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Resumen

Introducción:Los ácidos grasos poliinsaturados de la fami-
lia n-3 han sido ampliamente caracterizados por su potencial
antiinflamatorio. Sin embargo, las evidencias relativas al
papel del ácido oleico en el sistema inmune son escasas.

Objetivo: El objetivo de la presente revisión bibliográfica
es hacer una recopilación de todos y cada uno de los traba-
jos publicados a este respecto, al objeto de evaluar dónde se
encuentra el conocimiento relativo a esta área y cuáles pue-
den ser las causas de los resultados contradictorios.

Métodos: Se ha realizado una búsqueda bibliográfica a
través de bases de datos electrónicas y las referencias de
los artículos de interés han sido utilizadas como fuente de
búsquedas más avanzadas.

Resultados: Las dietas ricas en ácido oleico parecen
estar asociadas con un beneficio en determinadas patolo-
gías de base inflamatoria. Además, un gran número de
estudios se han centrado en evaluar el papel que juega tal
ácido graso en distintas funciones celulares, argumen-
tando posibles mecanismos que sustentarían los efectos
biológicos que se atribuyen a su consumo. Sin embargo,
en algunos casos se observan resultados contradictorios
que quizá puedan deberse al tipo de estudio desarrollado
o incluso a la dosis de ácido con la que se experimenta.

Conclusión: En conclusión, el ácido oleico podría ser
presentado como una grasa anti-inflamatoria dado el
papel que juega en la activación de distintos mecanismos
de señalización de células inmunocompetentes.

(Nutr Hosp. 2012;27:978-990)
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Abstract

Introduction: Although n-3 polyunsaturated fatty acids
have been widely described as anti-inflammatory fats,
little is known about the role of oleic acid in immune
system. 

Aim: The aim of the present review is to join all the
reports available in order to analyze where exactly the
knowledge concerning this topic is and what the causes of
the controversial data could be. 

Methods: We searched electronic databases and biblio-
graphies of selected articles were inspected for further
reference.

Results: Diets rich in oleic acid have beneficial effects in
inflammatory-related diseases. In addition, a wide range
of studies evaluate the effect of oleic acid in different
cellular functions thus reporting a potential mechanism
for the biological effect of such a fat. However, some
controversial data can be found in literature, maybe
related to the kind of study or even the dose of the reagent
added. 

Conclusion: In conclusion, oleic acid could be reported
as an anti-inflammatory fatty acid playing a role in the
activation of different pathways of immune competent
cells.

(Nutr Hosp. 2012;27:978-990)
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PUFA: Polyunsaturated fatty acid.
OA: Oleic acid.
MUFAs: Monounsaturated fatty acids.

VCAM-1: Vascular cell adhesion molecule-1.
ICAM-1: Intercellular adhesion molecule-1.
NF-κb: Nuclear factor-kappa B.
AA: Arachidonic acid.
EPA: Eicosapentanoic acid.
ROS: Reactive oxygen species.
O

2

•-: Superoxide.
PL: Phospholipase.
IP

3
: Inositol,1,4,5 triphosphate.

DAG: Diacylglycerol.
[Ca2+]i: Intracellular Ca2+ concentration.
PKC: Protein kinase C.
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HOSO: Sunflower oil.
NK: Natural killer.
TCR: T cell receptor.
AICD: Activation-induced cell death.
PA: Phosphatidic acid.
DHA: Docosahexaenoic acid.
PIP

2
: Phosphatidilinositol 4,5 biphosphate.

PI-PLC: Phosphatidylinositol-specific PLC.
polyDAGs: Polyunsaturated DAGs.
monoDAGs: Mono-unsaturated DAGs.
satDAGs: Saturated DAGs.
PI: Phosphatidylinositol.
PS: Phosphatidylserine.
PC: Phosphatidylcholine.
PE: Phosphatidylethanolamine.
SOG: 1-stearoyl-2-oleyl-sn-glycerol.
Stromal Interaction Molecule 1: STIM1.

Introduction

The first evidence of the beneficial effect of fatty
acids in the human immune system and in inflamma-
tory processes comes from epidemiological studies on
Greenland Eskimos, who presented a low rate of
several inflammatory-related diseases, which was
directly linked to their high levels of n-3 polyunsatu-
rated fatty acid (PUFA) intake. By contrast, the normal
diet in various parts of the world contains other unsatu-
rated fatty acids; an example is the widespread use of
olive oil, rich in oleic acid (OA), in Mediterranean
countries. OA is not only abundant in certain diets but
is also the most important constituent of plasma free
fatty acids. However, all the scientific effort has been
mainly focused on the study of n-3 PUFA, letting the
research concerning the effect of the monounsaturated
OA be overshadowed. In general, the n-6 PUFA are
believed to enhance immune function whereas the n-3
PUFA suppress it. Olive oil has classically been used
as a placebo treatment in studies investigating the
effects of fish oils on immune function, because
monounsaturated fatty acids (MUFAs) were typically
regarded as being neutral fatty acids. Nevertheless,
there is evidence that MUFA-rich oils have effects
which are similar to the effects of fish oils on animals.
The studies focusing on the immunomodulatory
properties of MUFA have, therefore, reported contro-
versial results, thus the aim of the present review is to
join them all in order to analyze where exactly the
knowledge concerning this topic is and what the causes
of the controversial data could be. 

