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THE MODERATE DEVIATIONS PRINCIPLE FOR THE

TRAJECTORIES OF COMPOUND RENEWAL PROCESSES ON

THE HALF�LINE

A.V. LOGACHOV, A.A. MOGULSKII

Abstract. The moderate deviations principle is obtained for the trajecto-
ries of compound renewal processes on the half � line under the Cram�er
moment condition.
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1. Introduction. The main theorem

Let's de�ne the objects under study. We consider an initial random vector

ξ1 = (τ1, ζ1)

and a sequence of identically distributed random vectors

ξ = (τ, ζ), ξ2 = (τ2, ζ2), ξ3 = (τ3, ζ3), . . .

We will assume that the vectors ξ1, ξ, ξ2, ξ3, . . . are independent and τ > 0 a.s.,
τ1 ≥ 0 a.s.

Let's put T0 = Z0 = 0 and denote

Tn :=

n∑
j=1

τj , Zn :=

n∑
j=1

ζj , Sn :=

n∑
j=1

ξj = (Tn, Zn) for n ≥ 1.

We de�ne random processes

η(t) := min{k ≥ 0 : Tk ≥ t}, ν(t) := max{k ≥ 0 : Tk < t}, η(0) = ν(0) = 0
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for t ≥ 0. It is clear that for t > 0

ν(t) = η(t)− 1.

The �rst compound renewal process (CRP) Z(t), t ≥ 0 is de�ned as

Z(t) := Zν(t) for t > 0, Z(0) = 0.

Along with the �rst CRP Z(t) we study the process

Y (t) := Zη(t) = Z(t) + ζη(t) for t > 0, Y (0) = 0, Y (0+) = ζ1,

which we call the second CRP.
CRP Z(t) and Y (t) occur in both applied and theoretical problems (see, for

example, [1, �0.1]). It is shown in [1, Chapters 1, 2] and [3] that if the corresponding
conditions are met, then the limit laws are the same for CRP Z(t) and Y (t) in the
domain of normal and moderate deviations. In the domain of large deviations (see
[1, 3 � 6]) this isn't true always.

Assume henceforth that Cram�er's condition holds in the following form:
[C0]. Ee

λ(τ+|ζ|) <∞, Eeλ(τ1+|ζ1|) <∞ for some λ > 0.
Moreover, we will assume that the random vector ξ = (τ, ζ) is nondegenerate,

i.e. for any b, c, d ∈ R, |b| + |c| 6= 0 the inequality P(bτ + cζ = d) < 1 is true. To
avoid repetition, we omit these two conditions in our main statements.

If the random vectors ξ1 and ξ have the same distribution, then we will call this
case homogeneous, if the distributions are di�erent, then inhomogeneous.

The standard, generally accepted CRPmodel assumes that the time of occurrence
of the �rst jump τ1 and its value ζ1 have a joint distribution di�erent, in general,
from the joint distribution (τ, ζ) (see, for example, [2]). This is implemented, for
example, for an CRP with stationary increments.

Denote for t ≥ 0

Z1(t) := Z(t)− at, Y1(t) := Y (t)− at,

Z2(t) := Z(t)− aζν(t), Y2(t) := Y (t)− aζη(t),
where a :=

aζ
aτ
, aζ := Eζ, aτ := Eτ .

Let's �x the function x = x(T ), such that

(1.1) lim
T→∞

x(T )√
T

=∞, lim
T→∞

x(T )

T
= 0.

Wherever it does not interfere with the explanation, the argument T will omit in
the function x(T ).

The main object of study is four families of processes

z1,T (t) :=
1

x
Z1(tT ), z2,T (t) :=

1

x
Z2(tT ), 0 ≤ t <∞;

y1,T (t) :=
1

x
Y1(tT ), y2,T (t) :=

1

x
Y2(tT ), 0 ≤ t <∞.

Usually, when normal and moderate deviations are studying (see, for example,
[1, Chapters 1, 2]), we deal with the families z1,T , y1,T , i.e. we choose f(t) = at
as the "centering function". We extend the class of situations in which the limit
theorems can be applied, by involving the families z2,T , y2,T in [3] and this paper.

