the trajectory the train
would follow if it were to traverse a continuous profile,
compared to the discrete case, which incorporates notches
as demonstrated by the MINLP algorithm. The FEDEO
algorithm has shown reduced energy usage and distinct
savings, as summarised in Table 3 [1, 17, 44].

The final finding is that the eco-driving solution applied
to EVs can also be applied to freight trains by incorporating
the train coefficient parameters. The discrete objective func-
tion obtained is for the speed greater than 0 with the train
moving forward. In the ideal problem case, the tractive and
braking energy both contribute to the route profile energy
consumption. However, in the discrete eco-driving approach
described in Section 5, the 19E locomotive only requires
energy consumption from the tractive effort. The energy
used during braking is fed back into the overhead line as
regeneration energy. The eco-driving example is applied
to a hybrid EV, as outlined by Khalik et al. [1]. In this
study, this approach has been applied to the scenario of the
19E train on the specific Ermelo to Richards Bay section.
A variable speed has been proposed with an eco-driving
strategy where the train speed changes between the given
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The negative acceleration is braking, and acceleration that
is positive is used for traction.

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎(𝑡𝑡) , 𝐹𝐹 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹 (𝑡𝑡) = 𝑚𝑚𝑚𝑚(𝑡𝑡), (49)

𝑃𝑃 (𝑡𝑡) = 𝐹𝐹 (𝑡𝑡) 𝑥𝑥 𝑥𝑥(𝑡𝑡), (50)

𝐸𝐸(𝑡𝑡) = 𝑃𝑃 (𝑡𝑡) × 𝑑𝑑𝑑𝑑𝑑 (51)

Figure 20: Cumulative energy plot for [70,90.64] km

The results were plotted according to the theoretical
algorithms presented in Section 4. Figures 7 to 20 describe
the results of the FEDEO optimisation after the speed-
tracking control is applied. The results presented in this
chapter are interpreted and discussed in Section 7.4, where
the optimised sections of the route profile are presented and
the savings achieved described.

7.4. Discussion of results
The first finding of the study is that the FEDEO algo-

rithm shows results with a signficant reduction in energy
usage over the complete journey, which is affected by train
acceleration, speed, and gradient constraints. This means
it has achieved energy savings using the MINLP method,
which leads to improvement in overall efficiency. The profile
prediction horizon of the eco-driving solution was broken
down into N intervals within the discretised prediction hori-
zon in the FEDEO algorithm. An EV will realistically follow
the continuous algorithm since the route profile will follow
a continuous path. However, in the case of the 19E electric
locomotive with regeneration, the simulation has shown that
driving can be improved at gradients requiring higher speeds
and substantial energy savings can be achieved by the simple
application of the train notch decisions. The braking force
combines the mechanical and electrical braking, and the
braking force is low when the train runs at high speed owing
to the reliance on coasting for movement.

The second finding is that the FEDEO algorithm utilises
the optimal notch at each time interval of the journey. This
means that the best suited algorithm has been found when

distance and elevation are known. It also allows more brak-
ing as this force is responsible for regenerative energy. The
typical gradient varies from -3 to +3% for the route profile
regarding freight sections globally; this is because freight
trains cannot carry an excessive load over specific gradients
for reasons such as possible stalling, loss of cargo, higher
energy usage required to overcome higher gradients, and
onboard power electronics of the locomotive not having the
required traction. The algorithm developed using MINLP
can allow the train control centre to advise the driver about
which route profile behaviour to follow regarding the train at
gradients with a high energy usage requirement [1, 44].

The third finding is that the FEDEO algorithm utilises
more coasting and cruising, and fewer changes in the ac-
celeration and braking. The specific eco-driving solution
introduced in this study uses a significant acceleration in
the beginning, lower gradient resistance in the middle of the
section (coasting), and fast braking at the end of the section.
The FEDEO algorithm reduces journey time, finds the op-
timal velocity and implements speed-tracking control. The
train requires the traction energy to achieve the gravitational
energy on sections that are uphill and uses the gravitational
energy on downhill sections. The quality of the trip is
optimised by using minimal traction energy on the middle
sections of the route. The eco-driving solution depends on
the train mass, acceleration and speed limitations, and the
gradient profile of the route.

The fourth finding is that the solution can be used for any
freight train, provided that the route profile and train coeffi-
cient parameters are known. The maximum speed limits also
have a critical impact on the optimal route profile and the
energy savings. The static parameters such as the gradient
profile, speed and acceleration limits, and train mass can-
not be modified. However, dynamic parameters have been
optimised using the MINLP algorithm or eco-driving. The
formulation reduces the difference in the trajectory the train
would follow if it were to traverse a continuous profile,
compared to the discrete case, which incorporates notches
as demonstrated by the MINLP algorithm. The FEDEO
algorithm has shown reduced energy usage and distinct
savings, as summarised in Table 3 [1, 17, 44].

