Photosynthetica 2022, 60(3):465-475 | DOI: 10.32615/ps.2022.032

Photosynthetic mechanism of high yield under an improved wide-narrow row planting pattern in maize

X.L. GE1, 2, Y.B. CHEN2, Y. WANG3, B.C. WANG2, Q. CHAO2, Y. YU4, X.J. GONG4, Y.B. HAO4, L. LI4, Y.B. JIANG4, G.Y. LV4, C.R. QIAN4, C.D. JIANG2
1 College of Agriculture, Inner Mongolia University for Nationalities, 028042 Tongliao, China
2 Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
3 Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102 Changchun, China
4 Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, 150086 Harbin, China

Wide-narrow row maize planting patterns are a popular way to enhance maize yield via improving canopy PAR. To further optimize canopy PAR, we designed an improved wide-narrow row planting pattern (R2) based on the principle of the shortest projection length and the longest illumination of objects on the ground. Compared to the traditional wide-narrow row planting pattern (R1), maize yield increased by about 10% in R2. R2 maize had higher PAR, leaf area index, chlorophyll content, and photosynthetic rates than maize grown in R1. Moreover, compared to maize leaves in R1, the carbon assimilation enzymatic activities were also significantly higher in R2. The higher carbon assimilation enzymatic activity in R2 could account for the increased photosynthetic rate. Thus, the improved wide-narrow row planting pattern could improve photosynthetic performance by enhancing the PAR of the plant canopy, which further promotes the ear number and yield in northeast China.

Additional key words: gas exchange; net photosynthetic rate; photon duration; photosynthetic enzymes; productivity.

Received: November 12, 2021; Revised: June 7, 2022; Accepted: June 30, 2022; Prepublished online: September 6, 2022; Published: September 8, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
GE, X.L., CHEN, Y.B., WANG, Y., WANG, B.C., CHAO, Q., YU, Y., ... JIANG, C.D. (2022). Photosynthetic mechanism of high yield under an improved wide-narrow row planting pattern in maize. Photosynthetica60(3), 465-475. doi: 10.32615/ps.2022.032
Download citation