This work is a continuation of the series of authors' works devoted to the
principles of large deviations (LDP) on the half � line [0,∞). Thus, the authors
have previously obtained: LDP on the half � line for the trajectories of random
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walks, processes with independent increments and solutions of stochastic di�erential
equations [4]; extended LDP on the half � line for trajectories of random walks and
processes with independent increments [5], [6]. We will be interested in the moderate
deviations principle (MDP) for the families of processes z1,T , z2,T , y1,T , y2,T on the
half � line t ∈ [0,∞). The MDP was obtained by us earlier in [3] for these processes
on the �nite segment. In particular, the results of [3] imply convergence

zi,T (t)→ 0, yi,T (t)→ 0 for any �xed t ≥ 0, i = 1, 2

in probability when T →∞.
We denote an arbitrary metric space (MS) by Xρ, the Borel σ � algebra of its

subsets by BXρ
, and the complement, closure, and interior of the set B by B, [B],

and (B), respectively.
Recall the necessary de�nitions (see, for example, [7]).

De�nition 1. A family of random processes sT satis�es LDP in MS Xρ with a
rate function (RF) I = I(f) : X → [0,∞] and the normalizing function (NF)
ψ(T ) : lim

T→∞
ψ(T ) = ∞, if for any c ≥ 0 the set {f ∈ X : I(f) ≤ c} is a compact

set in MS Xρ and for any set B ∈ BXρ
the following inequalities hold:

lim sup
T→∞

1

ψ(T )
lnP( sT ∈ B ) ≤ −I([B]),

lim inf
T→∞

1

ψ(T )
lnP( sT ∈ B ) ≥ −I((B)),

where I(B) = inf
y∈B

I(y) for B ∈ BXρ
, I(∅) =∞.

In what follows, the words "the family of random processes sT satis�es (I, ψ,Xρ)
� LDP" means that the family of random processes sT satis�es LDP in MS Xρ

with RF I = I(f) and NF ψ = ψ(T ).

De�nition 2. The families of random processes vT (t) and sT (t), whose trajectories

belong to MS Xρ, are equivalent from the viewpoint of LDP (vT
L.D.∼ sT ), if for any

ε > 0

lim sup
T→∞

1

ψ(T )
lnP (ρ(vT , sT ) > ε) = −∞.

It is easy to prove that if vT
L.D.∼ sT , MS Xρ is complete, and one of the families

of processes satis�es LDP, then the second family satis�es the same LDP (see, for
example, [7, theorem 4.2.13]).

We will use the following notations:
C[0, u] is the space of continuous functions on the segment [0, u] with the metric

ρu(f, g) = sup
t∈[0,u]

|f(t)− g(t)|
1 + t

;

C is the space of continuous functions on the half � line [0,∞) with the metric

ρ(f, g) = sup
t∈[0,∞)

|f(t)− g(t)|
1 + t

;

C0 ⊂ C is the class of functions f ∈ C, such that f(0) = 0 and lim
t→∞

f(t)
1+t = 0;

D[0, u] is the space of functions, which are continuous on the left and have limits
on the right on the segment [0, u], with uniform metric ρu;
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D is the space of functions, which are right continuous with left limits on the half �
line [0,∞) with a metric ρ;
AC0[0, u] is a set of functions, which are absolutely continuous on the segment [0, u]
and start from zero;
AC0 is a set of functions, which are absolutely continuous on half � line [0,∞) and
start from zero.

We will be interested in LDP on the space D, but due to the inseparability, the
Borel σ � algebra constructed by sets that are open relative to the metric ρ will
contain sets nonmeasurable for the probabilistic measure P, see [9, �18]. Therefore,
in what follows, we will consider the measure P on the sets that belong the σ �
algebra constructed by open cylindrical subsets of the space D, this approach is
used, for example, in [10], [11]. It can be shown that the closure and interior of
any such set in the space D will also belong to this σ � algebra. We will also need
the LDP in the space C, for this space the σ � algebra constructed by its open
cylindrical subsets coincides with the σ � algebra constructed by the sets that open
with respect to the metric ρ.

