biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 64:395-405, 2020 | DOI: 10.32615/bp.2020.003

Reserve metabolism and ubiquitin proteasome system are involved in germination progress of wheat grains

W.D. ZHANG1,2, L. WANG2, Q.R. GAO1,2,*, Y. WANG1, Y.Z. WANG1
1 State Key Laboratory of Crop Science, Shandong Agricultural University, Taian City, Shandong Province 271018, P.R. China
2 Agronomy College, Shandong Agricultural University, Taian City, Shandong Province 271018, P.R. China

To further elucidate the molecular mechanism of the germination in common wheat, a differential proteomic analysis was completed between the F1 hybrid RS5322 and its parental lines (RS53 and SN22) using isobaric tags for relative and absolute quantitation (iTRAQ) based strategy. Rapid grain germination and superior young seedling growth were observed in the F1 hybrid line. A total of 807 differentially abundant proteins (DAPs) were identified by iTRAQ analysis of grains at 48 h after imbibition in distilled water. Bioinformatics analysis shows that 638 DAPs were annotated in 38 Gene Ontology functional groups, 764 DAPs were classified into 23 clusters of orthologous groups of protein categories, and 538 DAPs were enriched in 65 Kyoto encyclopedia of genes and genomes pathways. Real time quantitative PCR of 12 genes encoding different important proteins showed certain transcriptional and translational expression similarities during grain development. In the F1 hybrid, the DAPs were particularly those involved in starch and sugar metabolism, protein metabolism, protein modification, and ubiquitin proteasome system (UPS). It was speculated that UPS might be responsible for a high germination ability in the F1 hybrid by regulating storage substance metabolism. The DAPs identified in this study provide a scope for improving the grain germination trait in agricultural crops.

Keywords: differentially abundant proteins, F1 hybrid, iTRAQ, seed imbibition.

Received: August 22, 2019; Revised: December 31, 2019; Accepted: January 10, 2020; Published online: May 26, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
ZHANG, W.D., WANG, L., GAO, Q.R., WANG, Y., & WANG, Y.Z. (2020). Reserve metabolism and ubiquitin proteasome system are involved in germination progress of wheat grains. Biologia plantarum64, Article 395-405. https://doi.org/10.32615/bp.2020.003
Download citation

