Voltage Recovery from Pesticides Doped Tomatoes, Cabbages and Loam Soil Inoculated with Rumen Waste: Microbial Fuel Cells

Authors

  • Kinyua A.  University of Nairobi, Department of Chemistry, P.O Box 30197, 00100, Nairobi, Kenya
  • Mbugua J. K  University of Nairobi, Department of Chemistry, P.O Box 30197, 00100, Nairobi, Kenya
  • Mbui D.N  University of Nairobi, Department of Chemistry, P.O Box 30197, 00100, Nairobi, Kenya
  • Kithure J.  University of Nairobi, Department of Chemistry, P.O Box 30197, 00100, Nairobi, Kenya
  • Michira I  University of Nairobi, Department of Chemistry, P.O Box 30197, 00100, Nairobi, Kenya
  • Wandiga S.O  University of Nairobi, Department of Chemistry, P.O Box 30197, 00100, Nairobi, Kenya

DOI:

https://doi.org//10.32628/IJSRSET229222

Keywords:

Voltage, Current, Tomato, Cabbage, Loam Soil

Abstract

In the current study, voltage generation from loam soil, cabbages and tomatoes for a retention time of thirty days using double chamber microbial fuel cell is investigated. The anodic with 1.5 liters’ substrate inoculated with rumen fluid from slaughter house and cathodic loaded with distilled water compartments were connected via a salt bridge made using 3% agarose in sodium chloride. The performance of microbial fuel cells was evaluated by measuring daily voltage using a multimeter. The observed results showed that the current produced increased for some time and levelled off on the tenth day. Current was highest in rumen fluid set up at 0.111±0.003 mA followed by tomato fruits, loam soil and least in cabbage at 0.101±0.008, 0.095±0.001 and 0.094±0.007 mA, respectively.

References

  1. Bond, D. R., Holmes, D. E., Tender, L. M. and Lovley, D. R. (2002). Electrode-reducing microorganisms that harvest energy from marine sediments. Science. 295: 483–485.
  2. Bot, A. and Benites, J. (2005). The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production. FAO Soil Bulletin No. 80. FAO, Rome.
  3. Deng, H., Wu, Y. C., Zhang, F., Huang, Z. C., Chen, Z., Xu, H. J. and Zhao, F. (2014). Factors affecting the performance of single-chamber soil microbial fuel cells for power generation. Pedosphere. 24(3): 330–338
  4. Jia, J., Tang, Y., Liu, B., Wu, D., Ren, N. and Xing, D. (2013). Electricity Generation from Food Wastes and Microbial Community Structure in Microbial Fuel Cells. Bioresource Technology, 144, 94-99.
  5. Kamau J. M, Mbui D. N, Mwaniki J. M, Mwaura F. B. (2020). Influence of Substrate Proximate Properties On Voltage Production in Microbial Fuel Cells, International Journal of Energy and Environmental Research. 8(1), pp.12-21
  6. Kamau J.M Mbui DN, Mwaniki JM, Mwaura FB (2018), Characterization of voltage from food market waste: microbial fuel cells. Int J Biotech & Bioeng. 4:3
  7. Kamau JM, Mbui DN, Mwaniki JM, Mwaura F.B. (2018). Utilization of rumen fluid in production of bio–energy from market waste using microbial fuel cells technology. J Appl Biotechnol Bioeng. 5(4):227‒231
  8. Kamau, J. M., Mbui, D. N., Mwaniki J. M., & Mwaura, F. B. (2020). Proximate analysis of fruits and vegetables wastes from Nairobi County, Kenya. Research Journal of Food Science and Nutrition, 5(1):1-8
  9. Loam Soil from Limuru, Kenya: Apparent Thermodynamic Properties. Africa Journal of Physical Sciences. 1(1); 1 -9
  10. Logan B.E.(2008). Microbial fuel cells. Wiley, New Jersey, USA.
  11. Logan BE, and Rabaey K. (2012). Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies. Science. (80); 337:686–90.
  12. Mbugua J.K., Mbui D.N. and Kamau G.N. (2014) Adsorption of Dursban (Chlorpyrifos) Pesticide by
  13. Mbugua, J.K., Mbui, D.N., Mwaniki, J., Mwaura, F. and Sheriff, S. (2020) Influence of Substrate Proximate Properties on Voltage Production in Microbial Fuel Cells. Journal of Sustainable Bioenergy Systems, 10, 43-51.
  14. Parot, S., D ́elia, M. L. and Bergel, A. (2008). Forming electrochemically active biofilms from garden compost under chronoamperometry. Bioresource Technol. 99: 4809–4816.
  15. Puig, S.; Serra, M.; Coma, M.; Cabré, M.; Balaguer, M.D.; Colprim, J. (2010). Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. Bioresour. Technol., 101, 9594–959
  16. Rabaey, K. and Verstraete, W. 2005. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 23: 291–298
  17. Sánchez-Clemente, R., Igeño, M. I., Población, A. G., Guijo, M. I., Merchán, F., & Blasco, R. (2018). Study of pH Changes in Media during Bacterial Growth of Several Environmental Strains. Proceedings, 2(20): 1297.
  18. Scott, K., Cotlarciuc, I., Hall, D., Lakeman, J. B. and Browning, D. (2008). Power from marine sediment fuel cells: the influence of anode material. J. Appl. Electrochem. 38: 1313–1319
  19. Shukla M and Kumar S. (2018). Algal growth in photosynthetic algal microbial fuel cell and its subsequent utilization for biofuels. Renew Sustain Energy Rev; 82:402-414.
  20. Strik DPBTB, Timmers RA, Helder M, Kjj Steinbusch, Hamelers HVM, Buisman CJN. (2011). Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol; 29:41-49
  21. Timmers RA, Strik DP, Hamelers HVM, Buisman CJN. (2010) Long term performance of a plant microbial fuel cell with Spartina anglica. Appl Microbiol Biotechnol; 86:973-981.
  22. Troeh, F. R. and Thompson, M. L. (ed.). 2005. Soils and Soil Fertility. 6th Edition. Blackwell, Ames
  23. Whitman, W. B., Coleman, D. C. and Wiebe, W. J. 1998. Prokaryotes: the unseen majority. P. Nat. Acad. Sci. USA. 95: 6578–6583.
  24. Yokoyama, H., Ohmori, H., Ishida, M., Waki, M. and Tanaka, Y. (2006). Treatment of cow-waste slurry by a microbial fuel cell and the properties of the treated slurry as a liquid manure. Anim. Sci. J. 77: 634–638
  25. Zhang ER, Liu L, Cui YY. (2013). Effect of PH on the performance of the anode in microbial fuel cells. Adv. Mat. Res. 608: 884-888
  26. Zhang, G., Zhao, Q., Jiao, Y., Wang, K., Lee, D. J. and Ren, N. (2012). Efficient electricity generation from sewage sludge using biocathode microbial fuel cell. Water Res. 46: 43–52

Downloads

Published

2022-04-30

Issue

Section

Research Articles

How to Cite

[1]
Kinyua A., Mbugua J. K, Mbui D.N, Kithure J., Michira I, Wandiga S.O, " Voltage Recovery from Pesticides Doped Tomatoes, Cabbages and Loam Soil Inoculated with Rumen Waste: Microbial Fuel Cells, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN : 2395-1990, Online ISSN : 2394-4099, Volume 9, Issue 2, pp.172-180, March-April-2022. Available at doi : https://doi.org/10.32628/IJSRSET229222