We denote by z̃1,T (t), z̃2,T (t), ỹ1,T (t), ỹ2,T (t) a continuous random polygons with
nodes at the points of jumps of processes z1,T (t), z2,T (t), y1,T (t), y2,T (t), i.e. for
i ∈ {1, 2}

z̃i,T (t) := zi,T (Tk−1+)+
t− Tk−1
Tk − Tk−1

(zi,T (Tk+)−zi,T (Tk−1+)), if t ∈ [Tk−1, Tk), k ∈ N;

ỹi,T (t) := yi,T (Tk−1+)+
t− Tk−1
Tk − Tk−1

(yi,T (Tk+)−yi,T (Tk−1+)), if t ∈ [Tk−1, Tk), k ∈ N.

Let's formulate the main result.

Theorem 1.1. 1) The families of stochastic processes z1,T , y1,T , z̃1,T (t), ỹ1,T (t)

satisfy (I1,
x2

T ,D) � LDP, where

I1(f) :=

{ aτ
2σ2

1

∫∞
0

(f ′(t))2dt, for f ∈ AC0,

∞, otherwise,

σ2
1 = D(ζ − aτ).
2) The families of stochastic processes z2,T , y2,T , z̃2,T (t), ỹ2,T (t) satisfy (I2,

x2

T ,D)
� LDP, where

I2(f) :=

{ aτ
2σ2

2

∫∞
0

(f ′(t))2dt, for f ∈ AC0,

∞, otherwise,

σ2
2 = Dζ.

Traditionally, the MDP is a statement of the LDP type in which the RF depends
only on the �rst two moments of the control vector (τ, ζ), and which is an extension
of the invariance principle in the domain of large deviations. It is easy to see, that
this statement is Theorem 1.1.

Theorem 1.1 will be proved in section 3. We will have obtained the MDP for
continuous versions of z̃1,T , ỹ1,T , z̃2,T , ỹ2,T before we obtain the corresponding
MDP for the families z1,T , y1,T , z2,T , y2,T . In the second section, we prove the
auxiliary statements.
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2. Auxiliary results

We denote the projection of the function f ∈ C on the space C[0, u] by

f (u) = f (u)(t) := f(t), t ∈ [0, u].

Let the family of the processes sT (t), T ≥ 0, t ∈ [0,∞) is de�ned on the space
C. We need the following theorem [4].

Theorem 2.1. Let the family of processes sT satis�es the conditions:

I. The family of processes s
(u)
T satis�es (Iu, ψ,C[0, u]) � LDP for all u ∈ (0,∞).

And for every function f ∈ C[0, u] there exists a function g = gf ∈ C0 such that

g(u) = f and equality

(2.1) Iv(g
(v)) = Iu(f);

holds for all v ≥ u.
II. The equality

lim
u→∞

sup
f∈B+

r

sup
t≥u

|f(t)|
1 + t

= 0,

holds for all r ≥ 0, where

B+
r := {f ∈ C : lim

u→∞
Iu(f

(u)) ≤ r}.

III. For every N <∞ and ε > 0 there exists M =MN,ε <∞ such that

lim
T→∞

1

ψ(T )
lnP

(
sup
t≥M

|sT (t)|
1 + t

> ε

)
≤ −N.

Then the family of processes sT satis�es the (I, ψ,C) � LDP, where

I(f) := lim
u→∞

Iu(f
(u)).

Let's explain condition (2.1), it means that any function f ∈ C[0, u] can be
continued for t > u so that the RF does not increase. It is natural to call the
function g = gf the most probable extension of the function f outside the segment
[0, u].

We note that in [4] Theorem 2.1 was proved for the integer parameter T = n ∈ N.
However, this proof is fully preserved for the case when parameter T > 0 is real.

We need the following lemma.

Lemma 2.1. z1,T
L.D.∼ z̃1,T , z2,T

L.D.∼ z̃2,T , y1,T
L.D.∼ ỹ1,T , y2,T

L.D.∼ ỹ2,T in MS D
with NF ψ(T ) = x2

T .

