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The transportation sector is one of the primary contributors to the global CO₂ emissions. Recent research 

suggests that ammonia is a potential alternative automotive fuel due to its favorable storage properties and the 

mature infrastructure for its production and distribution. However, there remains the question of whether 

ammonia can be a sustainable alternative automotive fuel on a life-cycle basis. The energy-intensive production 

process and the need for a secondary fuel are two major issues with the use of ammonia. A comparative well-

to-wheel life cycle assessment of selected ammonia-based fuel cycles is done. Two conventional fossil fuel-

based ammonia production processes and two proposed biomass-based processes are considered, namely: 

steam reforming, partial oxidation, a cyanobacterial (Anabaena) process, and a willow-based (Salix) process. 

The end-use is propulsion of a light-duty internal combustion engine vehicle, and the functional unit is 1 km of 

distance driven by a such a vehicle. Three types of secondary fuels are considered: gasoline, diesel, and 

dimethyl ether. Using the carbon and nitrogen footprint as the primary environmental performance indicators, 

fuzzy life cycle optimization is applied to determine the optimal system configuration. Results show that ammonia 

produced from the biomass-based process with dimethyl ether as the secondary fuel results in the best well-to-

wheel fuel pathway. Sensitivity analysis shows that the end-user vehicle fuel economy has the most significant 

influence on the optimal solution, which means that concerted efforts to improve ammonia-based fuel cycles 

must be focused on the end-use phase. 

1. Introduction 

Ammonia is one of the world’s most important commodity chemicals. It is produced primarily via the energy-

intensive Haber-Bosch process, although biomass-based processes such as the use cyanobacteria (Razon, 

2014a) and willow (Ahlgren et al., 2008) have been proposed. Razon (2014b) discussed the sustainability issues 

arising from the nitrogen footprint of large-scale ammonia production, which is essential for fertilizer production. 

Ammonia has also been speculatively identified as a potential automotive fuel, due to its favorable 

thermodynamic properties and the mature infrastructure for its handling and storage (Zamfirescu and Dincer, 

2008). Engine tests have been performed to determine the emission characteristics of ammonia paired with 

gasoline (Ryu et al., 2014), dimethyl ether (DME) (Gross and Kong, 2013), and diesel (Reiter and Kong, 2011) 

when used as a fuel in vehicles propelled by internal combustion engines (ICEV). Common issues have been 

identified in these tests, namely, reduced combustion efficiency (due to the narrow flammability limit, low flame 

speed, and high combustion temperature of ammonia) and a notable increase in NOx and NH₃ emissions in the 

exhaust gas.  

Assessment of the sustainability of ammonia-based transportation systems has to be done based on a life cycle 

perspective. For example, a comparative life cycle assessment (LCA) of selected ammonia production methods 

has been done previously (Bicer, 2016), using a “cradle to gate” scope (i.e., without consideration of end use). 

Different environmental issues in LCA are now also known as “footprints” which address specific types of 

impacts; for example, carbon footprint is used as a metric to quantify climatic impact of a system (Čuček et al., 

2012). Despite its broad applicability, LCA has the inherent limitation that it can only be used to analyze a system 

of predefined configuration. Life cycle optimization (LCO) has been proposed as an extension to identify the 

environmentally optimal configuration of a process system. The earliest form of LCO made use of a linear 

programming (LP) formulation (Azapagic and Clift, 1998), which was soon followed by a multi-objective LP 
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(MOLP) extension (Azapagic and Clift, 1999). A fuzzy LP (FLP) formulation was proposed by Tan et al. (2008) 

based on a linear algebra computational framework for LCA (Heijungs and Suh, 2002); this approach was later 

applied to biofuel supply chains (Tan et al., 2009). More recently, LCO has been used for optimizing bioenergy 

systems (Čuček et al., 2011), shale gas supply chains (Gao and You, 2015) and petrochemical complexes 

(González Castaño et al., 2015). The combined framework may be extended to include sensitivity analysis as 

a tool to further support the decision-making.  

In this work, the LCO model proposed by Tan et al. (2008) is applied to the case of ammonia automotive fuel, 

using carbon footprint and nitrogen footprint as environmental indicators to evaluate selected well-to-wheel fuel 

cycles. The succeeding sections are as follows. Section 2 covers the system description and problem statement, 

followed by discussion of the model formulation in Section 3, the results in Section 4, and lastly, conclusions in 

Section 5.  