Supplementary files

Download fileZhang6310 Suppl.pdf

File size: 370.44 kB

References

  1. Argyris, J., Truco, J.M., Ochoa, O.: A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locusHtg6.1 in lettuce (Lactuca sp.). - Theor. appl. Genet. 122: 95-108, 2011. Go to original source...
  2. Bottari, A., Capocchi, A., Galleschi, L.: Asparaginyl endopeptidase during maturation and germination of durum wheat. - Physiol. Plant. 97: 475-480, 1996. Go to original source...
  3. Chen, H., Osuna, D., Colville, L., Lorenzo, O., Graeber, K., Küster, H., Leubner, M.G., Kranner, I.: Transcriptome-wide mapping of pea seed ageing reveals a pivotal role for genes related to oxidative stress and programmed cell death. - PloS ONE 8: e78471, 2013. Go to original source...
  4. Chen, X.L., Chen, X.S.,Wu, S.J., Feng, S.Q.: Recent advances in understanding plant heterosis. - Agr. Sci. 6: 1033-1038, 2015. Go to original source...
  5. Chen, Z., Kong, L., Zhou, Y.: Endosperm-specific OsPYL8 and OsPYL9 act as positive regulators of the ABA signaling pathway in rice seed germination. - Funct. Plant Biol. 44: 635-645, 2017. Go to original source...
  6. Chiu, R.S., Pan, S., Zhao, R.: ABA-dependent ihibition of the ubiquitin proteasome system during germination at high temperature in Arabidopsis. - Plant J. 88: 749-761, 2016. Go to original source...
  7. Chrispeels, M.J., Boulter, D.: Control of storage protein metabolism in the cotyledons of germinating mung beans: role of endopeptidase 12. - Plant Physiol. 55: 1031-1037, 1975. Go to original source...
  8. Colombo, N., Galmarini, C.R., Havey, M.: The use of genetic, manual and chemical methods to control pollination in vegetable hybrid seed production: a review. - Plant Breed. 136: 287-299, 2017. Go to original source...
  9. Cornel, F.A., Plaxton, W.C.: Characterization of asparaginyl endopeptidase activity in endosperm of developing and germinating castor oil seeds. - Physiol. Plant. 91: 599-604, 1994. Go to original source...
  10. Derer, J., Tongoona, P., MacRoberts, J., Yang, H.S., Musundire, L., Dari, S.: Effect of male planting date and female plant population on hybrid maize yield and evaluation of use of hybrid-maize simulation model for grain yield estimation in hybrid maize seed production. - J. agr. Sci. 10: 333-343, 2018. Go to original source...
  11. Eckstein, A., Jagieilo-Flasinska, D., Lewandowska, A., Hermanowicz, P., Appenroth, K.J., Gabrys, H.: Mobilization of storage materials during light-induced germination of tomato (Solanum lycopersicum) seeds.- Plant Physiol. Biochem. 105: 271-281, 2016. Go to original source...
  12. Eleanor, H.G.A., Steven, H.S.: The ubiquitin-proteasome system as a transcriptional regulator of plant immunity. - J. exp. Bot. 69: 4529-4537, 2018. Go to original source...
  13. Fu, D.H., Xiao, M.L., Hayward, A., Jiang, G.J., Zhu, L.R., Zhou, Q.H., Li,J.Q., Zhang,M.: What is crop heterosis: new insights into an old topic. - J. appl. Genet. 56: 1-13, 2015. Go to original source...
  14. Fu, Z.Y., Jin, X.I., Ding, D., Li, Y.L., Fu, Z.J., Tang, J.H.: Proteomic analysis of heterosis during maize seed germination. - Proteomics 11: 1462-1472, 2011. Go to original source...
  15. Gabriele, S., Rizza, A., Martone, J., Circelli, P., Costantino, P., Vittorioso, P.: The Dof protein DAG1 mediates PIL5 activity on seed germination by negatively regulating GA biosynthetic gene AtGA3ox1. - Plant J. 61: 312-323, 2010. Go to original source...
  16. Glevarec, G., Bouton, S., Jaspard, E.: Respective roles of the glutamine synthetase/glutamate synthase cycle and glutamate dehydrogenase in ammonium and amino acid metabolism during germination and post-germinative growth in the model legume Medicago truncatula. - Planta 219: 286-297, 2004. Go to original source...
  17. Gutteridge, A., Thornton, J.M.: Understanding nature's catalytic toolkit. - Trends biochem. Sci. 30: 622-629, 2005. Go to original source...
  18. Han, C., He, D.L., Li, M., Yang, P.F.: In-depth proteomic analysis of rice embryo reveals its important roles in seed germination. - Plant Cell Physiol. 55: 1826-1847, 2014. Go to original source...