P r o o f. Let's prove that z1,T
L.D.∼ z̃1,T . The jumps of the process z1,T (t) occur

at time points Tk, k ∈ N. Since sup
t∈(Tk−1,Tk]

|z1,T (t)− z̃1,T (t)| is equal to |ζk|/x (the

absolute value of the jump at time Tk), then for any C > 0, ε > 0 we have

P (ρ(z1,T , z̃1,T ) > ε) = P

(
sup
t≥0

|z1,T (t)− z̃1,T (t)|
1 + t

> ε

)

≤ P

(
sup
k∈N

|ζk|
1 + Tk−1

> xε

)
≤ P

(
sup
k≤x
|ζk| > xε

)
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(2.2) +P

(
sup
k>x

|ζk|
1 + Tk−1

> xε

)
=: P1 +P2.

Let us estimate P1 from above. Using conditions [C0], (1.1) and Chebyshev
inequality, we obtain for su�ciently large T

P1 ≤ P
(
eλ|ζ1| > eλxε

)
+ (x− 1)P

(
eλ|ζ| > eλxε

)
(2.3) ≤ Eeλ|ζ1|

eλxε
+ (x− 1)

Eeλ|ζ|

eλxε
≤ cxe−λxε ≤ e−λxε2 ,

where c := max
(
Eeλ|ζ1|,Eeλ|ζ|

)
, the parameter λ > 0 from condition [C0]

1.
Let us �nd the upper estimate for P2. For any C > 0 we have

(2.4) P2 ≤
∑
k>x

P

(
|ζk|

1 + Tk−1
> xε

)
=:
∑
k>x

P2,k.

Let us estimate P2,k from above.

P2,k ≤ P

(
|ζk|

C(k − 1)
> xε, Tk−1 > C(k − 1)

)
+P (Tk−1 ≤ C(k − 1))

(2.5) ≤ P

(
|ζk|

C(k − 1)
> xε

)
+P (Tk−1 ≤ C(k − 1)) =: P2,1,k +P2,2,k.

Using condition [C0] and Chebyshev inequality, we obtain

(2.6) P2,1,k ≤ P
(
eλ|ζk| > eλεC(k−1)x

)
≤ Eeλ|ζk|

eλεC(k−1)x ≤ ce
−λεC(k−1)x.

Now we �nd the upper estimate for P2,2,k. Applying the Chebyshev inequality, we
have

P2,2,k = P (Tk−1 ≤ C(k − 1)) ≤ P

(
e
−
k−1∑
r=2

τr
≥ e−C(k−1)

)

(2.7) ≤ Ee
−
k−1∑
r=2

τr

e−C(k−1) ≤
bk−2

e−C(k−1) ,

where b := Ee−τ . Since P(τ > 0) = 1 we obtain b < 1. Therefore, choosing the
constant C := C(b) = − ln b

2 , using inequality (2.7), we have

(2.8) P2,2,k ≤
1

b
b
k−1
2 .

It follows from inequalities (2.5), (2.6) and (2.8) that

(2.9) P2,k ≤ ce−λεC(k−1)x +
1

b
b
k−1
2 ≤ 2

b
b
k−1
2

for su�ciently large T .
Applying inequalities (2.4) and (2.9), we obtain

(2.10) P2 ≤
2

b

∑
k>x

b
k−1
2 ≤ 2

b3/2
b
x
2

∞∑
k=0

b
k
2 ≤ 2C̃

b3/2
e−

x
2 ln( 1

b ),

1everywhere below, the parameter λ is used only in this sense, i.e. as a constant from condition
[C0]
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where C̃ :=
∞∑
k=0

b
k
2 .

It follows from inequalities (2.2), (2.3), (2.10) and condition (1.1) that for su�ciently
large T

P (ρ(z1,T , z̃1,T ) > ε) ≤ e−λxε2 +
2C̃

b3/2
e−

x
2 ln( 1

b ) ≤ he−xl,

where h := 1 + 2C̃
b3/2

, l := min(λε2 ,
1
2 ln(

1
b )).

