Photosynthetica 2019, 57(4):1184-1192 | DOI: 10.32615/ps.2019.127

Enhancing the thermotolerance of tomato seedlings by heat shock treatment

Z.Q. YANG1,2, C. XU1, M.T. WANG3,5, H.L. ZHAO1, Y.J. ZHENG1, H.J. HUANG1, F. VUGUZIGA1, M.A. UMUTONI1
1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, Jiangsu Province, China
2 Binjiang College, Nanjing University of Information Science and Technology, Nanjing, Jiangsu Province, China
3 Sichuan Meteorological Observatory, Chengdu, Sichuan Province, China
5 Water-Saving Agriculture in Southern Hill Area Key Laboratory of Sichuan Province, Chengdu, Sichuan Province, China

The heat tolerance of tomato seedlings was significantly enhanced after heat shock treatment at 40°C for 4 h. Compared with the control, the heat-shocked tomato seedlings, on one hand, had a higher net photosynthetic rate (PN), stomatal conductance, intercellular CO2 concentration, water-use efficiency, maximal quantum yield of PSII photochemistry (Fv/Fm), electron transport rate, actual photochemical efficiency of PSII, and activity of antioxidant enzymes, on the other hand, had lower nonphotochemical quenching, relative conductivity, malondialdehyde content (MDA), and accumulation of reactive oxygen species (ROS). In addition, heat shock induced production of heat shock proteins (HSPs) in tomato seedling leaves. HSP70 was significantly negatively correlated with PN, Fv/Fm, catalase, superoxide dismutase, and peroxidase and was significantly positively correlated with MDA and ROS. Overall, short-term heat shock treatments, inducing the production of HSPs, helped improve the thermal tolerance of tomato seedlings.

Additional key words: chlorophyll fluorescence; high temperature stress; lipid peroxidation; Lycopersicon esculentum; photoinhibition.

Received: May 27, 2019; Accepted: September 12, 2019; Prepublished online: October 31, 2019; Published: November 1, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
YANG, Z.Q., XU, C., WANG, M.T., ZHAO, H.L., ZHENG, Y.J., HUANG, H.J., VUGUZIGA, F., & UMUTONI, M.A. (2019). Enhancing the thermotolerance of tomato seedlings by heat shock treatment. Photosynthetica57(4), 1184-1192. doi: 10.32615/ps.2019.127
Download citation

