Photosynthetica 2022, 60(4):489-496 | DOI: 10.32615/ps.2022.035

Detection of antibiotic and microplastic pollutants in Chrysanthemum coronarium L. based on chlorophyll fluorescence

M.Y. ZHONG1, †, K.Y. KHAN1, 2, †, L.J. FU1, Q. XIA1, H. TANG3, H.J. QU1, S. YUAN1, J.L. TAN4, Y. GUO1
1 Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, 214122 Wuxi, China
2 Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
3 Lushixin Sci. & Tec. (Wuxi) Co. Ltd., 214124 Wuxi, China
4 Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA

Large amounts of antibiotics and microplastics are used in daily life and agricultural production, which affects not only plant growth but also potentially the food safety of vegetables and other plant products. Fast detection of the presence of antibiotics and microplastics in leafy vegetables is of great interest to the public. In this work, a method was developed to detect sulfadiazine and polystyrene, commonly used antibiotics and microplastics, in vegetables by measuring and modeling photosystem II chlorophyll a fluorescence (ChlF) emission from leaves. Chrysanthemum coronarium L., a common beverage and medicinal plant, was used to verify the developed method. Scanning electron microscopy, transmission electron microscopy, and liquid chromatograph-mass spectrometer analysis were used to show the presence of the two pollutants in the samples. The developed kinetic model could describe measured ChlF variations with an average relative error of 0.6%. The model parameters estimated for the chlorophyll a fluorescence induction kinetics curve (OJIP) induction can differentiate the two types of stresses while the commonly used ChlF OJIP induction characteristics cannot. This work provides a concept to detect antibiotic pollutants and microplastic pollutants in vegetables based on ChlF.

Additional key words: antibiotics; food security; microplastics; modeling; OJIP transients; vegetable quality detection.

Received: April 14, 2022; Revised: June 14, 2022; Accepted: July 26, 2022; Prepublished online: September 20, 2022; Published: December 21, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
ZHONG, M.Y., KHAN, K.Y., FU, L.J., XIA, Q., TANG, H., QU, H.J., ... GUO, Y. (2022). Detection of antibiotic and microplastic pollutants in Chrysanthemum coronarium L. based on chlorophyll fluorescence. Photosynthetica60(4), 489-496. doi: 10.32615/ps.2022.035
Download citation