Therefore, for any ε > 0 we have

lim sup
T→∞

T

x2
lnP (ρ(z1,T , z̃1,T ) > ε) ≤ − lim

T→∞

T

x
l = −∞.

The other equivalences are proved in a similar way.�

Remark 1. Obviously, Lemma 2.1 implies for any u ∈ [0,∞) the equivalences

z1,T
L.D.∼ z̃1,T , z2,T

L.D.∼ z̃2,T , y1,T
L.D.∼ ỹ1,T , y2,T

L.D.∼ ỹ2,T on MS D[0, u] with NF

ψ(T ) = x2

T .

The following assertion follows from Corollary 3.2 and Lemma 4.1 in [3].

Theorem 2.2. 1) For any u ∈ [0,∞) the families of random processes z1,T , y1,T

satisfy (I1,u,
x2

T ,D[0, u]) � LDP, where

I1,u(f) :=

{ aτ
2σ2

1

∫ u
0
(f ′(t))2dt, for f ∈ AC0[0, u],

∞, otherwise,

σ2
1 = D(ζ − aτ).
2) For any u ∈ [0,∞) the families of random processes z2,T , y2,T satisfy

(I2,u,
x2

T ,D[0, u]) � LDP, where

I2,u(f) :=

{ aτ
2σ2

2

∫ u
0
(f ′(t))2dt, for f ∈ AC0[0, u],

∞, otherwise,

σ2
2 = Dζ.

Remark 2. Since the trajectories of the processes z̃1,T , z̃2,T , ỹ1,T , ỹ2,T are almost
surely continuous, it follows from Remark 1 and Theorem 2.2 that for any u ∈ [0,∞)

the families of random processes z̃1,T , ỹ1,T satisfy (I1,u,
x2

T ,C[0, u]) � LDP, and the

families of random processes z̃2,T , ỹ2,T satisfy (I2,u,
x2

T ,C[0, u]) � LDP.

3. Proof of Theorem 1.1

P r o o f. It follows from Lemma 2.1 (see section 2) that it is su�cient to prove

that the families of random processes z̃1,T , ỹ1,T satisfy (I1,
x2

T ,C) � LDP, and the

families of random processes z̃2,T , ỹ2,T satisfy (I2,
x2

T ,C) � LDP.
It follows from Remark 2 (see section 2) that for any u ∈ [0,∞) random processes

z̃1,T , ỹ1,T satisfy (I1,u,
x2

T ,C[0, u]) � LDP, and the families of random processes z̃2,T ,

ỹ2,T satisfy (I2,u,
x2

T ,C[0, u]) � LDP. Therefore, it is su�cient to verify conditions
I�III of Theorem 2.1 (see section 2).

It is easy to see that condition I is met, as a function gf one can choose

g(t) =

{
f(t), for t ∈ [0, u],
f(u), for t ∈ (u,∞).
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Let's check condition II for the functional I1,u (it is de�ned in Theorem 2.2 of
Section 2), i.e. let us show that for any r ≥ 0

lim
u→∞

sup
f∈B+

r

sup
t≥u

|f(t)|
1 + t

= 0,

where

B+
r := {f ∈ C : lim

u→∞
I1,u(f

(u)) ≤ r}.

Using the Cauchy � Schwarz inequality, we obtain

lim
u→∞

sup
f∈B+

r

sup
t≥u

|f(t)|
1 + t

= lim
u→∞

sup
f∈B+

r

sup
t≥u

1

1 + t

∣∣∣∣∫ t

0

f ′(s)ds

∣∣∣∣
≤ lim
u→∞

sup
f∈B+

r

sup
t≥u

t1/2

1 + t

(∫ t

0

(f ′(s))2ds

)1/2

≤ lim
u→∞

sup
f∈B+

r

1

u1/2

(
sup
t≥u

2σ2
1

a
I1,t(f

(t))

)1/2

= lim
u→∞

sup
f∈B+

r

√
2σ1√
au1/2

( lim
u→∞

I1,u(f
(u)))1/2 ≤ lim

u→∞

√
2rσ1√
au1/2

= 0.

