Photosynthetica 2023, 61(2):168-176 | DOI: 10.32615/ps.2022.044

Light intensity affects tolerance of pyrene in Chlorella vulgaris and Scenedesmus acutus

R.S. TOMAR1, R. ATRE1, D. SHARMA1, P. RAI-KALAL1, A. JAJOO1, 2
1 School of Life Science, Devi Ahilya University, 452017 Indore, India
2 School of Biotechnology, Devi Ahilya University, 452017 Indore, India

The impact of light intensity on the toxicity of pyrene, a 4-ring polycyclic aromatic hydrocarbon (PAH), was studied in Chlorella vulgaris and Scenedesmus acutus. Both species were cultured under low light, LL [50-60 µmol(photon) m-2 s-1], and high light, HL [100-110 µmol(photon) m-2 s-1] conditions to study the effects of pyrene (PYR) toxicity on growth parameters, the content of biomolecules, chlorophyll content, and photosynthetic efficiency. In the presence of PYR, S. acutus could grow well in LL and HL intensity. On the other hand, C. vulgaris showed a drastic decrease in growth and photosynthesis during HL conditions due to PYR toxicity. Regulation of nonphotochemical and photochemical quenching was responsible for the survival of S. acutus under PYR toxicity in LL and HL conditions. Thus, S. acutus seems to be a more promising candidate for pyrene degradation under varying light conditions.

Additional key words: Chlorella vulgaris; light intensity; photosynthesis; pyrene; Scenedesmus acutus.

Received: July 8, 2022; Revised: August 28, 2022; Accepted: September 13, 2022; Prepublished online: October 17, 2022; Published: June 6, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
TOMAR, R.S., ATRE, R., SHARMA, D., RAI-KALAL, P., & JAJOO, A. (2023). Light intensity affects tolerance of pyrene in Chlorella vulgaris and Scenedesmus acutus. Photosynthetica61(SPECIAL ISSUE 2023/1), 168-176. doi: 10.32615/ps.2022.044
Download citation

