Photosynthetica 2022, 60(4):529-538 | DOI: 10.32615/ps.2022.049

Evaluation of visible-light wavelengths that reduce or oxidize the plastoquinone pool in green algae with the activated F0 rise method

H. MATTILA1, V. HAVURINNE1, 2, T. ANTAL1, 3, E. TYYSTJÄRVI1

We recently developed a chlorophyll a fluorescence method (activated F0 rise) for estimating if a light wavelength preferably excites PSI or PSII in plants. Here, the method was tested in green microalgae: Scenedesmus quadricauda, Scenedesmus ecornis, Scenedesmus fuscus, Chlamydomonas reinhardtii, Chlorella sorokiniana, and Ettlia oleoabundans. The Scenedesmus species displayed a plant-like action spectra of F0 rise, suggesting that PSII/PSI absorption ratio is conserved from higher plants to green algae. F0 rise was weak in a strain of C. reinhardtii, C. sorokiniana, and E. oleoabundans. Interestingly, another C. reinhardtii strain exhibited a strong F0 rise. The result indicates that the same illumination can lead to different redox states of the plastoquinone pool in different algae. Flavodiiron activity enhanced the F0 rise, presumably by oxidizing the plastoquinone pool during pre-illumination. The activity of plastid terminal oxidase, in turn, diminished the F0 rise, but to a small degree.

Additional key words: Chlamydomonas; chlorophyll fluorescence; far-red acclimation; FlvB protein; Scenedesmus.

Received: September 14, 2022; Revised: November 2, 2022; Accepted: November 14, 2022; Prepublished online: November 24, 2022; Published: December 21, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
MATTILA, H., HAVURINNE, V., ANTAL, T., & TYYSTJÄRVI, E. (2022). Evaluation of visible-light wavelengths that reduce or oxidize the plastoquinone pool in green algae with the activated F0 rise method. Photosynthetica60(4), 529-538. doi: 10.32615/ps.2022.049
Download citation