Biological effects of oleic acid in the immune system

The Mediterranean Diet appears to be effective in
reducing coronary atherosclerosis and the risk of fatal
complications like sudden cardiac death.1 Both fish oil
and olive oil have been reported to lower plasma fibri-

nogen in women with high baseline fibrinogen concen-
trations in a double-blind crossover study.2 Other
studies have demonstrated no significant difference
between fish-oil supplements and olive oil in preven-
ting restenosis after coronary angioplasty.3 It has been
also suggested that the consumption of olive oil may
have beneficial effects on rheumatoid arthritis and it
has been proposed that the suppressive effect of olive
oil on the development of these pathologies may be
exerted via an effect on the immune system.4-6

As described above, diets rich in MUFA have been
linked with a low prevalence of inflammatory disease.
As cells of the immune system are an inherent part of
the inflammatory events involved in the development
and progression of inflammatory disease, we will
describe the influence of OA in different aspects of
immune cells.

Materials and methods

Search strategy

We consulted studies published in electronic data-
bases such as Pubmed or Medline. The bibliographies
of selected articles were inspected for any further refe-
rence.

Firstly, we studied the title and abstract of all kind of
papers (regular or review papers) with a potential inte-
rest to understand the role of oleic acid in immune
system. We mostly focused on those related to the
mechanisms of action of such a fatty acid at the cellular
level. Thus, the main key words used in the search
were: “oleic acid”, “immune system”, “neutrophils”,
“lymphocytes”, “intracellular signaling”. Then, the
text of the main trials that met the criteria previously
mentioned was fully examined to extract the specific
data included in the review.

Results and discussion

The innate immune system: key role of neutrophils

Effect of oleic acid on neutrophil effector functions

ADHESION, MIGRATION AND PHAGOCITOSIS

Neutrophils play a pivotal role in the defense of the
human body against infections. However, overwhel-
ming activation of neutrophils is known to elicit tissue
damage. Numerous studies in literature evaluate the
effects of OA on leukocyte adhesion. In vitro studies
have shown that treatment with micromolar amounts of
oleate inhibited the endothelial expression of the
vascular cell adhesion molecule-1 (VCAM-1), E-
selectin, and the intercellular adhesion molecule-1
(ICAM-1) in several endothelial cells.7-11 Other authors
found that OA had no effects on human endothelial
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cells or on the leukocyte adhesion molecule.12 In any
case, a lack of proinflamatory effects of OA has been
reported. The previous findings are supported by
studies in vivo demonstrating that a meal rich in OA
beneficially modulates postprandial soluble ICAM-1
and VCAM-1.13 These data constitute an additional
explanation for the beneficial effects of OA, exerted
through the inhibition of the very early phenomena in
atherogenesis, by modulating endothelial activation
through the expression of the gene products involved in
leukocyte recruitment, thus confirming the link
between OA and cardiovascular disease complications.

In addition, OA has the ability to reduce the inflam-
matory effects of long-chain saturated fatty acids in
human aortic endothelial cells. In this sense, this fatty
acid inhibited the stearic acid-induced increase in
ICAM-1 expression as well as stearic acid-induced
phosphorylation of nuclear factor-kappa B (NF-κB), a
transcriptional regulator of ICAM-1.14

Studies in other cell lines have also corroborated the
findings above stated. Thus, ICAM-1 expression of
non-stimulated and cytokine stimulated Caco-2 cells
cultured for 22 days with arachidonic acid (AA), was
significantly higher as compared to eicosapentanoic
acid (EPA) and OA, suggesting that the replacement of
AA by EPA or OA in the colon mucosa might have
beneficial effects for inflammatory bowel disease
patients.15

By contrast, OA has been also reported to increase
the cell surface expression of CD11b and induce the
high affinity state of this integrin. This MUFA, through
a CD11b-mediated mechanism, induces neutrophil
aggregation and neutrophil-endothelial cell attach-
ment.16

Only a few studies are available concerning the
effect of OA on leukocyte migration. Ferrante et al.
demonstrated that OA was able to inhibit leukocyte-
migration but its effect was far from the one exhibited
by PUFA.17

Conflicting results can be found concerning other
leukocyte functions. Whereas some researchers have
reported that OA enhanced neutrophil phagocytic
capacity and candidacidal activity,18,19 others show that
this fatty acid caused no changes in bactericidal acti-
vity and only moderated decreases in phagocytosis and
chemotaxis in very high concentrations.20

REACTIVE OXYGEN SPECIES (ROS) PRODUCTION

Once they have arrived at the damaged tissue and
engulfed the pathogen, activated neutrophils secrete
several cytotoxins, such as superoxide (O

2

•-), the
precursor of other ROS, granule proteases and bioac-
tive lipids.21,22 ROS production is related to the killing
of invading microorganisms, but it can also directly or
indirectly cause damage by destroying surrounding
tissues. Thus, it is of utmost importance to clarify the
effect of fatty acids on neutrophils respiratory burst.