2. System description and problem statement 

In this study, two commercial, fossil fuel-based processes are considered, namely, steam reforming (SMRF) 

and partial oxidation (PROX). The steam reforming process uses natural gas as feedstock and consists of the 

following steps: desulfurization, primary and secondary reforming, CO shift, CO2 removal, and methanation. The 

partial oxidation uses heavy oil as feedstock, and includes the following steps: oxidation, sulfur removal, CO-

shift, CO2 removal, and nitrogen wash. Both of these processes are highly energy-intensive due to the need for 

fossil fuel inputs. In addition, two biomass-based processes are included as options, namely, the cyanobacterial 

process (ANAB) and the willow-based process (SALI). The cyanobacterial process was based from the work of 

Razon (2014) and involves the cultivation of Anabaena in raceway ponds, biogas production, separation into 

biogas and digestate, and conversion from digestate to ammonia. The data for willow-based process was 

derived from the works of Ahlgren et al. (2008). In their work, ammonium nitrate is produced from Salix (short 

rotation willow coppice) and cereal straw. The data from Salix was chosen as representative as it has the lower 

impacts.  The process diagram by Ahlgren et al. (2008) was modified so that the final product is liquid ammonia 

instead of ammonium nitrate. The ammonium nitrate production and nitric acid production processes were 

removed, and replaced with compression or liquefaction of gaseous ammonia. The whole process may be 

summarized into two major processes: biomass production (consisting of planting, managing, and harvesting) 

and ammonia production (consisting of gasification, gas cleaning, H2 separation, and ammonia production). 

Both biomass-based systems are significantly less fossil energy-intensive than the conventional processes, 

since much of the energy input comes in the form of solar energy absorbed during biomass growth. Regardless 

of the type of production process, the ammonia produced is delivered and distributed via conventional freight 

transport (APMT); this is an important assumption since the mode of transport in the ammonia supply chain 

determines part of its carbon footprint.  

Since pure ammonia is not suitable as fuel for current ICEVs, three types of conventional fuels are paired with 

ammonia in this study: gasoline, diesel, and DME. The production of gasoline (GAPR) and diesel (DIPR) include 

the following processes: extraction of feedstock (crude oil), feedstock transport, and refining. The DME 

production chain includes feedstock extraction (natural gas), steam production, and DME synthesis from CO 

and H2O. Similarly, the fuels are delivered and distributed via freight transport that relies on diesel fuel. Diesel 

transport is labeled as DITR, dimethyl ether transport is labeled as DMTR and gasoline transport is labeled as 

GATR. The fuels are used in conjunction with ammonia for light-duty ICEVs, whose emission characteristics are 

based on the experimental results of Reiter and Kong (2011) for ammonia-diesel (DIVO), Gross and Kong (2013) 

for ammonia-DME (DMVO), and Ryu et al. (2014) for ammonia-gasoline (GAVO). The proportions of fuels are 

based on the conditions of highest engine performance reported in these works. The emissions that were 

considered in the analysis were CO2, CH4, N2O, NOx, and NH3, and all the fossil energy inputs are expressed 

in terms of primary energy (PE). Note that the latter excludes solar energy inputs for biomass growth.  

Given these system components, the problem is to determine the optimal system configuration that minimizes 

the carbon and nitrogen footprints per functional unit (i.e., per unit distance travelled by a representative end-

user ICEV). 

3. Model formulation 

The LCO model is formulated as follows: 

max  (1) 

subject to:  
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As = f (2) 

Bs = g (3) 

Qg = h (4) 

(h – hU) ≤ (hL – hU)  (5) 

where is the fuzzy dimensionless degree of goal satisfaction, A is the technology matrix, f is the functional unit 

vector, s is the scaling vector, B is the intervention matrix, g is the inventory vector, h is the impact vector, and 

Q is the characterization matrix. The vectors hL and hU signify the lower and upper limits of h. The lower limit 

may be set at zero for an idealized system with no footprint. The objective function seeks to maximize  as given 

by Eq(1); thus, the model optimizes the degree to which fuzzy environmental impact limits are met on a 

dimensionless scale ranging from 0 to 1. Energy and material balances in the supply chain within the system 

are defined by Eq(2), while mass balances for emissions are given by Eq(3). The flows of emissions are 

translated to corresponding footprints using Eq(4). Finally, the fuzzy limits for the footprints are defined by Eq(5). 