References

  1. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  2. Begara-Morales J.C., Sánchez-Calvo B., Chaki M. et al.: Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs). - Front. Plant Sci. 7: 152, 2016. Go to original source...
  3. Bita C., Gerats T.: Plant tolerance to high temperature in a changing environment: Scientific fundamentals and produc-tion of heat stress-tolerant crops. - Front. Plant Sci. 4: 273, 2013. Go to original source...
  4. Camejo D., Jiménez A., Alarcón J.J. et al.: Changes in photo-synthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. - Funct. Plant Biol. 33: 177-187, 2006. Go to original source...
  5. Camejo D., Rodríguez P., Morales M.A. et al.: High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. - J. Plant Physiol. 162: 281-289, 2005. Go to original source...
  6. Chen C., Li H., Zhang D. et al.: The role of anthocyanin in photoprotection and its relationship with the xanthophyll cycle and the antioxidant system in apple peel depends on the light conditions. - Physiol. Plantarum 149: 354-366, 2013. Go to original source...
  7. Gurley W.B.: HSP101: A key component for the acquisition of thermotolerance in plants. - Plant Cell 12: 457-460, 2000. Go to original source...
  8. Hahn A., Bublak D., Schleiff E., Scharf K.D.: Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. - Plant Cell 23: 741-755, 2011. Go to original source...
  9. Hatfield J.L., Prueger J.H.: Temperature extremes: Effect on plant growth and development. - Weather Clim. Extrem. 10: 4-10, 2015. Go to original source...
  10. He X., Qiao Y., Liu Y. et al.: Environmental impact assessment of organic and conventional tomato production in urban greenhouses of Beijing city, China. - J. Clean. Prod. 134: 251-258, 2016. Go to original source...
  11. Hu X., Liu R., Li Y. et al.: Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. - Plant Growth Regul. 60: 225-235, 2010. Go to original source...
  12. Hütsch B.W., Jahn D., Schubert S.: Grain yield of wheat (Triticum aestivum L.) under long-term heat stress is sink-limited with stronger inhibition of kernel setting than grain filling. - J. Agron. Crop Sci. 205: 22-32, 2019. Go to original source...
  13. Kanazawa A., Kramer D.M.: In vivo modulation of nonphoto-chemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. - P. Natl. Acad. Sci. USA 99: 12789-12794, 2002. Go to original source...
  14. Karlidag H., Esitken A., Yildirim E. et al.: Effects of plant growth promoting bacteria on yield, growth, leaf water content, membrane permeability, and ionic composition of strawberry under saline conditions. - J. Plant Nutr. 34: 34-45, 2010. Go to original source...
  15. Keeler S.J., Boettger C.M., Haynes J.G. et al.: Acquired thermotolerance and expression of the HSP100/ClpB genes of lima bean. - Plant Physiol. 123: 1121-1132, 2000. Go to original source...
  16. Kissoudis C., Chowdhury R., van Heusden S. et al.: Combined biotic and abiotic stress resistance in tomato. - Euphytica 202: 317-332, 2015. Go to original source...
  17. Lang Y., Wang M., Zhang G. et al.: Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions. - Photosynthetica 51: 370-378, 2013. Go to original source...
  18. Li S., Li F., Wang J. et al.: Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings. - Plant Cell Environ. 34: 1931-1943, 2011. Go to original source...
  19. Liang G.T., Zhang S.Y., Guo J. et al.: The effects of para-hydroxybenzoic acid treatment on photosynthetic parameters of Populus × euramericana "Neva". - Photosynthetica 56: 505-511, 2018. Go to original source...
  20. Lindquist S., Craig E.A.: The heat-shock proteins. - Annu. Rev. Genet. 22: 631-677, 1988. Go to original source...
  21. Lu T., Meng Z., Zhang G. et al.: Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.). - Front. Plant Sci. 8: 365, 2017. Go to original source...
  22. Luna C.M., Pastori G.M., Driscoll S. et al.: Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. - J. Exp. Bot. 56: 417-423, 2005. Go to original source...
  23. Lurie S., Klein J.D.: Acquisition of low-temperature tolerance in tomatoes by exposure to high-temperature stress. - J. Am. Soc. Hortic. Sci. 116: 1007-1012, 1991. Go to original source...
  24. Mahat D.B., Salamanca H.H., Duarte F.M. et al.: Mammalian heat shock response and mechanisms underlying its genome-wide transcriptional regulation. - Mol. Cell 62: 63-78, 2016. Go to original source...
  25. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  26. Meloni D.A., Oliva M.A., Martinez C.A., Cambraia J.: Photo-synthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. - Environ. Exp. Bot. 49: 69-76, 2003. Go to original source...
  27. Nover L., Bharti K., Döring P. et al.: Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need? - Cell Stress Chaperon. 6: 177-189, 2001. Go to original source...
  28. Piterková J., Luhová L., Mieslerová B. et al.: Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection. - Plant Sci. 207: 57-65, 2013. Go to original source...
  29. Prieto P., Peñuelas J., Llusià J. et al.: Effects of long-term experimental night-time warming and drought on photosynthesis, Fv/Fm and stomatal conductance in the dominant species of a Mediterranean shrubland. - Acta Physiol. Plant. 31: 729-739, 2009. Go to original source...
  30. Sakata T., Higashitani A.: Male sterility accompanied with abnormal anther development in plants: Genes and environ-mental stresses with special reference to high temperature injury. - Int. J. Plant Dev. Biol. 2: 42-51, 2008.
  31. Takahashi S., Murata N.: How do environmental stresses accelerate photoinhibition? - Trends Plant Sci. 13: 178-182, 2008. Go to original source...
  32. Tedeschi J.N., Kennington W.J., Tomkins J.L. et al.: Heritable variation in heat shock gene expression: A potential mechanism for adaptation to thermal stress in embryos of sea turtles. - P. R. Soc. B 283: 671-682, 2016. Go to original source...
  33. Tsikas D.: Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. - Anal. Biochem. 524: 13-30, 2017. Go to original source...
  34. Usman M.G., Rafii M.Y., Ismail M.R. et al.: Heat shock proteins: Functions and response against heat stress in plants. - Int. J. Sci. Technol. Res. 3: 204-218, 2014.
  35. Wang C., Wen D., Sun A. et al.: Differential activity and expression of antioxidant enzymes and alteration in osmolyte accumulation under high temperature stress in wheat seedlings. - J. Cereal Sci. 60: 653-659, 2014. Go to original source...
  36. Wang Z., Wang Y., Zhao J. et al.: Effects of GeO2 on chlorophyll fluorescence and antioxidant enzymes in apple leaves under strong light. - Photosynthetica 56: 1081-1092, 2018. Go to original source...
  37. Xie D., Zhang G., Xia X. et al.: The effects of phenolic acids on the photosynthetic characteristics and growth of Populus × euramericana cv.'Neva'seedlings. - Photosynthetica 56: 981-988, 2018. Go to original source...
  38. Xu W., Cai S.Y., Zhang Y. et al.: Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. - J. Pineal. Res. 61: 457-469, 2016. Go to original source...
  39. Yoshida T., Ohama N., Nakajima J. et al.: Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. - Mol. Genet. Genomics 286: 321-332, 2011. Go to original source...
  40. Yuan Y., Liu Y., Luo Y. et al.: High temperature effects on flavones accumulation and antioxidant system in Scutellaria baicalensis Georgi cells. - Afr. J. Biotechnol. 10: 5182-5192, 2011.
  41. Zarrin H., Higgins D., Jun Y. et al.: Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. - J. Phys. Chem. C 115: 20774-20781, 2011. Go to original source...
  42. Zhang B.B., Xu J.L., Zhou M. et al.: Effect of light quality on leaf photosynthetic characteristics and fruit quality of peach (Prunus persica L. Batch). - Photosynthetica 56: 1113-1122, 2018. Go to original source...
  43. Zhou R., Yu X., Kjær K.H. et al.: Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. - Environ. Exp. Bot. 118: 1-11, 2015. Go to original source...
  44. Zhu X., Song F., Xu H.: Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. - Mycorrhiza 20: 325-332, 2010. Go to original source...
  45. Zhu Z., Wei G., Li J. et al.: Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). - Plant Sci. 167: 527-533, 2004. Go to original source...