Numerous studies have reported the ability of unsa-
turated fatty acids to influence ROS production in
neutrophils.18,23-32 However, depending on the experi-
mental conditions, fatty acids can inhibit, enhance or
even synergize neutrophil activation. For example,
some studies reported that C18 fatty acids inhibit ROS
generation.31 By contrast, others demonstrated an
important interaction between fatty acids and cyto-
kines, showing a markedly augmented amount of supe-
roxide produced in response to fatty acids in TNF-
pretreated neutrophils.28 In any case, most of the studies
in literature have reported an increased ROS genera-
tion by unsaturated fatty acids-stimulated neutrophils.
Within these, all reports establish differences between
fatty acids in their ability to induce ROS generation in
unstimulated neutrophils, suggesting that fatty acids
distinctively influence neutrophil function depending
on the fatty acid structure. Nevertheless, contradictory
observations can be found in this respect, which may
be in part the result of the different methods used in the
determinations.26

Mechanisms undergoing OA effects

As described in the previous section, numerous
studies have shown that unsaturated fatty acids stimu-
late O

2

•- release from neutrophils and macrophages.
However, the mechanism by which these agents exert
its effect is complex and has been the subject of several
studies.

Perturbation of neutrophils membrane, either by
phagocytosis or by different agents stimulates a
number of responses which includes activation of an
NADPH oxidase. Stimulation of this oxidase leads to
the production of large quantities of ROS. Free fatty
acids are known to activate NADPH-oxidase in the
cell-free O

2

•- generating system.32,33 Robinson et al.
proposed a mechanism for the fatty acid-induced respi-
ratory burst related, at least in part, to its ability to acti-
vate phospholipase A

2
(PLA

2
).34 The endogenous AA

liberated by PLA
2

action on membrane phospholipids
may be in a compartment that effectively activates the
NADPH oxidase which is responsible for the respira-
tory burst. These findings (the direct activation of PLA

2

by fatty acids) are consistent with previous reports
demonstrating that fatty acid-induced ROS production,
and various other biological responses, in leukocytes,
are due to the fatty acids themselves rather than to
cyclooxygenase or lipoxygenase metabolites.17,35-38 By
contrast, the latter reports argue against those sugges-
ting that fatty acids can be metabolized by lipoxyge-
nase to hydroperoxides which are intermediates in the
release of O

2

•-.39,40

Some researchers have detected the expression of a
GPCR40 in bovine neutrophils. The same group, hypot-
hesized that OA could modulate bovine neutrophil
responses and these responses could be induced by
GPR40 activation.41 By contrast, others have suggested
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that unsaturated fatty acids do not act as other stimula-
ting agents which bind to neutrophils at specific recep-
tors. The latter proposed that they may exert their
effects by intercalating into and disordering regions of
membranes,42,43 thus affecting proteins involved in O

2

•-

production that are associated with those regions.24

According to these authors, a component involved in
O

2

•- production appears to be sensitive to transitions in
the bilayer. A potential component of this pathway
could be phospholipase C which may be activated by
phase transitions in the membrane induced by cis-unsa-
turated fatty acids.24,44 Inositol,1,4,5 triphosphate (IP

3
)

and diacylglycerol (DAG) are two products of this
lipase. The former leads to the increase in intracellular
Ca2+ concentration ([Ca2+]i) whereas the latter is the
physiological activator of protein kinase C (PKC).45

Both mobilization of intracellular Ca2+ and PKC activa-
tion have been postulated as potential mechanisms
behind the ROS generation event induced by fatty
acids. However, although numerous studies can be
found in this respect, contradictory are their results. 

Fatty acids, herein OA, have been reported to alter
Ca2+ homeostasis in different immunocompetent cells.46-

51 However, the relationship between OA-induced ROS

production and Ca2+ mobilization is complex and the
precise mechanism of action is still unclear. Some
authors have reported a Ca2+-independent mechanism
behind the ROS production.52 By contrast, other studies
have shown a link between these two pathways.25,41 Other
studies available focus on the role of Ca2+ ion in the
extracellular medium, suggesting an inhibitory effect of
Ca2+ on the fatty acid-induced O

2

•- generation, attributed
to the ionic interaction between the carboxyl group of
the fatty acid and the Ca2+.27

In addition, the involvement of a PKC is also contro-
versial.18,25,52 A role for PKC in the stimulation of
neutrophils has been proposed on the basis of the
ability of various activators of this enzyme to elicit
different cellular responses in neutrophils.53-55 As unsa-
turated fatty acids stimulate PKC in vitro, a role for
fatty acids as “second messengers” in the regulation of
O

2

•- production has been thus proposed.53 By contrast,
several reports failed to demonstrate a link between
PKC activation and ROS production.18,29 Moreover,
there are also findings on the PKC-mediated capacity
of some fatty acids to enhance the PMA-stimulated O

2

•-

production at nanomolar concentrations and to depress
it at micromolar concentrations.56
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Table I
Key studies evaluating the effect of OA in innate immune system

Study Key findings

Neutrophil functions

Carluccio MA et al.; Massaro M et al.;
Sanadgol N et al.; Christon RA; OA inhibits the endothelial expression of VCAM-1, E-selectin and ICAM-1
De Caterina R et al.7-11

Hoithe MR et al.12 OA has no effect on leukocyte adhesion molecule

Pacheco YM et al.13 A meal rich in OA beneficially modulates postprandial ICAM-1 and VCAM-1