Supplementary files

Download fileGe_2839_supplement.docx

File size: 193.39 kB

References

  1. Alvarez C.E., Detarsio E., Moreno S. et al.: Functional characterization of residues involved in redox modulation of maize photosynthetic NADP-malic enzyme activity. - Plant Cell Physiol. 53: 1144-1153, 2012. Go to original source...
  2. Badger M.R., Price G.D.: The role of carbonic anhydrase in photosynthesis. - Annu. Rev. Plant Phys. 45: 369-392, 1994. Go to original source...
  3. Bai Y.W., Yang Y.H., Zhu Y.L. et al.: [Effect of planting density on light interception within canopy and grain yield of different plant types of maize.] - Acta Agron. Sin. 45: 1868-1879, 2019. [In Chinese]
  4. Bai Y.W., Zhang H.J., Zhu Y.L. et al.: [Responses of canopy radiation and nitrogen distribution, leaf senescence and radiation use efficiency on increased planting density of different variety types of maize.] - Sci. Agr. Sin. 53: 3059-3070, 2020. [In Chinese]
  5. Chastain C.J., Botschner M., Harrington G.E. et al.: Further analysis of maize C4 pyruvate, orthophosphate dikinase phosphorylation by its bifunctional regulatory protein using selective substitutions of the regulatory Thr-456 and catalytic His-458 residues. - Arch. Biochem. Biophys. 375: 165-170, 2000. Go to original source...
  6. Chen Y.B., Lu T.C., Wang H.X. et al.: Posttranslational modification of maize chloroplast pyruvate orthophosphate dikinase reveals the precise regulatory mechanism of its enzymatic activity. - Plant Physiol. 165: 534-549, 2014. Go to original source...
  7. Crafts-Brandner S.J., Salvucci M.E.: Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. - P. Natl. Acad. Sci. USA 97: 13430-13435, 2000. Go to original source...
  8. Dai M.H., Tao H.B., Wang L.N., Wang P.: [Effects of different nitrogen managements on dry matter accumulation, parti­tion and transportation of spring maize (Zea mays L.).] -Acta Agric. Bor.-Sin. 23: 154-157, 2008. [In Chinese]
  9. Fan X.L., Li F.H., Shi Z.S. et al.: [Research on yield increasing effect and physiological characteristics of maize planted in partial ridge-narrow/wide row.] - J. Maize Sci. 18: 108-111, 2010. [In Chinese]
  10. Gao H.J., Peng C., Zhao Y.M. et al.: [Effects of climate, cultivars and density on yield potential of spring corn in northeast of China.] - J. Jilin Agr. Sci. 36: 4-8, 2011. [In Chinese]
  11. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989. Go to original source...
  12. Hammer G.L., Dong Z.S., McLean G. et al.: Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt? - Crop Sci. 49: 299-312, 2009. Go to original source...
  13. Hesketh J.D., Musgrave R.B.: Photosynthesis under field conditions. IV. Light studies with individual corn leaves. - Crop Sci. 2: 311-315, 1962. Go to original source...
  14. Hibberd J.M., Covshoff S.: The regulation of gene expression required for C4 photosynthesis. - Annu. Rev. Plant Biol. 61: 181-207, 2010. Go to original source...
  15. Hou J.M., Luo N., Wang S. et al.: [Effects of increasing planting density on grain yield, leaf area index and photosynthetic rate of maize in China.] - Sci. Agr. Sin. 54: 2538-2546, 2021. [In Chinese] Go to original source...
  16. Hu C., Ge J.W., Xu X.N. et al.: [Estimation of evapotranspiration and crop coefficient in Dajiuhu peatland of Shennongjia based on FAO56 Penman-Monteith.] - Chin. J. Ecol. 31: 1699-1706, 2020. [In Chinese]
  17. Ji B.H., Jiao D.M.: [Photochemical efficiency of PSII and characteristics of photosynthetic CO2 exchange in indica and japonica subspecies of rice and their reciprocal cross F1 hybrids under photoinhibitory conditions.] - Acta Bot. Sin. 41: 508-514, 1999. [In Chinese]
  18. Jia Y.Y., Xiao W.X., Ye Y.S. et al.: Response of photosynthetic performance to drought duration and re-watering in maize. - Agronomy 10: 533, 2020. Go to original source...
  19. Jin R., Li Z., Yang Y. et al.: [Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan.] - Acta Agron. Sin. 46: 614-630, 2020. [In Chinese] Go to original source...
  20. Jin S.H., Hong J., Li X.Q., Jiang D.A.: Antisense inhibition of Rubisco activase increases Rubisco content and alters the proportion of Rubisco activase in stroma and thylakoids in chloroplasts of rice leaves. - Ann. Bot.-London 97: 739-744, 2006. Go to original source...
  21. Kromer S.: Respiration during photosynthesis. - Annu. Rev. Plant Phys. 46: 45-70, 1995. Go to original source...
  22. Li G., Gao H.Y., Zhao B. et al.: [Effects of drought stress on activity of photosystems in leaves of maize at grain filling stage.] - Acta Agron. Sin. 35: 1916-1922, 2009. [In Chinese] Go to original source...
  23. Li H.S., Sun Q., Zhao S.J. et al.: [Principles and techniques of plant physiological and biochemical experiments.] - In: Xue Y. (ed.): [Extraction, Separation and Physicochemical Properties of Chloroplast Pigment.] Pp. 130-135. Higher Education Press, Beijing 2000. [In Chinese]
  24. Li J., Wang H.Z., Liu P. et al.: [Differences in photosynthetic performance of leaves at post-flowering stage in different cultivation modes of summer maize.] - Acta Agron. Sin. 47: 1351-1359, 2021. [In Chinese]
  25. Liang Y., Qi H., Wang J.Y. et al.: [Effects of growth and yield of maize under wide and narrow row cultivation.] -J. Maize Sci. 17: 97-100, 2009. [In Chinese]
  26. Lin T.B., Qu Y.W., Zhang T.X. et al.: [Light use efficiency in different canopy layers of Zea mays stand.] - Chin. J. Ecol. 27: 551-556, 2008. [In Chinese]
  27. Liu C.X., Li Z.X., Liu T.S. et al.: Impact of genetic background on the leaf-protective enzyme activity and hormone levels of maize. - Agronomy 8: 234, 2018. Go to original source...
  28. Liu T.D., Song F.B.: [The comparison of photosynthetic characters on ear leaf under different wide-narrow planting patterns in maize.] - Acta Agric. Bor.-Sin. 29: 117-121, 2014. [In Chinese]