References

  1. Allen J.F., Bennett J., Steinback K.E., Arntzen C.J.: Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. - Nature 291: 25-29, 1981. Go to original source...
  2. Alric J.: Cyclic electron flow around photosystem I in unicellular green algae. - Photosynth. Res. 106: 47-56, 2010. Go to original source...
  3. Alric J., Johnson X.: Alternative electron transport pathways in photosynthesis: a confluence of regulation. - Curr. Opin. Plant Biol. 37: 78-86, 2017. Go to original source...
  4. Antal T.K., Kukarskikh G.P., Bulychev A.A. et al.: Antimycin A effect on the electron transport in chloroplasts of two Chlamydomonas reinhardtii strains. - Planta 237: 1241-1250, 2013. Go to original source...
  5. Antal T.K., Kukarskikh G.P., Volgusheva A.A. et al.: Hydrogen photoproduction by immobilized S-deprived Chlamydomonas reinhardtii: Effect of light intensity and spectrum, and initial medium pH. - Algal Res. 17: 38-45, 2016. Go to original source...
  6. Bolatkhan K., Kossalbayev B.D., Zayadan B.K. et al.: Hydrogen production from phototropic microorganisms: Reality and perspectives. - Int. J. Hydrogen Energ. 44: 5799-5811, 2019. Go to original source...
  7. Bhatia S.K., Mehariya S., Bhatia R.K. et al.: Wastewater based microalgal biorefinery for bioenergy production: Progress and challenges. - Sci. Total Environ. 751: 141599, 2021. Go to original source...
  8. Depège N., Bellafiore S., Rochaix J.-D.: Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. - Science 299: 1572-1575, 2003. Go to original source...
  9. Desplats C., Mus F., Cuiné S. et al.: Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in Chlamydomonas chloroplasts. - J. Biol. Chem. 284: 4148-4157, 2009. Go to original source...
  10. Endo T., Mi H., Shikanai T., Asada K.: Donation of electrons to plastoquinone by NADP(H) dehydrogenase and by ferredoxin-quinone reductase in spinach chloroplasts. - Plant Cell Physiol. 38: 1271-1277, 1997. Go to original source...
  11. Escoubas J.-M., Lomas M., LaRoche J., Falkowski P.G.: Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. - P. Natl. Acad. Sci. USA 92: 10237-10241, 1995. Go to original source...
  12. Field T.S., Nedbal L., Ort D.R.: Nonphotochemical reduction of the plastoquinone pool in sunflower leaves originates from chlororespiration. - Plant Physiol. 116: 1209-1218, 1998. Go to original source...
  13. Finazzi G., Zito F., Barbagallo R.P., Wollman F.-A.: Contrasted effects of inhibitors of chytochrome b6f complex on state transitions in Chlamydomonas reinhardtii: The role of QO site occupancy in LHCII kinase activation. - J. Biol. Chem. 276: 9770-9774, 2001. Go to original source...
  14. Houille-Vernes L., Rappaport F., Wollman F.-A. et al.: Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. - P. Natl. Acad. Sci. USA 108: 20820-20825, 2011. Go to original source...
  15. Ilík P., Pavloviè A., Kouøil R. et al.: Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria to gymnosperms. - New Phytol. 214: 967-972, 2017. Go to original source...
  16. Inskeep W.P., Bloom P.R.: Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. - Plant Physiol. 77: 483-485, 1985. Go to original source...
  17. Jokel M., Johnson X., Peltier G. et al.: Hunting the main player enabling Chlamydomonas reinhardtii growth under fluctuating light. - Plant J. 94: 822-835, 2018. Go to original source...
  18. Kawakami K., Tokutsu R., Kim E., Minagawa J.: Four distinct trimeric forms of light-harvesting complex II isolated from the green alga Chlamydomonas reinhardtii. - Photosynth. Res. 142: 195-201, 2019. Go to original source...
  19. Kubota-Kawai H., Burton-Smith R.N., Tokutsu R. et al.: Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii. - J. Biol. Chem. 294: 4304-4314, 2019. Go to original source...
  20. Lazar D., Stirbet A., Björn L.O., Govindjee G.: Light quality, oxygenic photosynthesis and more. - Photosynthetica 60: 25-58, 2022. Go to original source...
  21. Mattila H., Khorobrykh S., Hakala-Yatkin M. et al.: Action spectrum of the redox state of the plastoquinone pool defines its function in plant acclimation. - Plant J. 104: 1088-1104, 2020. Go to original source...
  22. Mills J.D., Crowther D., Slovacek R.E. et al.: Electron transport pathways in spinach chloroplasts. Reduction of the primary acceptor of photosystem II by reduced nicotinamide adenine dinucleotide phosphate in the dark. - BBA-Bioenergetics 547: 127-137, 1979. Go to original source...
  23. Munekage Y., Hojo M., Meurer J. et al.: PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. - Cell 110: 361-371, 2002. Go to original source...
  24. Nawrocki W.J., Santabarbara S., Mosebach L. et al.: State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas. - Nat. Plants 2: 16031, 2016. Go to original source...
  25. Nellaepalli S., Kodru S., Raghavendra A.S., Subramanyam R.: Antimycin A sensitive pathway independent from PGR5 cyclic electron transfer triggers non-photochemical reduction of PQ pool and state transitions in Arabidopsis thaliana. - J. Photoch. Photobio. B 146: 24-33, 2015. Go to original source...
  26. Peltier G., Aro E.-M., Shikanai T.: The NDH-1 and NDH-2 plastoquinone reductases in oxygenic photosynthesis. - Annu. Rev. Plant Biol. 67: 55-80, 2016. Go to original source...
  27. Peltier G., Tolleter D., Billon E., Cournac L.: Auxiliary electron transport pathways in chloroplasts of microalgae. - Photosynth. Res. 106: 19-31, 2010. Go to original source...
  28. Petrova E.V., Kukarskikh G.P., Krendeleva T.E., Antal T.K.: The mechanisms and role of photosynthetic hydrogen production by green microalgae. - Microbiology 89: 251-265, 2020. Go to original source...
  29. Pfannschmidt T., Nilsson A., Allen J.F.: Photosynthetic control of chloroplast gene expression. - Nature 397: 625-628, 1999. Go to original source...
  30. Radmer R.J., Kok B.: Photoreduction of O2 primes and replaces CO2 assimilation. - Plant Physiol. 58: 336-340, 1976. Go to original source...
  31. Rippka R., Deruelles J., Waterbury J.B. et al.: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. - J. Gen. Microbiol. 111: 1-61, 1979. Go to original source...
  32. Rochaix J.-D.: Regulation and dynamics of the light-harvesting system. - Annu. Rev. Plant Biol. 65: 287-309, 2014. Go to original source...
  33. Schönfeld C., Wobbe L., Borgstädt R. et al.: The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in Chlamydomonas reinhardtii. - J. Biol. Chem. 279: 50366-50374, 2004. Go to original source...
  34. Shikanai T., Endo T., Hashimoto T. et al.: Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. - P. Natl. Acad. Sci. USA 95: 9705-9709, 1998. Go to original source...
  35. Shimakawa G., Murakami A., Niwa K. et al.: Comparative analysis of strategies to prepare electron sinks in aquatic photoautotrophs. - Photosynth. Res. 139: 401-411, 2019. Go to original source...
  36. Stensjö K., Vavitsas K., Tyystjärvi T.: Harnessing transcription for bioproduction in cyanobacteria. - Physiol. Plantarum 162: 148-155, 2018. Go to original source...
  37. Sueoka N.: Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardi. - P. Natl. Acad. Sci. USA 46: 83-91, 1960. Go to original source...
  38. Tokutsu R., Kato N., Bui K.H. et al.: Revisiting the supramole­cular organization of photosystem II in Chlamydomonas reinhardtii. - J. Biol. Chem. 287: 31574-31581, 2012. Go to original source...
  39. Ueno Y., Aikawa S., Kondo A., Akimoto S.: Adaptation of light-harvesting functions of unicellular green algae to different light qualities. - Photosynth. Res. 139: 145-154, 2019. Go to original source...
  40. Vener A.V., van Kan P.J.M., Rich P.R. et al.: Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation. Thylakoid protein kinase deactivation by a single-turnover flash. - P. Natl. Acad. Sci. USA 94: 1585-1590, 1997. Go to original source...
  41. Virtanen O., Tyystjärvi E.: Plastoquinone pool redox state and control of state transitions in Chlamydomonas reinhardtii in darkness and under illumination. - Photosynth. Res., 2022. Go to original source...
  42. Wolf B.M., Blankenship R.E.: Far‑red light acclimation in diverse oxygenic photosynthetic organisms. - Photosynth. Res. 142: 349-359, 2019. Go to original source...