

Synthesis, Characterization of Novel Benzothiophene

Veerappan Jeyachandranan*

Department of Chemistry, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, India

*Corresponding author e-mail: jeyorg@gmail.com

ABSTRACT

Article Info

Volume 8, Issue 1
Page Number: 38-41
Publication Issue:
January-February-2021

Article History

Accepted: 01 Jan 2021

Published: 06 Jan 2021

A library of novel benzo [b] thiophenehave been synthesized regioselectively in good yields through the one-pot domino reactions of thiophenone, malononitrile and aromatic aldehydes in the presence of NaOEt. This transformation presumably involves Knoevenagel condensation—Michael addition—intramolecular Thorpe-Ziegler cyclization-Tautomerization-Elimination sequence of reactions.

1

Keywords: Ant-Iinflammatory, Thiophenone, Sertaconazole And Asthma.

I. INTRODUCTION

Benzo[b]thiophene derivatives are found within the structural core of several biologically active compounds, for example, raloxifeneTM is a selective estrogen receptor modulator for the prevention of osteoporosis in postmenopausal women [1] and zileutonTM is an active inhibitor of 5-lipoxygenase used to prevent difficulty in breathing, wheezing and coughing due to asthma and sertaconazole has several known mechanisms of action (**Figure1**) [2].

$$Ar \xrightarrow{2} S \xrightarrow{7a} S \xrightarrow{7a} S \xrightarrow{6} CN$$

Figure 1. Benzo [b] thiophene derivatives synthesized in the present work

Other pharmacological applications of benzo[*b*]thiophene derivatives include estrogen receptor antagonists,[3] antifungal,[4] anti-inflammatory[5] and antimitotic[6] agents. The above significance of benzo[*b*]thiophene derivatives has set path to several investigations leading to their synthesis and biological activity studies [7].

Several other molecular entities containing benzothiophene core are at various stages of development. They include **T588** [8] a cognition enhancing agent with potential application for treating Alzheimer's dementia; **LY353381** [9] an additional SERM from Lilly; **AP521** [10] with potent 5Ht_{1A} receptor binding ability; **CI959** [11] an anti-inflammatory agent; and **B428** [12] a urokinase inhibitor. Another structurally interesting compound is **PD144795** [13] an endothelial cell activation inhibitor as a benzothiophene oxide (**Figure3**).

Figure 3. Benzothiophenes Various stages of development

In view of the importance of benzothiophene derivatives, herein we report a domino protocol for the regioselective synthesis of a library of highly functionalized novel 5-amino-2,7-diaryl-2,3-dihydrobenzo[*b*]thiophene-4,6-dicarbonitriles **4**in good yields through the one-pot four-component reactions of 5-aryldihydro-3(2*H*)-thiophenones**1**, malononitrile**2** and aromatic aldehydes **3**in the presence of morpholine (**Scheme 1**).

Scheme 1. Synthesis of 2,3-dihydrobenzo[*b*]thiophene-4,6-dicarbonitriles**4**

Structure elucidation

The structure of all the Benzo[*b*]thiophenes **4** were elucidated unambiguously with the help of one and two-dimensional NMR spectroscopy. As a representative case, the ¹H and ¹³C NMR chemical shift assignment of **4r** are discussed.

In the ¹H NMR spectra of $4\mathbf{r}$, the 2-CH and the 5-NH₂ protons overlap and appear as a multiplet at 5.01–5.08 ppm. The D₂O exchange experiment reveals that the H-2 appears as a triplet at 5.04 ppm (J= 8.4 Hz) and the latter appears as a broad singlet at 5.08 ppm.

Table 2. Yield and melting point of Benzo[b]thiophene4

Entry	Comp	Ar'	Yield of 4 (%)	mp (°C)
1	4a	4-MeC ₆ H ₄	79	165-167
2	4 b	4-MeOC ₆ H ₄	85	167-169
3	4 c	4-ClC ₆ H ₄	72	175-177
4	4d	4-FC ₆ H ₄	73	157-1159

^a Isolated yield after purification by column chromatography

II. CONCLUSION

The present investigation reports a one-pot domino protocol for the regionelective synthesis of novel Benzo[b]thiophene via Knoevenagel condensation—Michael addition—intramolecular Thorpe-Ziegler cyclization—Tautomerization—Elimination sequence of reactions.