Harvey KA et al.14
OA inhibits stearic-induced increase in ICAM-1 as well as scaric acid-induced phosphorylation
of NF-κb, a transcriptional regulation of ICAM-1

Mastrangelo AM et al.16 OA induces neutrophil aggregation and cell attachment

Ferrante A et al.17 OA inhibits leukocyte migration but its effect is far from that exhibited by PUFA

Padovese R et al.; Martins de Lima-Salgado T et al.18,19 OA enhances neutrophil phagocytic capacity and candidacidal activity

Hawley HP et al.20 OA has almost no effect in bactericidal and phagocytosis activity

Padovese R et al; Badwey JA et al.;
Morimoto YM et al.; Hatanaka E et al.;

OA modulates neutrophil ROS production
Yamaguchi T et al.; Li Y et al.; Hardy SJ et al.;
Juttner B et al.; Hwang TL et al.; Tanaka T et al.18,23-32

Mechanisms involved

Hidalgo MA et al.41 OA modulates neutrophil responses through GPR40 activation

Hardy SJ et al.52 There is a Ca2+-independent mechanism behind the ROS production induced by OA

Morimoto YM et al.; Hidalgo MA et al.25,41 There is a Ca2+-dependent ROS production induced by OA

McPhail LC et al.53 OA stimulates PKC activation in vitro

Carrillo C et al.51 OA induces a PKC-dependent ROS production

Padovese R et al.; Hardy SJ et al.18,29 OA induces a PKC-independent ROS production

04. ROLE OF OLEIC:01. Interacción  29/05/12  14:02  Página 981



Adaptative immune response: 
key role of lymphocytes

Effects of OA on lymphocyte functions

OLEIC ACID IN T CELL PROLIFERATION

Several studies have reported a potential role of
MUFA-rich diets on immunomodulatory processes
based on its ability to influence the proliferation of
immune cells.

Verlengia et al. have reported an in vitro inhibiting
effect of OA on the proliferation of Jurkat T cells and a
reduction in the production of IL-2 and INF-gamma.57

These findings are further corroborated by minerval, an
OA synthetic analogue, which also inhibited prolifera-
tion of Jurkat cells.58

Animal studies have reported an inhibition of lymp-
hocyte proliferation in response to a T-cell mitogen.

Thus, rats fed for weeks on olive oil diets showed a
consistent inhibition of spleen and lymph node lymp-
hocyte proliferation.59,60 Similarly, feeding cashew
kernel oil, which is rich in OA, also resulted in an inhi-
bition of rat spleen lymphocyte proliferation compared
with feeding them the coconut oil diet.61

Olive oil contains a number of antioxidants, sterols,
hydrocarbons and alcohols. In order to elucidate whether
the effects reported above were due to OA or to some
other component of the oil, Jeffery et al. fed rats for 6
weeks on diets containing 20% by weight of olive oil,
safflower oil, or high OA sunflower oil (HOSO), using a
low-fat diet containing 2.5% by weight of lipid as a
control. The results showed a significantly lower
mitogen-stimulated spleen lymphocyte proliferation
following olive oil or HOSO feeding as compared with
low-fat or safflower oil feeding, these observations indi-
cating that the effects of olive oil feeding are most likely
due to OA rather than to other components of olive oil.62

982 C. Carrillo et al.Nutr Hosp. 2012;27(4):978-990

Table II
Key studies evaluating the effect of OA in adaptative immune system

Study Key findings

T-cell functions

Virginia R et al.57 OA inhibits Jurkat T-cell proliferation as well as IL-2 and INF-gamma production

Llado V et al.58 Minerval inhibits T cell proliferation

Yaqoob P et al.; Calder PC et al.;
A diet rich in OA inhibits spleen and lymph node induced-proliferation

Jeffery NM et al.59,60-63

Yaqooh P et al.65 A MUFA-rich diet does not affect the proliferative response of cells

Cury-Boaventura MF et al.72,73 Exposure to OA results in morphological features of apoptosis in human lymphocytes

Llado V et al.58 Minerval induces apoptosis in Jurkat cells

Mechanisms involved

Franson R et al.; Alaoui El Azher M et al.97,98 OA inhibits secretion and PLA
2
activity

Tappia PS et al.99
There is a non significant increase of PLA

2
activity in the presence of OA compared with EPA or

DHA, or an enhanced activity induced by linoleic acid

Kambe T et al.79 OA induces a lower AA release than n-6 PUFA

Casabiell X et al.100
OA blocks signal transduction by interfering with PLC-receptor interaction without preventing
ligand binding

Sanderson P et al.101
A diet rich in OA does not affect PIP

2
level in lymphocytes, but decrease the concentration of IP

3

in stimulated lymphocytes

Irvine RF et al.102 OA stimulates specifically the hydrolysis of membrane PI

Hwang SC et al; Sekiya F et al.103,104 OA activates PLC in combination with proteins as tau or AHNAK, but fails to act alone

Frohman MA et al.; Kasai T et al.;
PLD PIP

2
-insensitive are activated by OA and drastically increased during apoptosis of Jurkat cells

Nakashima S et al.111-113

Bartoli R et al.125
A diet rich in n-9 fats decreases mucosal arachidonate concentratrion and AA; EPA ratio as
compared to n-6 diet