References

  1. Abu-Ghosh S., Fixler D., Dubinsky Z., Iluz D.: Flashing light in microalgae biotechnology. - Bioresource Technol. 203: 357-363, 2016. Go to original source...
  2. Aksmann A., Shutova T., Samuelsson G., Tukaj Z.: The mechanism of anthracene interaction with photosynthetic apparatus: A study using intact cells, thylakoid membranes and PSII complexes isolated from Chlamydomonas reinhardtii. - Aquat. Toxicol. 104: 205-210, 2011. Go to original source...
  3. Alegbeleye O.O., Opeolu B.O., Jackson V.A.: Polycyclic aromatic hydrocarbons: A critical review of environmental occurrence and bioremediation. - Environ. Manage. 60: 758-783, 2017. Go to original source...
  4. Baidya A., Akter T., Islam M.R. et al.: Effect of different wavelengths of LED light on the growth, chlorophyll, β-carotene content and proximate composition of Chlorella ellipsoidea. - Heliyon 7: e08525, 2021. Go to original source...
  5. Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  6. Binnal P., Babu P.N.: Optimization of environmental factors affecting tertiary treatment of municipal wastewater by Chlorella protothecoides in a lab scale photobioreactor. - J. Water Process Eng. 17: 290-298, 2017. Go to original source...
  7. Bukowska B., Duchnowicz P.: Molecular mechanisms of action of selected substances involved in the reduction of benzo[a]pyrene-induced oxidative stress. - Molecules 27: 1379, 2022. Go to original source...
  8. Cajnko M.M., Novak U., Likozar B.: Cascade valorization process of brown alga seaweed Laminaria hyperborea by isolation of polyphenols and alginate. - J. Appl. Phycol. 31: 3915-3924, 2019. Go to original source...
  9. Cheng D., He Q.: Assessment of environmental stresses for enhanced microalgal biofuel production - an overview. - Front. Energy Res. 2: 26, 2014. Go to original source...
  10. Croxton A.N., Wikfors G.H., Schulterbrandt-Gragg III R.D.: The use of flow cytometric applications to measure the effects of PAHs on growth, membrane integrity, and relative lipid content of the benthic diatom, Nitzschia brevirostris. - Mar. Pollut. Bull. 91: 160-165, 2015. Go to original source...
  11. Dere S., Güneº T., Sivaci R.: Spectrophotometric determination of chlorophyll-a, b and total carotenoid contents of some algae species using different solvents. - Turk. J. Bot. 22: 13-17, 1998.
  12. Dinç E., Ceppi M.G., Tóth S.Z. et al.: The Chl a fluorescence intensity is remarkably insensitive to changes in the chlorophyll content of the leaf as long as the Chl a/b ratio remains unaffected. - BBA-Bioenergetics 1817: 770-779, 2012. Go to original source...
  13. Elsheery N.I., Cao K.F.: Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. - Acta Physiol. Plant. 30: 769-777, 2008. Go to original source...
  14. Elsheery N.I., Wilske B., Cao K.F.: The effect of night chilling on gas exchange and chlorophyll fluorescence of two mango cultivars growing under two irradiances. - Acta Bot. Yunnan. 30: 447-456, 2008. Go to original source...
  15. González-Camejo J., Viruela A., Ruano M.V. et al.: Effect of light intensity, light duration and photoperiods in the performance of an outdoor photobioreactor for urban wastewater treatment. - Algal Res. 40: 101511, 2019. Go to original source...
  16. Gris B., Morosinotto T., Giacometti G.M. et al.: Cultivation of Scenedesmus obliquus in photobioreactors: effects of light intensities and light-dark cycles on growth, productivity, and biochemical composition. - Appl. Biochem. Biotech. 172: 2377-2389, 2014. Go to original source...
  17. Hazrati S., Tahmasebi-Sarvestani Z., Modarres-Sanavy S.A.M. et al.: Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. - Plant Physiol. Bioch. 106: 141-148, 2016. Go to original source...
  18. Häder D.P., Williamson C.E., Wängberg S.A. et al.: Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. - Photoch. Photobio. Sci. 14: 108-126, 2015. Go to original source...
  19. Jain L., Jajoo A.: Protection of PSI and PSII complexes of wheat from toxic effect of anthracene by Bacillus subtilis (NCIM 5594). - Photosynth. Res. 146: 197-211, 2020. Go to original source...
  20. Jajoo A., Mekala N.R., Tomar R.S. et al.: Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity. - J. Photoch. Photobio. B 137: 151-155, 2014. Go to original source...
  21. Juhasz A.L., Naidu R.: Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. - Int. Biodeterior. Biodegradation 45: 57-88, 2000. Go to original source...
  22. Khpalwak W., Abdel-dayem S.M., Sakugawa H.: Individual and combined effects of fluoranthene, phenanthrene, mannitol and sulfuric acid on marigold (Calendula officinalis). - Ecotox. Environ. Safe. 148: 834-841, 2018. Go to original source...
  23. Kim S.-H., Liu K.-H., Lee S.-Y. et al.: Effects of light intensity and nitrogen starvation on glycerolipid, glycerophospholipid, and carotenoid composition in Dunaliella tertiolecta culture. - PLoS ONE 8: e72415, 2013. Go to original source...