The final finding is that the eco-driving solution applied
to EVs can also be applied to freight trains by incorporating
the train coefficient parameters. The discrete objective func-
tion obtained is for the speed greater than 0 with the train
moving forward. In the ideal problem case, the tractive and
braking energy both contribute to the route profile energy
consumption. However, in the discrete eco-driving approach
described in Section 5, the 19E locomotive only requires
energy consumption from the tractive effort. The energy
used during braking is fed back into the overhead line as
regeneration energy. The eco-driving example is applied
to a hybrid EV, as outlined by Khalik et al. [1]. In this
study, this approach has been applied to the scenario of the
19E train on the specific Ermelo to Richards Bay section.
A variable speed has been proposed with an eco-driving
strategy where the train speed changes between the given
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Figure 20: Cumulative energy plot for [70,90.64] km

The results were plotted according to the theoretical algorithms 
presented in Section 4. Figures 7 to 20 describe the results of the 
FEDEO optimization after the speed tracking control is applied. 
The results presented in this chapter are interpreted and discussed 
in Section 7.4, where the optimized sections of the route profile are 
presented and the savings achieved described.

7.4. Discussion of Results
The first finding of the study is that the FEDEO algorithm shows 
results with a significant reduction in energy usage over the com-
plete journey, which is affected by train acceleration, speed, and 
gradient constraints. This means it has achieved energy savings us-
ing the MINLP method, which leads to improvement in overall ef-
ficiency. The profile prediction horizon of the eco-driving solution 
was broken down into N intervals within the discretized prediction 

horizon in the FEDEO algorithm. An EV will realistically follow 
the continuous algorithm since the route profile will follow a con-
tinuous path. However, in the case of the 19E electric locomotive 
with regeneration, the simulation has shown that driving can be 
improved at gradients requiring higher speeds and substantial en-
ergy savings can be achieved by the simple application of the train 
notch decisions. The braking force combines the mechanical and 
electrical braking, and the braking force is low when the train runs 
at high speed owing to the reliance on coasting for movement.

The second finding is that the FEDEO algorithm utilizes the opti-
mal notch at each time interval of the journey. This means that the 
best suited algorithm has been found when distance and elevation 
are known. It also allows more braking as this force is responsi-
ble for regenerative energy. The typical gradient varies from -3 to 
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+3% for the route profile regarding freight sections globally; this is 
because freight trains cannot carry an excessive load over specific 
gradients for reasons such as possible stalling, loss of cargo, higher 
energy usage required to overcome higher gradients, and onboard 
power electronics of the locomotive not having the required trac-
tion. The algorithm developed using MINLP can allow the train 
control Centre to advise the driver about which route profile be-
havior to follow regarding the train at gradients with a high energy 
usage requirement [1, 44].

The third finding is that the FEDEO algorithm utilizes more coast-
ing and cruising, and fewer changes in the acceleration and brak-
ing. The specific eco-driving solution introduced in this study uses 
a significant acceleration in the beginning, lower gradient resis-
tance in the middle of the section (coasting), and fast braking at the 
end of the section. The FEDEO algorithm reduces journey time, 
finds the optimal velocity and implements speed-tracking control. 
The train requires the traction energy to achieve the gravitational 
energy on sections that are uphill and uses the gravitational energy 
on downhill sections. The quality of the trip is optimized by using 
minimal traction energy on the middle sections of the route. The 
eco-driving solution depends on the train mass, acceleration and 
speed limitations, and the gradient profile of the route.

The fourth finding is that the solution can be used for any freight 
train, provided that the route profile and train coefficient param-
eters are known. The maximum speed limits also have a critical 
impact on the optimal route profile and the energy savings. The 

static parameters such as the gradient profile, speed and accelera-
tion limits, and train mass cannot be modified. However, dynamic 
parameters have been optimized using the MINLP algorithm or 
eco-driving. The formulation reduces the difference in the tra-
jectory the train would follow if it were to traverse a continuous 
profile, compared to the discrete case, which incorporates notches 
as demonstrated by the MINLP algorithm. The FEDEO algorithm 
has shown reduced energy usage and distinct savings, as summa-
rized in Table 3 [1, 17, 44].