Chow SC et al.; Richieri GV et al.;
OA inhibits the agonist-induced extracellular Ca2+ influx in T cells

Gamberucci A et al.47,129,130

Gamberucci A et al.84 OA discharges almost all the thapsigargin-sensitive Ca2+ pool

Carrillo C et al.138 A DAG-containing OA can activate TRPC3 and TRPC6 Ca2+ channels in Jurkat cells
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Moreover, the use of such oils results in variation in
the levels of several fatty acids together and not only
the one under investigation. In this sense, to obtain
further information about the immunomodulatory
effects of specific dietary fatty acids some investiga-
tors performed a controlled study in which one fatty
acid was exchanged for another, without altering the
levels of other fatty acids in the diet. The nine diets
used differed in their contents of palmitic, oleic, lino-
leic and α-linolenic acids. The proliferation of spleen
lymphocytes decreased as the level of OA in the diet
increased.63

Other studies on the proliferation induced by fatty
acids “per se”, showed an enhanced lymphocyte proli-
feration, IL-2 and TNF-α production, induced by a
Rice bran oil diet (rich in linoleic acid) compared to a
HOSO.64

Studies in humans are lacking and the results avai-
lable differ from the findings obtained in laboratory
animals above reported. Consumption of a MUFA-rich
diet did not affect the proliferative response of cells,
either in whole-blood cultures or in peripheral blood
mononuclear cells, to the T cell mitogen concanavalin
A.65 Such controversial results could be related to the
doses tested. 

The mechanisms by which OA influences T lymp-
hocytes functions are not clear but this fatty acid seems
to be involved in the regulation of cell cycle. Epithelial
growth factor receptor (a critical crossroad of multiple
receptor pathways which is potentially implicated in
the regulation of proliferation and possibly involved in
atherogenesis) could be considered a target for unsatu-
rated fatty acids.66 Mata et al. have demonstrated that
MUFA diets produce the lowest induction of smooth-
muscle-cell entry in the cell cycle when compared with
other fatty acid-enriched diets although these authors
did not investigate whether or not this effect influences
cell division and proliferation.67

OLEIC ACID AND NK CELLS

Natural killer (NK) cells are part of natural rather
than specific immunity, since they are not activated by
a specific antigen. However, these cells are a subset of
lymphocytes, found mainly in the blood and spleen,
and that is the reason why they are included in this
section. They are derived from the bone marrow but
they do not undergo thymic maturation. 

Rats fed for weeks on a diet rich in olive oil resulted
in a significant suppression of NK cell activity,
compared with feeding a low-fat diet or diets contai-
ning hydrogenated coconut oil or safflower oil,
although it was not as great as that resulting from
feeding a diet containing fish oil.68 Jeffery et al.
demonstrated once again that the inhibitor effect of
olive oil feeding on NK cell proliferation is most likely
due to OA rather than to other components of olive
oil.62 In addition, other reports have focus on studying

the single effect attributable to OA itself finding a
significant negative linear relationship between the OA
content of the diet and NK cell activity, suggesting that
dietary OA causes diminished NK cell activity.63

However, as happened in lymphocytes proliferation,
studies developed in middle-aged men, have given
controversial results. These subjects increased their
OA intake at the expense of saturated fatty acids and
after a month there was a non-significant reduction in
NK cell activity.65 Once again, the differences observed
between animal and human studies are likely to be due
to the extreme doses added in laboratory research.

APOPTOTIC EFFECTS OF OA IN T CELLS

Programmed cell death or apoptosis is a physiological
process to get rid of non-functional or surplus cells. With
regard to T lymphocytes, this process make possible to
eliminate those lymphocytes having a T cell receptor
(TCR) that recognize their own antigens (self tolerance)
during thymic maduration. Equally, once the attack has
been neutralized, the immune system eliminates the
excess of T lymphocytes activated in order to restore
“the pool” of these cells. Such two pathways for the
removal of T lymphocytes, are developed trough a kind
of apoptosis known as “AICD” (activation-induced cell
death).69-71 Both autoimmunity, caused by recognition of
self antigens, and inmunopatology, caused by a sense-
less presence of excessive amount of T lymphocytes
activated, can be prevented by AICD.

Human lymphocytes, Jurkat (T lymphocyte) and
Raji (B lymphocyte) cells, show morphological
features of apoptosis after exposure to OA.72,73 In addi-
tion, Llado et al. reported for the first time that
minerval, an OA synthetic analog, also induced apop-
tosis in Jurkat T cells.58 Thymocytes are also affected
by PUFAs treatment, but no studies have been deve-
loped with OA.74

The mechanism of cell death induced by these fatty
acids seems to be related to mitochondrial depolariza-
tion and ROS production or caspase 3 and 6 activities
production. Moreover, evidence is presented that OA is
less toxic to human lymphocytes than linoleic acid so
OA may offer an immunologically less harmful alter-
native to linoleic acid for parenteral and enteral diets
preparation.72,73,75,76

As previously reviewed, OA could be considered a
potential immunomodulatory fat. However, the
mechanisms by which this fatty acid exerts its effects
are still unclear and available evidences will be
described in next section.