Note that the value  of approaches 1 as the values in h approach those of corresponding elements in hL. A 

more detailed description of this formulation can be found in Tan et al. (2008). Note that the model is linear, so 

that no computational issues arise in seeking a global optimum. In this work, the model is implemented using 

the optimization software LINGO 14.0. 

4. Case study and results 

As described in Section 2, the system is comprised on four ammonia production options and three vehicle end-

use options. The functional unit is 1 km distance driven by a representative light-duty ICEV, which is a common 

reference value used in the LCA of automotive fuel pathways. The input-output data (matrices A and B) of 

commodities (i.e., intermediate and products) and emissions are given in Table 1. 

Table 1: Input and output flows of commodities and emissions. 

Process Outflows  Inflows  Emissions  Reference 

ANAB 1 kg Ammonia 5.1 MJ PE 0.06 kg CO2 Razon (2014) 

SALI 1 kg Ammonia 1.1 MJ PE 0.08 kg CO2; 0.003 kg CH4;0.001 kg 

N2O; 0.0009 kg NOx; 0.0006 kg NH3 

Ahlgren et al. (2008) 

SMRF 1 kg Ammonia 11.09 MJ PE 1.59 kg CO2; 0.00004 kg CH4; 0.002 

kg N2O; 0.0007 kg NOx 

Ahlgren et al. (2008) 

PROX 1 kg Ammonia 48.8 MJ PE 2.9 kg CO2 Ecoinvent (2016) 

APMT 1 kg Ammonia 0.185 MJ PE 0.0025 kg CO2 Ecoinvent (2016)  

DIPR 25.2 kg Diesel 188.5 MJ PE 9.1 kg CO2; 0.01 kg CH4; 0.0001 kg 

N2O; 0.01 kg NOx 

Wang (2001) 

DMPR 36.7 kg DME 1937.8 MJ PE 98.6 kg CO2; 0.01 kg CH4; 0.001 kg 

N2O; 0.09 kg NOx 

Wang (2001) 

GAPR 24.2 kg Gasoline 252.3 MJ PE 13.0 kg CO2; 0.02 kg CH4; 0.0002 kg 

N2O; 0.02 kg NOx 

Wang (2001) 

DITR 25.2 kg Diesel 25.2 kg Diesel 1.37 kg CO2; 0.002 kg CH4; 0.00002 

kg N2O; 0.006 kg NOx 

Wang (2001) 

DMTR 36.7 kg DME 36.7 kg DME 2.54 kg CO2; 0.003 kg CH4; 0.00002 

kg N2O; 0.006 kg NOx 

Wang (2001) 

GATR 24.2 kg Gasoline 24.2 kg Gasoline 1.5 kg CO2; 0.002 kg CH4; 0.00002 kg 

N2O; 0.006 kg NOx 

Wang (2001) 

DIVO 1.6 km  0.05 kg NH₃ 

0.01 kg Diesel 

0.1 kg CO2; 0.001 kg NOx; 0.000007 

kg NH3 

Reiter and Kong 

(2011) 

DMVO 1.6 km  0.03 kg NH₃ 

0.02 kg DME 

0.003 kg CO2; 0.0005 kg NOx; 0.0005 

kg NH3 

Gross and Kong 

(2013) 

GAVO 

 

1.6 km  0.06 kg NH₃ 

0.02 kg Gasoline 

0.2 kg CO2; 0.0002 kg CH4; 0.00001; 

kg N₂O; 0.0005 kg NOx; 0.005 kg NH3 

Ryu et al. (2014) 

The life cycle system has excess degrees of freedom in the technology matrix A due to the presence of 

alternative technological options. It is necessary for the model to balance the carbon footprint and nitrogen 
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footprints as potentially conflicting environmental objectives. The mass ratios of fuels in the vehicle operation 

phase is based on the most favorable operating condition of the vehicle i.e. conditions with highest engine 

performance and/or highest energy production per mass of fuel based from the experimental result of Reiter 

and Kong (2011), later extended by Gross and Kong (2013), and recently by Ryu et al. (2014). The scope of 

this work excludes the infrastructure and ammonia fugitive emissions (Bicer et al., 2016) in the ammonia 

production phase. Such considerations may result in similar nitrogen footprints for all options regardless of the 

ammonia production process. Table 2 shows the values in the characterization matrix Q.   

Table 2: LCO model characterization factors. 