Condition II for the functional I2,u (it is de�ned in Theorem 2.2 of Section 2) can
be veri�ed in a completely similar way.

Let's check condition III for the family of processes z̃1,T , i.e. show that for any
N <∞ and ε > 0 there exists M =MN,ε <∞ such that

lim
n→∞

T

x2
lnP

(
sup
t≥M

|z̃1,T (t)|
1 + t

> ε

)
≤ −N.

We will consider the case when the CRP is homogeneous. We will have

P

(
sup
t≥M

|z̃1,T (t)|
1 + t

> ε

)
≤

∞∑
k=[M ]+1

P

(
sup

t∈[k−1,k]

|z̃1,T (t)|
1 + t

> ε

)

(3.1) ≤
∞∑

k=[M ]+1

P

(
sup
t∈[0,k]

|z̃1,T (t)|
k

> ε

)
=:

∞∑
k=[M ]+1

Pk.

Let us estimate Pk from above. Since a polygon can reach its maximum on the
segment only at nodes, we will have

Pk ≤ P

(
sup
t∈[0,k]

|Z(tT )− atT | > εkx

)
= P

(
sup
t∈[0,k]

|Z(tT )± aζν(tT )− atT | > εkx

)

≤ P

(
sup
t∈[0,k]

|Z(tT )− aζν(tT )| >
εkx

2

)

(3.2) +P

(
sup
t∈[0,k]

∣∣∣∣ν(tT )− 1

aτ
tT

∣∣∣∣ > εkx

2|aζ |

)
=: P1,k +P2,k.

Now we �nd the upper estimate for P1,k. For any C > 0 we have

P1,k ≤ P

(
max

1≤r≤[CT ]

∣∣∣∣ r∑
j=1

(ζj − aζ)
∣∣∣∣ > εkx

2
, ν(kT ) ≤ CT

)

(3.3) +P(ν(kT ) > CT ) =: P1,1,k +P1,2,k.
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First, let's �nd the upper estimate for P1,2,k. Applying the Chebyshev inequality,
we obtain

P1,2,k = P (ν(kT ) > CT ) ≤ P
(
T[CT ] < kT

)
(3.4) = P

(
e

[CT ]∑
r=1

τr
< ekT

)
= P

(
e
−

[CT ]∑
r=1

τr
> e−kT

)
≤ (Ee−τ )[CT ]

e−kT
.

Since P(τ > 0) = 1, we will have c := Ee−τ < 1. Therefore, by choosing a constant

(3.5) C := C(c, k) = − 3k

ln c
,

using inequality (3.4), we obtain

(3.6) P1,2,k ≤
c−

2kT
ln c

e−kT
= e−kT .

Now let us estimate P1,1,k from above. We will have

P1,1,k ≤ P

(
max

1≤r≤[CT ]
exp

{∣∣∣∣ r∑
j=1

(ζj − aζ)
∣∣∣∣}

> exp

{
εkx

2

})
≤ P

(
max

1≤r≤[CT ]
e

r∑
j=1

(ζj−aζ)
> e

εkx
2

)

(3.7) +P

(
max

1≤r≤[CT ]
e
−

r∑
j=1

(ζj−aζ)
> e

εkx
2

)
=: P1,1,1,k +P1,1,2,k.

Let us �nd an upper estimate for P1,1,1,k. Since the random variables ζ1, . . . , ζ[CT ]

are independent and satisfy condition [C0], it is easy to see that for any l ∈ [0, λ]
the sequence

M(r) :=
e
l
r∑
j=1

(ζj−aζ)

Ee
l
r∑
j=1

(ζj−aζ)
, 1 ≤ r ≤ [CT ]

is a positive martingale and EM(r) = 1.
Let's denote b(l) := Eel(ζ−aζ). Using Jensen's inequality, we obtain

(3.8) b(l) = Eel(ζ−aζ) ≥ eEl(ζ−aζ) = 1.

Applying inequality (3.8) and Dub's inequality (see [8] Theorem 3.2 on p. 317), we
will have
(3.9)

P1,1,1,k ≤ P

(
max

1≤r≤[CT ]
M(r) >

e
lεkx

2

(b(l))[CT ]

)
≤ (b(l))[CT ]EM([CT ])

e
lεkx

2

=
(b(l))[CT ]

e
lεkx

2

.