Mechanism involved in the 
immunomodulatory effects of OA

The main target of unsaturated fatty acids is the
membrane where they are going to be incorporated into
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the phospholipids. Once incorporated, these fatty acids
could affect cellular function directly or indirectly. In
fact, several hypotheses concerning the mechanisms of
action of unsaturated fatty acids have been postulated:

– Increase in membrane fluidity which improves
membrane-protein interaction and modulates
signal transduction.77

– Decrease in AA content in membrane phospholi-
pids and therefore, arachidonic-derived eicosa-
noids, known as proinflammatory agents.78,79

– Improvements of oxidant status as MUFAs are
less sensitive to lipid peroxidation and ROS
production.80

– Modulation of intracellular pathways that play a
central role in cell activation.81-85

– Modulation of gene expression involved in cyto-
kine production.57

LIPID SIGNALING MODULATION

Membrane phospholipids are involved in the signal
transduction pathways started out of the cell. Dietary
unsaturated fatty acids or cells treatment with fatty
acids, leads to their esterification in sn-2 position of
membrane phospholipids. Once incorporated in the
phospholipids, they can be hydrolyzed by several
phospholipases. Phospholipases A

1
and A

2
(PLA

1
and

PLA
2
) lead to the release of those fatty acids present in

sn-1 and sn-2 position of the glycerol, respectively, and
to the subsequent lysophospholipides generation.
Phospholipase C (PLC) hydrolyzes PIP

2
releasing also

two second messengers: DAG and IP
3
. Phospholipase

D (PLD) acts mainly on phosphatidilcoline (PC) and
leads to the production of phosphatidic acid (PA),
which is rapidly hydrolyzed to form DAG. Additio-
nally, PA can also activate PLC and increase the affi-
nity of the enzyme for the subtract.86,87 As PA is the
result of the hydrolysis of PC by PLD, the PLD activa-
tion can also lead to the activation of PLC. 

Stearic acid and palmitic acid are almost exclusively
located at the sn-1 position of the different glycerophosp-
holipids, with the majority of OA and other unsaturated
fatty acids found at the sn-2 position.88,89 Thus, n-9
MUFA taken by the diet will result in its incorporation at
sn-2 position of membrane phospholipids instead of AA.
Depending on the action of different phospholipases, it
will affect intracellular signaling pathways both as a free
OA (under the action of PLA

2
)90,91 or as a DAG-contai-

ning OA (under the action of PLC and PLD).92

PHOSPHOLIPASE A2

Phospholipase A
2

enzymes catalyze the hydrolysis
of ester bonds at the sn-2 position of membrane phosp-
holipids and simultaneously release fatty acids, such as
AA and lysophospholipids.93,94 The hydrolysis of

phospholipids by PLA
2
is a key phase in the regulation

of inflammatory processes as AA release leads to the
production of eicosanoids.95 Stimulus activation of
PLA

2
can release OA as well, a non-proinflammatory-

mediator.96

Several studies have demonstrated that unsaturated
fatty acids, including OA, can inhibit both secretion
and activity of PLA

2

97,98 results suggesting anti-inflam-
matory roles for OA during the inflammatory reaction,
as AA release and thus subsequent products from its
metabolism are inhibited. By contrast, other studies
claim a non-significant enhancement of PLA

2
activity

in the presence of OA, compared with a suppression
effect of EPA or docosahexaenoic acid (DHA) or an
enhanced activity induced by linoleic acid.99

Furthermore, unsaturated fatty acids are reported to be
capable of regulating the enzymatic system involved in
their own release. In this sense, Kambe et al. have
reported that cells incubated with exogenous unsatu-
rated fatty acids in the presence of IL-1 and serum,
showed a significant increase in AA release. OA proved
to be the one which induced AA release in a lower
amount; AA and linoleic acid were more potent.79

PHOSPHOLIPASE C

Phosphatidylinositol-specific PLC (PI-PLC) plays
an important role in cell signal transduction. PLC can
hydrolyse phosphatidilinositol 4,5 biphosphate (PIP

2
)

into two second messengers: IP
3

and DAG. These
messengers then promote the release of Ca2+ from intra-
cellular stores, and the activation of PKC, respectively. 

A number of studies have reported the effect of fatty
acids on PLC activity. Unsaturated fatty acids, such as
OA, but not saturated ones, block signal transduction
by interfering with receptor-PLC or PLC-substrate
interaction without preventing ligand binding.100

Sanderson and Calder developed a study with rats
feeding them on diets with different oils and they
showed that the level of PIP

2
in spleen lymphocytes

was unaffected by diet. However, an olive oil diet (as
well as a fish oil one) significantly decreased the
concentration of IP

3
in stimulated lymphocytes.