  19. Inès, K., Chaoui, A., Jaouani, K.: Role of the ubiquitin-proteasome pathway and some peptidases during seed germination and copper stress in bean cotyledons. - Plant Physiol. Biochem. 76: 77-85, 2014. Go to original source...
  20. Jacobsen, J.V., Barrero, J.M., Hughes, T.: Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (Triticum aestivum L.). - Planta 238: 121-138, 2013. Go to original source...
  21. Job, C.: Patterns of protein oxidation in Arabidopsis seeds and during germination. -Plant Physiol. 138: 790-802, 2005. Go to original source...
  22. Lamichhane, J.R., Debaeke, P., Steinberg, C., You, M.P., Barbetti, M.J., Aubertot, J.N.: Abiotic and biotic factors affecting crop seed germination and seedling emergence: a conceptual framework. - Plant Soil 432: 1-28, 2018. Go to original source...
  23. Llebres, M.T., Pascual, M.B., Debille, S., Trontin, J.F., Harvengt, L., Avila, C., Canovas, F.M.: The role of arginine metabolic pathway during embryogenesis and germination in maritime pine (Pinus pinaster Ait.). - Tree Physiol. 38: 471-484, 2018. Go to original source...
  24. Liu, Y., Ye, N., Liu, R.: H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. - J. exp. Bot. 61: 2979-2990, 2010. Go to original source...
  25. Long, C., Held, M., Hayward, A.: Seed development, seed germination and seedling growth in the R50 (sym16) pea mutant are not directly linked to altered cytokinin homeostasis. - Physiol. Plant. 145: 341-359, 2012. Go to original source...
  26. Lopez-Pedrouso, M., Alonso, J., Zapata, C.: Evidence for phosphorylation of the major seed storage protein of the common bean and its phosphorylation-dependent degradation during germination. - Plant mol. Biol. 84: 415-428, 2014. Go to original source...
  27. Ma, C.Y., Zhou, J.W., Chen, G.X., Bian, Y.W., L., D.W., Li, X.H., Wang, Z.M., Yan, Y.M.: iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. - BMC Genomics 15: 1029, 2014. Go to original source...
  28. Meena, R.K., Pullaiahgari, D., Gudipalli, P.: Proteomic analysis of heterotic seed germination in maize using F1 hybrid DHM 117 and its parental inbreds. - Turkish J. Biol. 42: 345-363, 2018. Go to original source...
  29. Meyer, E.H., Tomaz, T., Carroll, A.J., Estavillo, G., Delannoy, E., Tanz, S.K., Small, I.D., Pogson, B.J., Millar, A.H.: Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night. - Plant Physiol. 151: 2187-2187, 2009. Go to original source...
  30. Mistry, P.M., Prajapati, M.B., Belhekar, P.S.: Heterosis for grain yield and yield attributing traits in rice (Oryza sativa L.). - J. agr. Res. Technol. 41: 205-213, 2016.
  31. Murray, R.F., Harper, H.W., Granner, D.K., Mayes, P.A., Rodwell, V.W.: Harper's Illustrated Biochemistry. - Lange Medical Books/McGraw-Hill., New York 2006.
  32. Nambara, E., Okamoto, M., Tatematsu, K., Yano, R., Seo, M., Kamiya, Y.: Abscisic acid and the control of seed dormancy and germination. - Seed Sci. Res. 20: 55-67, 2010. Go to original source...
  33. Nardi, S., Muscolo, A., Sidari, M., Panuccio, M.R., Sessi, E.: Alteration of amino acid metabolism by humic substances during germination of Pinus laricio seeds. - Seed Sci. Technol. 30: 205-210, 2002.
  34. Novikova, G.V., Tournaire-Roux, C., Sinkevich, I.A.: Vacuolar biogenesis and aquaporin expression at early germination of broad bean seeds. - Plant Physiol. Biochem. 82: 123-132, 2014. Go to original source...
  35. Pearce, S., Huttly, A.K., Prosser, I.M.: Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family. - BMC Plant Biol. 15: 130, 2015. Go to original source...
  36. Pergo, E.M., Ishii-Iwamoto, E.L.: Changes in energy metabolism and antioxidant defense systems during seed germination of the weed species ipomoea triloba l. and the responses to allelochemicals. - J. chem. Ecol. 37: 500-513, 2011. Go to original source...
  37. Premlatha, M., Kalamani, A.: Heterosis and combining ability studies for grain yield and growth characters in maize (Zea mays L.). - Indian J. agr. Res. 44: 62-65, 2010.