  24. Kottuparambil S., Park J.: Anthracene phytotoxicity in the freshwater flagellate alga Euglena agilis Carter. - Sci. Rep.-UK 9: 15323, 2019. Go to original source...
  25. Laurens L.M.L., Dempster T.A., Jones H.D.T. et al.: Algal biomass constituent analysis: method uncertainties and investigation of the underlying measuring chemistries. - Anal. Chem. 84: 1879-1887, 2012. Go to original source...
  26. Lee C.Y., Nanah C.N., Held R.A. et al.: Effect of electron donating groups on polyphenol-based antioxidant dendri­mers. - Biochimie 111: 125-134, 2015. Go to original source...
  27. Li S., Chu R., Hua D. et al.: Combined effects of 17β-estradiol and copper on growth, biochemical characteristics and pollutant removals of freshwater microalgae Scenedesmus dimorphus. - Sci. Total Environ. 730: 138597, 2020. Go to original source...
  28. Mathur S., Tomar R.S., Jajoo A.: Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. - Photosynth. Res. 139: 227-238, 2019. Go to original source...
  29. Meena M., Divyanshu K., Kumar S. et al.: Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. - Heliyon 5: e02952, 2019. Go to original source...
  30. Mishra S.K., Suh W.I., Farooq W. et al.: Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. - Bioresource Technol. 155: 330-333, 2014. Go to original source...
  31. Nama S., Madireddi S.K., Devadasu E.R., Subramanyam R.: High light induced changes in organization, protein profile and function of photosynthetic machinery in Chlamydomonas reinhardtii. - J. Photoch. Photobio. B 152: 367-376, 2015. Go to original source...
  32. Nzayisenga J.C., Farge X., Groll S.L., Sellstedt A.: Effects of light intensity on growth and lipid production in microalgae grown in wastewater. - Biotechnol. Biofuels 13: 4, 2020. Go to original source...
  33. Olayinka O.O., Adewusi A.A., Olarenwaju O.O., Aladesida A.A.: Concentration of polycyclic aromatic hydrocarbons and estimated human health risk of water samples around Atlas Cove, Lagos, Nigeria. - J. Health Pollut. 6: 181210, 2018. Go to original source...
  34. Paliwal C., Mitra M., Bhayani K. et al.: Abiotic stresses as tools for metabolites in microalgae. - Bioresource Technol. 244: 1216-1226, 2017. Go to original source...
  35. Petersen D.G., Dahllöf I.: Combined effects of pyrene and UV-light on algae and bacteria in an arctic sediment. - Ecotoxicology 16: 371-377, 2007. Go to original source...
  36. Petersen D.G., Reichenberg F., Dahllöf I.: Phototoxicity of pyrene affects benthic algae and bacteria from the Arctic. - Environ. Sci. Technol. 42: 1371-1376, 2008. Go to original source...
  37. Slocombe S.P., Ross M., Thomas N. et al.: A rapid and general method for measurement of protein in micro-algal biomass. - Bioresource Technol. 129: 51-57, 2013. Go to original source...
  38. Sun H., Yang Y.J., Huang W.: The water-water cycle is more effective in regulating redox state of photosystem I under fluctuating light than cyclic electron transport. - BBA-Bioenergetics 1861: 148235, 2020. Go to original source...
  39. Tang D., Han W., Li P. et al.: CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. - Bioresource Technol. 102: 3071-3076, 2011. Go to original source...
  40. Tomar R.S., Jajoo A.: Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum). - Ecotox. Environ. Safe. 109: 110-115, 2014. Go to original source...
  41. Tomar R.S., Jajoo A.: Photomodified fluoranthene exerts more harmful effects as compared to intact fluoranthene by inhibiting growth and photosynthetic processes in wheat. - Ecotox. Environ. Safe. 122: 31-36, 2015. Go to original source...
  42. Tomar R.S., Jajoo A.: Photosynthetic response in wheat plants caused by the phototoxicity of fluoranthene. - Funct. Plant Biol. 46: 725-731, 2019. Go to original source...
  43. Tomar R.S., Jajoo A.: Enzymatic pathway involved in the degra­da­tion of fluoranthene by microalgae Chlorella vulgaris. - Ecotoxicology 30: 268-276, 2021. Go to original source...
  44. Tsao R.: Chemistry and biochemistry of dietary polyphenols. - Nutrients 2: 1231-1246, 2010. Go to original source...
  45. Xu Y., Ibrahim I.M., Harvey P.J.: The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (Chlorophyta) CCAP 19/30. - Plant Physiol. Bioch. 106: 305-315, 2016. Go to original source...
  46. Yan C., Zhang L., Luo X., Zheng Z.: Effects of various LED light wavelengths and intensities on the performance of purifying synthetic domestic sewage by microalgae at different influent C/N ratios. - Ecol. Eng. 51: 24-32, 2013. Go to original source...
  47. Zarmi Y., Gordon J.M., Mahulkar A. et al.: Enhanced algal photosynthetic photon efficiency by pulsed light. - iScience 23: 101115, 2020. Go to original source...