However, in stimulated lymphocytes, the phosphoryla-
tion state of the enzyme, as well as that of a range of
other proteins, was decreased following feeding on
olive oil diets (and fish oil ones).101

By contrast, some researchers showed that addition
of OA to rat microsomal fractions stimulates specifi-
cally the hydrolysis of membrane PI.102 However, these
unsaturated fatty acids do not directly affect PIP

2
-

hydrolysis activities of various PLC isozymes. Hwang
et al. demonstrated that unsaturated fatty acids, such as
OA, enhance the activation of PLC by tau, a protein known
to activate phospholipase.103 In addition, AHNAK, another
protein, in combination with unsaturated fatty acids,
such as OA, can activate PLC. These authors did not
find an activator effect of the fatty acids alone either.104
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Other researchers have focused on studying the
effect of the incorporation of different fatty acids in
inositol lipids. These results showed that fatty acids
induced modifications in PLC activity. PIP

2
-PLC acti-

vities reached a maximum when inositol lipids contai-
ning OA became more abundant than normal.105

PHOSPHOLIPASE D

Phospholipase D is widely distributed in mamma-
lian cells and is implicated in a variety of physiological
processes that reveal it to be a member of the signal
transducing phospholipases. PLD is an enzyme which
is located in the plasma membrane, mainly in caveoles,
membrane specialized domains rich in sphingolipids and
cholesterol “lipid rafts”.106 It catalyzes the hydrolysis of
PC to form PA, releasing the soluble choline head-
group into the cytosol. PA is extremely short lived and
is rapidly hydrolysed by the enzyme PA phosphohy-
drolase to form DAG.

Two families of PLD can be distinguished depen-
ding on their sensitivity to PIP

2
. Some PLD can be

activated only in the presence of such a lipid (PLD
PIP

2
-sensitives), while others do not need it (PLD-

PIP
2
-insensitives).

Whereas PLD PIP
2
-sensitives are activated by

several proteins,107-110 the PLD PIP
2
-insensitives are

activated by OA111 and therefore known as PLD-oleate
dependent.112 This type of PLD activity is drastically
increased during apoptosis of Jurkat T cells. In fact,
PLD activation in lymphocytes T is related to antiproli-
ferative and apoptotic signals. Such results suggest the
possibility that PLD plays roles in differentiation,
survival and apoptosis in mammalian cells.112,113

These findings could be of physiological relevance
when studying the mechanisms of OA acid induced
apoptosis in T cells.

DIACYLGLYCEROL

A diglyceride, or a diacylglycerol, is a glyceride
consisting of two fatty acid chains covalently bonded
to a glycerol molecule through ester linkages. In
mammalian cells there are, at least, 50 structurally
distinct molecular species of sn-1,2-diacylglycerol,114,115

whose fatty acyl groups can be polyunsaturated, mono-
unsaturated or saturated. When cells are stimulated by
appropriate agonists, PIP

2
hydrolysis catalysed by

PIP
2
-PLC becomes an important source of new DAG that

are able to activate PKC. Cell stimulation also commonly
activates PLD-catalysed PC hydrolysis. The PA gene-
rated by PLD is thought to be an intracellular signal
whose action also results in DAG production.

Phosphatidilinositol 4,5 biphosphate and PC (the
precursors of DAG) typically have very different fatty-
acyl complements and their hydrolysis yields very
different DAG. Inositol lipids, which make up 5-10%

of the total phospholipid content of most mammalian
cells, are mainly polyunsaturated: 30-80% of total
phosphoinositide is typically the sn-1-stearoyl-2-
arachidonyl species.114-118 PC is much more abundant,
making up around 30-50% of total mammalian cell
phospholipids. In many cells, PC predominantly
contains saturated and mono-unsaturated fatty acids;
relatively few PC species are polyunsaturated.114-118

Dyacylglycerol production in stimulated cells is
often biphasic: there is an initial rapid rise in DAG
concentration and then, a slower accumulation that can
be sustained for an hour or more. Polyunsaturated DAGs
(polyDAGs) —with a saturated or mono-unsaturated
1-acyl group and a polyunsaturated 2-acyl group—
predominate during the initial phase; however, they are
largely restricted to a few polyDAG species, notably 1-
stearoyl-2-arachidonyl-DAG. During the sustained
phase, the concentrations of a broad range of mono-
unsaturated DAGs (monoDAGs) and saturated DAGs
(satDAGs) rise, and these are accompanied by smaller
amounts of polyDAGs. The initial polyDAGs are
mainly products of PIP

2
hydrolysis, whereas the

mono/satDAGs generated in the sustained phase are
derived predominantly (through dephosphorylation of
PLD generated PA) from PC.114,115,119

Moreover, fatty acid composition of membrane phosp-
holipids can be further influenced by the diet. Previous
studies have shown that in T-cells exposed to an OA-rich
medium, the total monounsaturated fatty acyl content was
increased by 130% in PI, 100% in phosphatidylserine
(PS), 160% in phosphatidylcholine and 180% in phosp-
hatidylethanolamine (PE).120 Other researchers showed
that palmitic and oleic acids were found preferentially
incorporated into PC and the majority of the highly unsa-
turated fatty acid, AA, was incorporated into both PE and
the PI-PS group.121 In any case, during the dietary intake
of n-9 fatty acids, the cells will be enriched with this fatty
acid and a cell activation via PLC- or PLD-pathway may
give rise to the production of DAG in the conjugated form
of 1-stearoyl-2-oleyl-sn-glycerol (SOG), as it has been
previously reported in human Jurkat T-cells.122

Several reports have proposed that the fatty acids that
make up the phosphoinositides, function as intracellular
modulators of the activity of certain enzymes.105 The best
characterized function of receptor-stimulated DAG
production is activation of PKC, although not all DAG
species are capable of activating this enzyme.123 In this
sense, Madani et al. have demonstrated differences in
modulating the activity of several isoforms of PKC by
two polyDAG: SEG (DAG-containing EPA) and SDG
(DAG-containing DHA).124 Additionally, some channels
in the membrane that can be directly activated by DAG
have been recently identified (see below).