Let's choose l := x
T
√
k
and �nd an upper estimate for b(l). We will have

b(l) = 1 +E

∞∑
r=2

(ζ − aζ)rlr

r!
≤ 1 +

l2

2
E(ζ − aζ)2e|ζ−aζ |l.

It follows from conditions [C0] and (1.1), that there exists a constant h > 0 such
that for all su�ciently large T the inequality

(3.10) b(l) ≤ 1 +
hl2

2
= 1 +

hx2

2T 2k
.
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will be satis�ed. It follows from (3.5) and inequality (3.10) that

(3.11) (b(l))[CT ] ≤
(
1 +

hx2

2T 2k

)[CT ]

∼ e− 3hx2

2T ln c when T →∞.

By choosing M >
(

6h
ε ln c

)2
, using inequalities (3.9) and (3.11), we have for k ≥

[M ] + 1 and large enough T

(3.12) P1,1,1,k ≤ 2e−
√
kεx2

4T .

The upper estimate for P1,1,2,k is obtained in a completely similar way and has the
same form. Therefore, it follows from inequalities (3.7), (3.12) that

(3.13) P1,1,k ≤ 4e−
√
kεx2

4T .

It follows from condition (1.1), inequalities (3.3), (3.6), (3.13) that for su�ciently
large T

(3.14) P1,k ≤ e−kT + 4e−
√
kεx2

4T ≤ 5e−
√
kεx2

4T .

Let's �nd the upper estimate for P2,k.

P2,k ≤ P

(
sup
t∈[0,k]

∣∣∣∣ν(tT )− 1

aτ
tT

∣∣∣∣ > εkx

2|aζ |
, ν(kT ) ≤ CT

)
(3.15) +P(ν(kT ) > CT ) =: P2,1,k +P1,2,k.

Let's estimate P2,1,k from above. Let us denote

A :=

CT⋂
r=1

{
|Tr − aτr| ≤

εkxaτ
3|aζ |

}
.

It is easy to see that for su�ciently large T

A ∩ {ν(kT ) ≤ CT}

⊆
{
∀ t ∈ [0, k] ν(tT ) ≤ tT

aτ
+

εkx

3|aζ |
, ν(tT ) ≥ tT

aτ
− εkx

3|aζ |
− 1

}
∩ {ν(kT ) ≤ CT}

⊆
{

sup
t∈[0,k]

∣∣∣∣ν(tT )− 1

aτ
tT

∣∣∣∣ ≤ εkx

2|aζ |

}
∩ {ν(kT ) ≤ CT} =: B ∩ {ν(kT ) ≤ CT}.

Hence A ∩ {ν(kT ) ≤ CT} ⊇ B ∩ {ν(kT ) ≤ CT}, and therefore

P2,1,k ≤ P(A, ν(kT ) ≤ CT ) ≤ P

(
max

1≤r≤[CT ]

∣∣∣∣ r∑
j=1

(τj − aτ )
∣∣∣∣ > εkxaτ

3|aζ |

)
.

By applying arguments completely similar to those that we used to estimate the
term P1,1,k, we obtain

(3.16) P2,1,k ≤ 4e
−
√
kεaτx

2

6T |aζ | .

It follows from condition (1.1), inequalities (3.6), (3.15) and (3.16) that for su�ciently
large T