  29. Loomis R.S., Williams W.A.: Maximum crop productivity: An estimate. - Crop Sci. 3: 67-72, 1963. Go to original source...
  30. Maddonni G.A., Otegui M.E., Cirilo A.G.: Plant stand density, row spacing and hybrid effects on maize canopy architecture and light attenuation. - Field Crop. Res. 71: 183-193, 2001. Go to original source...
  31. Matsuoka M.: The gene for pyruvate, orthophosphate dikinase in C4 plants: structure, regulation and evolution. - Plant Cell Physiol. 36: 937-943, 1995. Go to original source...
  32. Nakamoto H., Edwards G.E.: Influences of oxygen and tempera­ture on the dark inactivation of pyruvate, orthophosphate dikinase and NADP-malate dehydrogenase in maize. - Plant Physiol. 71: 568-573, 1983. Go to original source...
  33. Reynolds M., Bonnett D., Chapman S.C. et al.: Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. - J. Exp. Bot. 62: 439-452, 2011. Go to original source...
  34. Sawada S., Sato M., Kasai A. et al.: Analysis of the feed-forward effects of sink activity on the photosynthetic source-sink balance in single-rooted sweet potato leaves. I. Activation of RuBPcase through the development of sinks. - Plant Cell Physiol. 44: 190-197, 2003. Go to original source...
  35. Shimazaki K.I., Doi M., Assmann S.M., Kinoshita T.: Light regulation of stomatal movement. - Annu. Rev. Plant. Biol. 58: 219-247, 2007. Go to original source...
  36. Spreitzer R.J., Salvucci M.E.: Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. - Annu. Rev. Plant. Biol. 53: 449-475, 2002. Go to original source...
  37. Stewart D.W., Costa C., Dwyer L.M. et al.: Canopy structure, light interception, and photosynthesis in maize. - Agron. J. 95: 1465-1474, 2003. Go to original source...
  38. Stitt M., Schulze D.: Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. - Plant Cell Environ. 17: 465-487, 1994. Go to original source...
  39. Takahashi-Terada A., Kotera M., Ohshima K. et al.: Maize phosphoenolpyruvate carboxylase: mutations at the putative binding site for glucose 6-phosphate caused desensitization and abolished responsiveness to regulatory phosphorylation. - J. Biol. Chem. 280: 11798-11806, 2005. Go to original source...
  40. Tang L., Zhu X.C., Cao M.Y. et al.: [Relationships of rice canopy PAR interception and light use efficiency to grain yield.] - Chin. J. Ecol. 23: 1269-1276, 2012. [In Chinese]
  41. Tsubo M., Walker S., Mukhala E.: Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations. - Field Crop. Res. 71: 17-29, 2001. Go to original source...
  42. Wang J.Y., Qi H., Liang Y. et al.: [Effects of different planting patterns on the photosynthesis capacity dry matter accumulation and yield of spring maize.] - J. Maize Sci. 17: 113-115, 2009. [In Chinese]
  43. Wei S.S., Wang X.Y., Dong S.T.: [Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize.] - Chin. J. Appl. Ecol. 25: 441-450, 2014. [In Chinese]
  44. Wu Z.H., Zhang Z.A., Chen Z.Y., Xu K.Z.: [Research on characteristics of canopy structure and photosynthetic characteristic of maize planting in double lines at one width ridge.] - J. Maize Sci. 13: 62-65, 2005. [In Chinese]
  45. Xiao W.X., Liu J., Shi L. et al.: [Effect of nitrogen and density interaction on morphological traits, photosynthetic property and yield of maize hybrid of different plant types.] - Sci. Agr. Sin. 50: 3690-3701, 2017. [In Chinese]
  46. Xu Z.G., Sun L., Wang H. et al.: [Effects of different planting densities on photosynthetic characteristics and yield of different variety types of spring maize on dryland.] - Sci. Agr. Sin. 50: 2463-2475, 2017. [In Chinese]
  47. Yan Y.H., Yang W.Y., Zhang X.Q. et al.: [Effects of different nitrogen levels on photosynthetic characteristics, dry matter accumulation and yield of relay strip intercropping Glycine max after blooming.] - Acta Pratacult. Sin. 20: 233-238, 2011. [In Chinese]
  48. Yang J.S., Gao H.Y., Liu P. et al.: [Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn.] - Acta Agron. Sin. 36: 1226-1233, 2010. [In Chinese] Go to original source...
  49. Yu Q., Wang T.D., Sun S.F., Ren B.H.: [A mathematical study on crop architecture and canopy photosynthesis Ⅱ. numerical study.] - Acta Agron. Sin. 24: 272-279, 1998. [In Chinese]
  50. Zhang C.Y., Bai J., Ding X.P. et al.: [Effects of staggered planting with increased density on the photosynthetic characteristics and yield of summer maize.] - Sci. Agr. Sin. 53: 3928-3941, 2020. [In Chinese]
  51. Zhang Q., Zhang H.S., Song X.Y., Jiang W.: [The effects of planting patterns and densities on photosynthetic characteristics and yield in summer maize.] - Acta Ecol. Sin. 35: 1235-1241, 2015. [In Chinese]
  52. Zhang R.H., Guo D.W., Zhang X.H. et al.: [Effects of drought stress on physiological characteristics and dry matter production in maize silking stage.] - Acta Agron. Sin. 38: 1884-1890, 2012. [In Chinese] Go to original source...
  53. Zhao J., Yang X.G.: Average amount and stability of available agro-climate resources in the main maize cropping regions in China during 1981-2010. - J. Meteorol. Res. 32: 146-156, 2018. Go to original source...
  54. Zheng B., Zhao W., Xu Z. et al.: [Effects of tillage methods and nitrogen fertilizer types on photosynthetic performance of summer maize.] - Acta Agron. Sin. 43: 925-934, 2017. [In Chinese] Go to original source...
  55. Zhu Q.L., Xiang R., Tang L., Long G.Q.: [Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition.] - Chin. J. Plant Ecol. 42: 672-680, 2018. [In Chinese] Go to original source...
  56. Zhu Y.G., Dong S.T., Zhang J.W. et al.: [Effects of cropping patterns on photosynthesis characteristics of summer maize and its utilization of solar and heat resources.] - Chin. J. Appl. Ecol. 21: 1417-1424, 2010. [In Chinese]