The final finding is that the eco-driving solution applied to EVs 
can also be applied to freight trains by incorporating the train co-
efficient parameters. The discrete objective function obtained is 
for the speed greater than 0 with the train moving forward. In the 
ideal problem case, the tractive and braking energy both contribute 
to the route profile energy consumption. However, in the discrete 
eco-driving approach described in Section 5, the 19E locomotive 
only requires energy consumption from the tractive effort. The en-
ergy used during braking is fed back into the overhead line as re-
generation energy. The eco-driving example is applied to a hybrid 
EV, as outlined by Khalik et al. [1]. In this study, this approach has 
been applied to the scenario of the 19E train on the specific Ermelo 
to Richards Bay section. A variable speed has been proposed with 
an eco-driving strategy where the train speed changes between the 
given bounds of the route profile. The comparison between the 
actual and optimal eco-driving energy costs and the time taken is 
shown in Table 3 [6, 35, 42, 44].

Table 3: Energy usage comparison of the FEDEO simulated sections
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bounds of the route profile. The comparison between the
actual and optimal eco-driving energy costs and the time
taken is shown in Table 3 [6, 35, 42, 44].

Table 3
Energy usage comparison of the FEDEO simulated sections

Simulated Section Actual Optimal Actual Optimal

(FEDEO) energy energy time time

usage usage (minutes) (minutes)

(kWh) (kWh)

[0, 90.64 km] 25, 629.48 16, 485.00 122.97 86.74

[70, 90.64 km] 5097.79 7488.9 18.83 17.63

[0 𝑘𝑘𝑘𝑘∕ℎ, 0 𝑘𝑘𝑘𝑘∕ℎ]

[70, 90.64 km] 5097.79 3814.9 18.83 17.63

[60 𝑘𝑘𝑘𝑘∕ℎ, 60 𝑘𝑘𝑘𝑘∕ℎ]

Savings (%)

[0, 90.64 km] - 34.763 - 29.46

[70, 90.64 km] - - 46.905 - 6.373

[0 km/h, 0 km/h]

[70, 90.64 km] - 25.166 - 6.373

[60 km/h, 60 km/h]

8. Conclusion

In conclusion, the optimisation of the energy utilising
MINLP by making calculated decisions using the tractive
and braking effort significantly reduces the overall energy
consumption of the train by exactly 34.76% for the entire
route section and 25.17% for the smaller section of 20.64
km. Non-linear vehicle dynamics formulate the general train
control problem from the traction and train resistance forces
as a function of speed and route elevation changes. The
route is partitioned into stations of varying gradients and
speed. The problem formulated is a multiple phase problem
where each section of the route depends on the load being
hauled, the gradient, and the train’s ability to coast, cruise,
brake, and accelerate during inclines and declines. Owing
to the nature of the 19E train, which utilises regenerative
braking, the focus is on the train’s tractive effort, acceler-
ation, and speed for optimisation. The modelling of the eco-
driving solution has shown that intelligent driving over large
gradients can significantly save cost and improve the train
trajectory over the route profile. This study has reviewed
the energy optimisation (FEDEO) algorithm for reducing
energy consumption and costs for the 19E train using CCR-
9 wagons on the Ermelo-Richards Bay coal line. Energy-
efficient train control is a requirement for the operational
sector of freight transport. Any optimisation model used
needs to be analysed and set out methodologically to obtain
the required performance and accuracy. The algorithm in this

study has optimised the solution of eco-driving within the
freight rail sector of South Africa and globally.
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8. Conclusion
In conclusion, the optimization of the energy utilizing MINLP by 
making calculated decisions using the tractive and braking effort 
significantly reduces the overall energy consumption of the train 
by exactly 34.76% for the entire route section and 25.17% for the 
smaller section of 20.64 km. Non-linear vehicle dynamics formu-
late the general train control problem from the traction and train 
resistance forces as a function of speed and route elevation chang-
es. The route is partitioned into stations of varying gradients and 
speed. The problem formulated is a multiple phase problem where 
each section of the route depends on the load being hauled, the gra-
dient, and the train’s ability to coast, cruise, brake, and accelerate 
during inclines and declines. Owing to the nature of the 19E train, 
which utilizes regenerative braking, the focus is on the train’s trac-
tive effort, acceleration, and speed for optimization. The model-
ling of the codriving solution has shown that intelligent driving 
over large gradients can significantly save cost and improve the 
train trajectory over the route profile. This study has reviewed the 
energy optimization (FEDEO) algorithm for reducing energy con-
sumption and costs for the 19E train using CCR9 wagons on the 
Ermelo-Richards Bay coal line. Energy efficient train control is 
a requirement for the operational sector of freight transport. Any 
optimization model used needs to be analyzed and set out meth-
odologically to obtain there quired performance andaccuracy. The 
algorithm in this study has optimized the solution of eco-driving 
within the freight rail sector of South Africa and globally.
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