This four-component reaction results in the formation of four new C–C bonds in a single operation. The structure of all the Benzo[*b*]thiophene was elucidated with NMR and single crystal X-ray studies.

III.CONFLICT OF INTEREST

The authors declare no conflict of interest.

IV. ACKNOWLEDGMENTS

The encouragement and support from Bharath University, Chennai is gratefully acknowledged. For provided the laboratory facilities to carry out the research work.

V. REFERENCES

- [1]. Marketed as Evista® (Raloxifene Hydrochloride 60 mg). Grese, T.A.; Dodge, J. A.; Curr. Pharm. Des.,1998, 4, 71.
- [2]. Carter, G. W.; Young, P. R.; Albert, D. H.; Bouska, J.; Dyer, R.; Bell, R. L.; Summers, J. B.; Brooks, D. W.J. Pharmacol. Exp. Ther., 1991, 256, 929.
- [3]. Palkowitz, A.D.; Glasebrook, A. L.; Thrasher, K. J.; Hauser, K. L.; Short, L. L.; Phillips, D. L.; Muehl, B. S.; Sato, M.; Shetler, P. K.; Cullinan, G. J.; Pell, T. R.; Bryant, H. U. J. Med. Chem.,1997, 40, 1407; (b) Magarian, R. A.; Overacre, L. B.; Singh, S.; Meyer, K. L. Curr.Med. Chem.,1994, 1, 61.

- [4]. Thesen, R. Pharm. Ztg., 1995, 140, 44.
- [5]. Bleavins, M. R.; Igelsia, F. A.; McCay, J. A.; White, L.; Kimber, L.; Munson, A. E. Toxicology, 1995, 98, 111.
- [6]. Zhang, S.X.; Bastow, K. F.; Tachibana, Y.; Kuo, S.C.; Hamel, E.; Mauger, A.; Narayanan, V. L.; Lee, K.H. J. Med. Chem., 1999, 42, 4081.
- [7]. Shedid, S. A. M.; Hassan, H. M.; Kora, F. A.; El-Eisawy, R. M. J. Chem. Pharm. Res., 2011, 3, 388; (b) Isloor, A. M.; Kalluraya, B.; Sridhar, P. K. Eur. J. Med. Chem., 2010, 45, 825; (c) Radwan, M. A. A; Shehab, M. A.; El-Shenawy, S. M. Monatsh Chem., 2009, 140, 445
- [8]. Ono, S.; Yamafuji, T.; Chaki, H.; Todo, Y.; Maekawa, M.; Kitamura, K.; Kimura, T.; Nakada, Y.; Mozumi, K.; Narita, H. Biol. Pharm. Bull.,1995, 18, 1779–1783.
- [9]. Sato, M.; Turner, C. H.; Wang, T.; Adrian, M. D.; Rowley, E.; Bryant, H. U. J. Pharmacol. Exp. Ther.,1998, 287, 1–7.
- [10]. Sorbera, L. A.; Leeson, P.; Castaner, J. Drugs Fut., 1999, 24, 740.
- [11]. Wright, C. D; Stewart, S. F.; Kuipers, P. J.; Hoffman, M. D.; Devall, L. J.; Kennedy, J. A.; Ferin, M. A.; Thueson, D. O.; Conroy, M. C. J. Leukoc. Biol., 1994, 55, 443–451.
- [12]. Towle, M. J.;Lee, A.;Maduakor, E. C.;Schwartz, C. E.;Bridges, A. J.;Littlefield, B. A. Cancer Res.,1993, 53, 2553–2559.
- [13]. Carballo, M.;Conde, M.;Tejedo, J.;Gualberto, A.;Jimenez, J.;Monteseirín, J.;Santa María, C.;Bedoya, F. J.;Hunt, S. W. 3rd.;Pintado, E.;Baldwin, A. S. Jr.;Sobrino, Fr. Mol. Genet. Metab.,2002, 75, 360–368.

Cite this article as:

Veerappan Jeyachandranan, "Synthesis, Characterization of Novel Benzothiophene", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN: 2395-602X, Print ISSN: 2395-6011, Volume 8 Issue 1, pp. 38-41, January-February 2021. Available at doi: https://doi.org/10.32628/IJSRST207669 Journal URL: http://ijsrst.com/IJSRST207669