References

  1. Antal T.K., Kovalenko H.B., Rubin A.B., Tyystjärvi E.: Photo­synthesis-related quantities for education and modeling. - Photosynth. Res. 117: 1-30, 2013. Go to original source...
  2. Chen J.F., Jiang X.S., Tong T.L. et al.: Sulfadiazine degradation in soils: Dynamics, functional gene, antibiotic resistance genes and microbial community. - Sci. Total Environ. 691: 1072-1081, 2019. Go to original source...
  3. Ebenhöh O., Fucile G., Finazzi G. et al.: Short-term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical model. - Philos. T. Roy. Soc. B 369: 20130223, 2014. Go to original source...
  4. Ezugworie F.N., Igbokwe V.C., Onwosi C.O.: Proliferation of antibiotic-resistant microorganisms and associated genes during composting: An overview of the potential impacts on public health, management and future. - Sci. Total Environ. 784: 147191, 2021. Go to original source...
  5. Fan Y.M., Shi J.Y., Gao L.J.: [The source and detection of microplastics in soil systems.] - Chem. Ind. Times 33: 28-31, 2019. [In Chinese]
  6. Fu L.J., Govindjee, Tan J.L., Guo Y.: Development of a minimized model structure and a feedback control framework for regulating photosynthetic activities. - Photosynth. Res. 146: 213-225, 2019b. Go to original source...
  7. Fu L.J., Xia Q., Tan J.L. et al.: Modelling and simulation of chlorophyll fluorescence from PSII of a plant leaf as affected by both illumination light intensities and temperatures. - IET Syst. Biol. 13: 327-332, 2019a. Go to original source...
  8. Gu L.Q., Tian L., Gao G. et al.: Inhibitory effects of polystyrene microplastics on caudal fin regeneration in zebrafish larvae. - Environ. Pollut. 266: 114664, 2020. Go to original source...
  9. Guo Y., Tan J.: Modeling and simulation of the initial phases of chlorophyll fluorescence from photosystem II. - BioSystems 103: 152-157, 2011. Go to original source...
  10. Hwang J., Choi D., Han S. et al.: Potential toxicity of polystyrene microplastic particles. - Sci. Rep.-UK 10: 7391, 2020. Go to original source...
  11. Joseph R., Kumar K.G.: Differential pulse voltammetric determination and catalytic oxidation of sulfamethoxazole using [5,10,15,20-tetrakis (3-methoxy-4-hydroxy phenyl) porphyrinato] Cu (II) modified carbon paste sensor. - Drug Test. Anal. 2: 278-283, 2010. Go to original source...
  12. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  13. Kalaji H.M., Rastogi A., ®ivèák M. et al.: Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. - Photosynthetica 56: 953-961, 2018. Go to original source...
  14. Khan K.Y., Ali B., Shuang Z. et al.: Effects of antibiotics stress on growth variables, ultrastructure, and metabolite pattern of Brassica rapa ssp. chinensis. - Sci. Total Environ. 778: 146333, 2021. Go to original source...
  15. Lang Y., Wang M., Xia J.B., Zhao Q.K.: Effects of soil drought stress on photosynthetic gas exchange traits and chlorophyll fluorescence in Forsythia suspensa. - J. Forestry Res. 29: 45-53, 2018. Go to original source...
  16. Levenberg K.: A method for the solution of certain problems in least squares. - Quart. Appl. Math. 2: 164-168, 1944. Go to original source...
  17. Li C.C., Gan Y.D., Zhang C. et al.: "Microplastic communities" in different environments: Differences, links, and role of diversity index in source analysis. - Water Res. 188: 116574, 2021a. Go to original source...
  18. Li L., Zhou Q., Yin N. et al.: Uptake and accumulation of microplastics in an edible plant. - Chin. Sci. Bull. 64: 928-934, 2019. [In Chinese] Go to original source...
  19. Li M., Yang Z.W., Li H.J. et al.: [Investigation and analysis of antibiotic contamination in vegetables in Eastern Hebei.] - Contemp. Farm Mach. 3: 54-56, 2021b. [In Chinese]
  20. Li X.D., Xian Q.M., Liu H.L. et al.: [Simultaneous determination of three sulfonamides residues in vegetable by high per­formance liquid chromatographic method with fluorimetric detection.] - Chin. J. Anal. Chem. 38: 429-433, 2010. [In Chinese] Go to original source...
  21. Li X.W., Xie Y.F., Li C.L. et al.: Investigation of residual fluoroquinolones in a soil-vegetable system in an intensive vegetable cultivation area in Northern China. - Sci. Total Environ. 468-469: 258-264, 2014. Go to original source...
  22. Li X.X., Liu B.X., Guo Z.T. et al.: [Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluores­cence induction dynamics of Pistacia chinensis leaves.] - Chin. J. Appl. Ecol. 24: 2479-2484, 2013. [In Chinese]
  23. Lin H., Sun W.C., Yu Y.J. et al.: Simultaneous reductions in antibiotics and heavy metal pollution during manure composting. - Sci. Total Environ. 788: 147830, 2021. Go to original source...
  24. Lin Y.C., Hu Y.G., Ren C.Z. et al.: Effects of nitrogen application on chlorophyll fluorescence parameters and leaf gas exchange in naked oat. - J. Integr. Agr. 12: 2164-2171, 2013. Go to original source...
  25. Liu X., Lv Y., Xu K. et al.: Response of ginger growth to a tetracycline-contaminated environment and residues of antibiotic and antibiotic resistance genes. - Chemosphere 201: 137-143, 2018. Go to original source...