EICOSANOIDS PRODUCTION

Oleic acid could exert its antiinflamatory effect by
influencing AA metabolism. This PUFA is in turn the

Role of oleic acid in immune system;

mechanism of action; a review
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precursor of the eicosanoids proinflamatory agents.
Thus, competitive substitution of membrane arachido-
nate by n-9 fats could be associated with modifications
in the rate of arachidonic-derived metabolites release,
suggesting that as a mechanism for the OA induced-
immune modulatory pathways. In this sense, evidences
show that the n-9 diet significantly decreased both
mucosal arachidonate concentrations and AA:EPA
ratio as compared with the n-6 diet, which may in part
account for the observed beneficial effect of olive oil.125

SIGNALING PATHWAYS MODULATED BY OLEIC ACID

Fatty acids can modulate several signaling path-
ways, from the antigen presentation to the T cell proli-
feration. In the present review we will focus on the role
of OA in Ca2+ signals.

Ca2+ SIGNALING

Most of the studies available in immunocompetent
cells evaluate the effect of polyunsaturated n-6 and n-3
on Ca2+ signaling. Although OA has been reported to
alter Ca2+ homeostasis in several cell lines,126,127 little is
known about its effects concerning T cells.

Oleic acid has been demonstrated to induce increa ses in
[Ca2+]i in several cell lines.91,126-128 By contrast, other studies
have demonstrated that OA inhibit the agonist-induced
extracellular Ca2+ influx in T cells,47,129,130 and other cell
types.131,132 With regards to the mechanisms behind these
alterations in Ca2+ homeostasis, Gamberuci et al. have
demonstrated that OA discharges almost all the thapsi-
gargin-sensitive Ca2+ pool. In addition, neither pretreat-
ment of the cell with the G-protein interfering agent
pertussis toxin nor with a phospholipase inhibitor prevents
the induction of Ca2+ mobilization by OA.84 Researching
further the mechanisms by which such Ca2+-mobilizing
effects occur, these authors suggest that an increased Ca2+

efflux from thapsigargine-sensitive pool is more likely to
occur than an inhibition of active Ca2+ transport into the
same pool. However, although these data supported those
reported by Chow and Jondal for PUFAs, these resear-
chers did not find similar results concerning OA.46

In addition, Ca2+ channels such as TRPC3, TRPC6
and TRPC7 have been reported to be activated by the
exogenous addition of DAG.133-136 Aires et al. have
studied the effect of a DAG-containing DHA in the
activation of TRPC channels.137 Results from our group
have recently reported a role of a DAG containing OA
in the activation of TRPC6 and TRPC3 channels in
human Jurkat T cells.138

OTHER MECHANISMS

One emerging view is that the potential mechanism
by which PUFAs influence immune cell function could

be related to its ability to modulate lipid rafts. Lipid
rafts are postulated to be specialized lipid microdo-
mains rich in sphingolipids and cholesterol. They are
involved in serving as platforms for cellular signaling
events.139-142 For instance, the ER Ca2+ sensor STIM1
(Stromal Interaction Molecule 1) has been reported to
interact with Orai and TRPC in these specific parts of
the membrane, leading to the extracellular Ca2+

entry.143,144 It has been recently described that the
disruption of lipid rafts avoids the interaction between
STIM1 and Orai1.145,146

The supposed stability of lipid rafts is attributed to
the favorable interaction between the amide of the
sphingosine backbone and the hydroxyl of an adjacent
sphingolipid as well as hydrogen bonding between the
3-OH of cholesterol and the sphingosine amide. Satu-
rated acyl chains are thought to promote the formation
of rafts since they are more extended than unsaturated
chains and packed well amongst themselves and with
cholesterol. Previous reports have shown that PUFA
can modify the composition of lipid rafts.147-151 In this
sense, several researchers have demonstrated that T
cells submitted to PUFA treatments, results in an inhi-
bition of different signal transduction pathways.152-156

However, most of the studies in literature involved
PUFA and OA disruption of lipid rafts is still unclear.

Oleic acid in clinical nutrition

As we have reported above, diets containing a high
amount of olive oil in experimental animals, produce a
suppression of lymphocyte proliferation, an inhibition
of cytokine production and a reduction in NK cell acti-
vity.57,59,60,68 Despite these alterations in immune func-
tions, it has been reported that olive oil-rich diets are
not as immunosuppressive as fish oil diets. An important
aspect in inmunonutrition is focused on the relationship
between fats, the immune system and host resistance to
infection, particularly when these nutrients are supplied
to patients at risk of sepsis. Different studies have
determined that olive oil-rich diets do not impair the
host resistance to infection.157,158 Therefore, olive oil
constitutes a suitable fat that may be applied in clinical
nutrition and administered to critically ill patients. 

The current knowledge of these aspects and the
beneficial effect attributed to an olive oil-rich paren-
teral emulsion (Clinoleic) have been recently reported
elsewhere.157-160
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