Footprint 
Environmental Emissions 

CO2 CH4 N2O NOx NH3 

Carbon 1 25 298 0 0 

Nitrogen 0 0 0.64 0.37 0.82 

 

Solving the model gives a global index of satisfaction of 𝜆 = 0.79. This result indicates that Salix-based ammonia 

paired with DME offers the best compromise in terms of carbon and nitrogen footprint reduction. The total flows 

of primary energy and emissions per functional unit are summarized in Table 3. For this optimal pathway, the 

carbon footprint is determined to be 27.13 g CO2 equivalent per km while the nitrogen footprint is 0.49 g reactive 

nitrogen per km. Sensitivity analysis suggests that vehicle fuel economy is a more significant factor than the 

efficiency of upstream processes that comprise the ammonia production system. This result means that it is 

essential for more data on engine tests to be collected, especially under varying load conditions. Acquisition of 

such data can improve the precision of the results of the LCO in the future. In addition, improvements in the 

efficiency of upstream production chain (e.g., through the application of Process Integration methodology), will 

also help reduce the carbon and nitrogen footprints of ammonia-based systems, which has been documented 

for the case of fossil fuel-based processes (Ruddock et al., 2003), while similar opportunities exist to apply 

Process Integration methodology to optimize biomass-based ammonia production.  

Table 3: Optimal emission and resource flows per functional unit. 

Resource or pollutant Total flowrate per functional unit 

Primary Energy 0.4 MJ/km 

CO2 14.72 g/km 

CH4 0.07 g/km 

N2O 0.04 g/km 

NOx 0.40 g/km 

NH3 0.38 g/km 

 

Figure 1 shows the carbon footprint of selected fuel cycles, where BASE represents the option when only pure 

diesel, DME, or gasoline is used during the vehicle operation phase. The use of ammonia-DME in the vehicle 

operation stage results in the lowest carbon footprint, followed by ammonia-diesel and ammonia-gasoline fuel, 

regardless of the choice of ammonia production. The addition of ammonia reduces the amount of hydrocarbon 

fuel needed to achieve the same mechanical power output; CO2 emissions are reduced in the exhaust gas. It 

also offers the most notable reduction in carbon footprint when combined with DME. Figure 1 also shows that 

Salix process for ammonia production offers the lowest carbon footprint, followed in ascending order by the 

Anabaena process, steam reforming and partial oxidation. The results show that, in terms of carbon footprint 

reduction, a shift to biomass-based ammonia production is preferable, while fossil fuel-based ammonia gives 

little benefit. However, the use of ammonia also results in an increase in nitrogen footprint for all fuel mixtures 

relative to the BASE case, as shown in Figure 2. In particular, the use of ammonia-gasoline mixture had the 

highest nitrogen footprint, which may be attributed to high levels of NOx  produced in engine combustion 

chambers, as well as the unburned ammonia, or ammonia slip, detected in the exhaust gases after combustion 

(Ryu et al., 2014). The synergistic effect of low peak combustion temperature achieved in a spark-ignition engine 

and unfavorable properties of ammonia lead to considerably higher nitrogen footprint in ammonia-gasoline 

mixtures compared to the other blends. These results indicate that there are significant unfavorable effects in 

the use of ammonia blends in engines optimized to run on conventional fuels. Thus, it will also be necessary to 

determine how engines can be customized or retrofitted to achieve more favorable combustion conditions for 

ammonia blends.   
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Figure 1: Carbon footprint of selected ammonia-based fuel cycles. 

 

Figure 2: Nitrogen footprint of selected ammonia-based fuel cycles. 

5. Conclusions 

In this work, an LCO model formulated as an FLP was developed and solved to optimize the carbon and nitrogen 

footprints of ammonia used as an automotive fuel. The model was calibrated using data from experimental 

literature, as well as existing LCA databases and models. The optimal pathway identified involves production of 

ammonia using the Salix process, coupled with its utilization in conjunction with DME. Future work can focus on 

extensive uncertainty analysis due to the limited availability of data on the performance of ammonia-fueled 

engines. Such analysis can be done using a design of experiment (DOE) strategy, which has been used in the 

past for LCA (Rivera and Sutherland, 2014) and for optimization problems (Tan et al., 2015). In addition, a more 

detailed assessment using a life cycle sustainability assessment (LCSA) framework that also covers economic 

and social dimensions will be necessary to firmly establish if use of ammonia as an automotive fuel can be a 

truly viable option. 
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