  26. Lotfi R., Pessarakli M., Gharavi-Kouchebagh P., Khoshvaghti H.: Physiological responses of Brassica napus to fulvic acid under water stress: chlorophyll a fluorescence and antioxidant enzyme activity. - Crop J. 3: 434-439, 2015. Go to original source...
  27. Mandal K., Saravanan R., Maiti S., Kothari I.L.: Effect of downy mildew disease on photosynthesis and chlorophyll fluorescence in Plantago ovata Forsk. - J. Plant Dis. Prot. 116: 164-168, 2009. Go to original source...
  28. Marquardt D.W.: An algorithm for least-squares estimation of non-linear parameters. - J. Soc. Ind. Appl. Math. 11: 431-441, 1963. Go to original source...
  29. Peez N., Janiska M.-C., Imhof W.: The first application of quantitative 1H NMR spectroscopy as a simple and fast method of identification and quantification of microplastic particles (PE, PET, and PS). - Anal. Bioanal. Chem. 411: 823-833, 2019. Go to original source...
  30. Pflugmacher S., Sulek A., Mader H. et al.: The influence of new and artificial aged microplastic and leachates on the germination of Lepidium sativum L. - Plants-Basel 9: 339, 2020. Go to original source...
  31. Qi H.M., Yan H., Zhang L. et al.: [Research progress in determination methods of antibiotics residues in plants.] - J. Food Saf. Qual. 10: 5098-5103, 2019. [In Chinese]
  32. Rehm R., Zeyer T., Schmidt A., Fiener P.: Soil erosion as transport pathway of microplastic from agriculture soils to aquatic ecosystems. - Sci. Total Environ. 795: 148774, 2021. Go to original source...
  33. Sajjad M., Huang Q., Khan S. et al.: Microplastics in the soil environment: A critical review. - Environ. Technol. Innov. 27: 102408, 2022. Go to original source...
  34. Si X.Y., Sun M., Shi C.C. et al.: [Environmental behavior of sulfa antibiotics (SAs) and its effect on vegetable quality.] - Anhui Agr. Sci. Bull. 23: 40-42, 2017. [In Chinese]
  35. Sobhani Z., Panneerselvan L., Fang C. et al.: Chronic and transgenerational effects of polystyrene microplastics at environmentally relevant concentrations in earthworms (Eisenia fetida). - Environ. Toxicol. Chem. 40: 2240-2246, 2021. Go to original source...
  36. Stirbet A., Govindjee: The slow phase of chlorophyll a fluorescence induction in silico: Origin of the S-M fluorescence rise. - Photosynth. Res. 130: 193-213, 2016. Go to original source...
  37. Stock V., Böhmert L., Lisicki E. et al.: Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. - Arch. Toxicol. 93: 1817-1833, 2019. Go to original source...
  38. Sui X.L., Mao S.L., Wang L.H. et al.: Effect of low light on the characteristics of photosynthesis and chlorophyll a fluorescence during leaf development of sweet pepper. - J. Integr. Agr. 11: 1633-1643, 2012. Go to original source...
  39. Tang J.J., Chen X., Katsuyoshi S.: Varietal differences in photosynthetic characters and chlorophyll fluorescence induction kinetics parameters among intergeneric progeny derived from Oryza×Sorghum' its parents' and hybrid rice. - J. Zhejiang Univ. Sci. 3: 113-117, 2002. Go to original source...
  40. Wang F., Zhang X., Zhang S. et al.: Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. - Chemosphere 254: 126791, 2020. Go to original source...
  41. Wang G.L., Guo Z.F.: Effects of chilling stress on photosynthetic rate and chlorophyll fluorescence parameter in seedlings of two rice cultivars differing in cold tolerance. - Rice Sci. 12: 187-191, 2005.
  42. Wu Y.W., Li Q., Jin R. et al.: Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances. - J. Integr. Agr. 18: 1246-1256, 2019. Go to original source...
  43. Xiang X.F., Wu L.Y., Zhu J.J. et al.: Photocatalytic degradation of sulfadiazine in suspensions of TiO2 nanosheets with exposed (001) facets. - Chin. Chem. Lett. 32: 3215-3220, 2021. Go to original source...
  44. Xie Y.F., Cai X.L., Liu W.L. et al.: Effects of lanthanum nitrate on growth and chlorophyll fluorescence characteristics of Alternanthera philoxeroides under perchlorate stress. - J. Rare Earth. 31: 823-829, 2013. Go to original source...
  45. Ye B., Wu Y.B., Shao W. et al.: [Effects of combined stress of elevated temperature and drought and of re-watering on the photosynthetic characteristics and chlorophyll fluorescence parameters of Broussonetia papyrifera seedlings.] - Chin. J. Ecol. 33: 2343-2349, 2014. [In Chinese]
  46. Zhang H.B., Wang J.Q., Zhou B.Y. et al.: Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. - Environ. Pollut. 243: 1550-1557, 2018. Go to original source...
  47. Zhao H.M., Huang H.B., Du H. et al.: Intraspecific variability of ciprofloxacin accumulation, tolerance, and metabolism in Chinese flowering cabbage (Brassica parachinensis). - J. Hazard. Mater. 349: 252-261, 2018. Go to original source...
  48. Zhu X.G., Govindjee, Baker N.R. et al.: Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with photosystem II. - Planta 223: 114-133, 2005. Go to original source...