  38. Rajjou, L., Lovigny, Y., Groot, S.P.C., Belghazi, M., Job, C.: Proteome wide characterization of seeds ageing in Arabidopsis: A comparison between artificial and natural ageing protocols. - Plant Physiol. 148: 620-641, 2008. Go to original source...
  39. Salomons, F.A., Klara, A., Dantuma, N.P.: Illuminating the ubiquitin/proteasome system. - Exp. cell. Res. 316: 1289-1295, 2010. Go to original source...
  40. Shaik, S.S., Carciofi, M., Martens, H.J.: Starch bioengineering affects cereal grain germination and seedling establishment. - J. exp. Bot. 65: 2257-2270, 2014. Go to original source...
  41. Shi, C., Xu, L.L.: Characters of cysteine endopeptidases in wheat endosperm during seed germination and subsequent seedling growth. - J. Integrative Plant Biol. 51: 52-57, 2009. Go to original source...
  42. Singarayer, F., Sandra, W., Alannah, K., Arunthathy, F., Kim, D., Martin, W., Bhagirath, S.C.: Seed germination response of a noxious agricultural weed Echium plantagineum to temperature, light, pH, drought stress, salinity, heat and smoke.- Crop Pasture Sci. 69: 326-333, 2018. Go to original source...
  43. Sun, C., Ruan, R.W., Yan, L.L., Hu, D., Liu, X.B., She, H.Z., Xu, M.M., Li, Z.G., Yi, Z.L., Yang, Y.H.: Effects of different row ratios of male and female parents and application amount of nitrogen fertilizer on hybrid wheat seed production and its component factors. - Asian agr. Res. 9: 69-73, 2017.
  44. Swanton, E., Bulleid, N.J.: Protein folding and translocation across the endoplasmic reticulum membrane. - Membrane Biol. 20: 99-104, 2003. Go to original source...
  45. Taki, M., Soheili-Fard, F., Rohani, A., Chen, G.N., Yildizhan, H.: Life cycle assessment to compare the environmental impacts of different wheat production systems. - J. cleaner Product. 197: 195-207, 2018. Go to original source...
  46. Tikhenko, N.D., Tsvetkova, N.V., Lyholay, A.N., Voylokov, A.: Identification of complementary genes of hybrid lethality in crosses of bread wheat and rye. - Russ. J. Genet. appl. Res. 7: 153-158, 2017. Go to original source...
  47. Vizcaino, J.A., Cote, R. G., Csordas, A.J., Dianes, A. Fabregat, A., Foster, J.M.: The proteomics. Identifications (PRIDE) database and associated tools: status in 2013. - Nucl. Acids Res. 41: D1063-D1069, 2013. Go to original source...
  48. Wang, L.F., Zhang, F., Fu, T.D., Shen, J.X.: A review: status and prospect of heterosis prediction in rapeseed (Brassica napus L.). - Chin. J. Oil Crop Sci. 3: 187-194, 2017.
  49. Wei, T., He, Z.L., Tan, X.Y., Liu, X.,Yuan, X., Luo, Y.F., Hu, S.N.: An integrated RNA-Seq and network study reveals a complex regulation process of rice embryo during seed germination.- Biochem. biophys. Res. Commun. 464: 176-181, 2015. Go to original source...
  50. Xia, Q., Maharajah, P., Cueff, G., Rajjou,L., Prodhomme, D., Gibon, Y., Bailly, C., Corbineau,F., Meimoun, P., El-Maarouf-Bouteau, H.: Integrating proteomics and enzymatic profiling to decipher seed metabolism affected by temperature in seed dormancy and germination. - Plant Sci. 269: 118-125, 2018. Go to original source...
  51. Xu, H.H., Liu, S.J., Song, S.H.: Proteomics analysis reveals distinct involvement of embryo and endosperm proteins during seed germination in dormant and non-dormant rice seeds. - Plant Physiol. Biochem. 103: 219-242, 2016. Go to original source...
  52. Zhao, H.Y., Zhang, H.M., Cui, P., Ding, F., Wang, G.C., Li, R.J., Matthew, A.J., Lü, S.Y., Xiong, L.M.: The putative E3 ubiquitin ligase ECERIFERUM9 regulates abscisic acid biosynthesis and response during seed germination and postgermination growth in Arabidopsis. - Plant Physiol. 165: 1255-1268, 2014. Go to original source...
  53. Zhao, M., Zhang, H., Yan, H., Qiu, L., Baskin, C.C.: Mobilization and role of starch, protein, and fat reserves during seed germination of six wild grassland species. - Front. Plant Sci. 9: 1-11, 2018. Go to original source...
  54. Zikova, A., Vohradsky, J., Strakova, E., Bobek, J.: Global features of gene expression on the proteome and transcriptome levels in S. coelicolor during germination. - PLoS ONE 8: e72842, 2013. Go to original source...