(3.17) P2,k ≤ e−kT + 4e
−
√
kεaτx

2

6T |aζ | ≤ 5e
−
√
kεaτx

2

6T |aζ | .
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Using condition (1.1), inequalities (3.1), (3.2), (3.14) and (3.17), assuming v :=
min( 14 ,

aτ
6|aζ | ), we obtain for su�ciently large T and M

P

(
sup
t≥M

|z̃1,T (t)|
1 + t

> ε

)
≤ 5

∞∑
k=[M ]+1

(
e−
√
kεx2

4T + e
−
√
kεaτx

2

6T |aζ |

)
≤ 10

∞∑
k=[M ]+1

e−
√
kεvx2

T

(3.18) ≤ 10e−
√
Mεvx2

2T

∞∑
k=1

e−
√
kεvx2

2T ≤ 10e−
√
Mεvx2

T

∞∑
k=1

e−
√
k =: 10C̃e−

√
Mεvx2

T ,

where C̃ :=
∞∑
k=1

e−
√
k. It follows from inequality(3.18) that for any

M ≥ max
(( 6h

ε ln c

)2
,
(N
εv

)2)
the inequality

lim
n→∞

T

x2
lnP

(
sup
t≥M

|z̃1,T (t)|
1 + t

> ε

)
≤ −
√
Mεv ≤ −N

is satis�ed. Thus, condition III is met for the homogeneous process z̃1,T (t).
The inhomogeneous case is considered completely similar, we should put

b(l) := max
(
Eel(ζ1−aζ1 ),Eel(ζ−aζ)

)
,

and replace the right-hand side of inequality (3.4) by (Ee−τ )[CT ]−1

e−kT
.

Condition III is veri�ed similarly for the process z̃2,T (t), but the proof is simpli�ed
since we do not need to estimate P2,k from above.

Condition III is also veri�ed in a similar way for the processes ỹ1,T (t), ỹ2,T (t),
but some estimated sums will have one more term.�

The authors are grateful to F. Klebaner who drew their attention to the problem
of proving LDP for the trajectories of random processes on the half � line.

References

[1] A.A. Borovkov, Compound renewal processes, Moscow, 2020.
[2] A.A. Borovkov, Asymptotic analysis of random walks: light-tailed distributions, Cambridge

University Press, Cambridge, 2020. Zbl 1444.60002
[3] A.V. Logachov, A.A. Mogulskii, Anscombe-type theorem and moderate deviations for

trajectories of a compound renewal process, J. Math. Sci., New York, 229:1 (2018), 36�50.
Zbl 1387.60132

[4] F.C. Klebaner, A.V. Logachov, A.A. Mogulskii, Large deviations for processes on half-line,
Electron. Commun. Probab., 20, Paper 75 (2015), 1�14. Zbl 1329.60055

[5] F.C. Klebaner, A.A. Mogulskii, Large deviations for processes on half-line: random walk and

compound Poisson, Sib. �Electron. Mat. Izv., 16 (2019), 1�20. Zbl 1420.60039
[6] F.C. Klebaner, A.V. Logachov, A.A. Mogulskii, Extended large deviation principle for

trajectories of processes with independent and stationary increments on the half-line, Probl.
Inf. Transm., 56:1 (2020), 56�72. Zbl 1447.60056

[7] A. Dembo, O. Zeitouni Large deviations techniques and applications, Springer, New York,
1998. Zbl 0896.60013

[8] J.L. Doob, Stochastic processes, Wiley, New York, 1953. Zbl 0053.26802
[9] P. Billingsley, Convergence of probability measures, John Wiley and Sons, New York etc.,

1968. Zbl 0172.21201
[10] J. Feng, T. Kurtz, Large deviations for stochastic processes, Mathematical Surveys and

Monographs, 131, AMS, Providence, 2006. Zbl 1113.60002



1200 A.V. LOGACHOV, A.A. MOGULSKII

[11] A.D. Wentzell, Limit theorems on large deviations for Markov stochastic processes,
Mathematics and Its Applications. Soviet Series, 38, Kluwer, Dordrecht etc., 1990. Zbl
0743.60029

Artem Vasilhevich Logachov

Dep. of Computer Science in Economics, Novosibirsk State Technical University

20, K. Marksa ave.,

Novosibirsk, 630073, Russia

Email address: omboldovskaya@mail.ru

Anatolii Alfredovich Mogulskii

Lab. of Probability Theory and Math. Statistics, Sobolev Institute of Mathematics,

4, Koptyuga ave.,

Novosibirsk, 630090, Russia

Novosibirsk State University,

1, Pirogova str.,

Novosibirsk, 630090, Russia

Email address: mogul@math.nsc.ru


