Photosynthetica 2022, 60(4):497-507 | DOI: 10.32615/ps.2022.038

Effect of different LED-lighting quality conditions on growth and photosynthetic characteristics of saffron plants (Crocus sativus L.)

J. ZHU, Y.C. ZHANG, L.Y. YANG, L. ZHOU
Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, 201403 Shanghai, China

The effects of different light-emitting diode (LED) lights on saffron growth and photosynthetic characteristic were explored. Physiological mechanisms were explained by chlorophyll a fluorescence transient curves (OJIP) and JIP-test parameters. A decrease in the red to blue light ratio resulted in negative effects, particularly for monochromatic blue (B) LED light; saffron seedlings showed reduced chlorophyll accumulation, inhibited leaf elongation, and decreased photosynthetic performance. In the OJIP curve, the higher positive K-band observed for B LED light indicated that oxygen-evolving complex activation significantly decreased. B LED light inhibited the electron transport between primary quinone acceptor and secondary quinone acceptor as well as the existence of reducing plastoquinone centers, and increased energy dissipation of reaction centers. Otherwise, the red to blue light ratio of 2:1 had a positive effect on saffron cultivation, resulting in the longest leaf lengths, highest chlorophyll content, and photosynthetic characteristics. This study provides theoretical guidance for saffron agricultural practices.

Additional key words: chlorophyll fluorescence; LED light; photosynthesis; saffron.

Received: May 28, 2022; Revised: June 29, 2022; Accepted: August 1, 2022; Prepublished online: October 3, 2022; Published: December 21, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
ZHU, J., ZHANG, Y.C., YANG, L.Y., & ZHOU, L. (2022). Effect of different LED-lighting quality conditions on growth and photosynthetic characteristics of saffron plants (Crocus sativus L.). Photosynthetica60(4), 497-507. doi: 10.32615/ps.2022.038
Download citation

References

  1. Boisvert S., Joly D., Carpentier R.: Quantitative analysis of the experimental O-J-I-P chlorophyll fluorescence induction kinetics: apparent activation energy and origin of each kinetic step. - FEBS J. 273: 4770-4777, 2006. Go to original source...
  2. Chen S., Strasser R.J., Qiang S.: In vivo assessment of effect of phytotoxin tenuazonic acid on PSII reaction centers. - Plant Physiol. Bioch. 84: 10-21, 2014. Go to original source...
  3. Chen S., Yang J., Zhang M. et al.: Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P. - Environ. Exp. Bot. 122: 126-140, 2016. Go to original source...
  4. Chinese Botany Editorial Board: Chinese Botany: Crocus sativus L. Pp. 122. Science Press, Beijing 1985.
  5. Cioć M., Szewczyk A., Żupnik M. et al.: LED lighting affects plant growth, morphogenesis and phytochemical contents of Myrtus communis L. in vitro. - Plant Cell Tiss. Org. Cult. 132: 433-447, 2018. Go to original source...
  6. Demmig-Adams B., Adams W.W., Mattoo A.K. (ed.): Photopro­tection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration. Pp. 382. Springer, Dordrecht 2006. Go to original source...
  7. Di Q.H., Li J., Du Y.F. et al.: Combination of red and blue lights improved the growth and development of eggplant (Solanum melongena L.) seedlings by regulating photosynthesis. - J. Plant Growth Regul. 40: 1477-1492, 2021. Go to original source...
  8. Dou H., Niu G., Gu M., Masabni J.G.: Effects of light quality on growth and phytonutrient accumulation of herbs under controlled environments. - Horticulturae 3: 36, 2017. Go to original source...
  9. Fang L.Z., Ma Z.Y., Wang Q.B. et al.: Plant growth and photosynthetic characteristics of soybean seedlings under different LED lighting quality conditions. - J. Plant Growth Regul. 40: 668-678, 2021. Go to original source...
  10. Gresta F., Lombardo G.M., Siracusa L., Ruberto G.: Saffron, an alternative crop for sustainable agricultural systems. A review. - Agron. Sustain. Dev. 28: 95-112, 2008. Go to original source...
  11. He L., Yu L., Li B. et al.: The effect of exogenous calcium on cucumber fruit quality, photosynthesis, chlorophyll fluorescence, and fast chlorophyll fluorescence during the fruiting period under hypoxic stress. - BMC Plant Biol. 18: 180, 2018. Go to original source...
  12. Hoenecke M.E., Bula R.J., Tibbitts T.W.: Importance of 'blue' photon levels for lettuce seedlings grown under red light-emitting diodes. - HortScience 27: 427-430, 1992. Go to original source...
  13. Hogewoning S.W., Wientjes E., Douwstra P. et al.: Photosynthetic quantum yield dynamics: from photosystems to leaves. - Plant Cell 24: 1921-1935, 2012. Go to original source...
  14. Hong S.S., Xu D.Q.: Light-induced increase in initial chlorophyll fluorescence Fo level and the reversible inactivation of PSII reaction centers in soybean leaves. - Photosynth. Res. 61: 269-280, 1999. Go to original source...
  15. Hung C.D., Hong C.H., Kim S.K. et al.: LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.). - Acta Physiol. Plant. 38: 152, 2016. Go to original source...
  16. Jazani A.M., Karimi A., Azgomi R.N.D.: The potential role of saffron (Crocus sativus L.) and its components in oxidative stress in diabetes mellitus: A systematic review. - Clin. Nutr. ESPEN 48: 148-157, 2022. Go to original source...
  17. Jefferies R.A.: Effects of drought on chlorophyll fluorescence in potato (Solanum tuberosum L.). I. Plant water status and the kinetics of chlorophyll fluorescence. - Potato Res. 35: 25-34, 1992. Go to original source...
  18. Jiang D.X., Chu X., Li M. et al.: Exogenous spermidine enhances salt-stressed rice photosynthetic performance by stabilizing structure and function of chloroplast and thylakoid membranes. - Photosynthetica 58: 61-71, 2020. Go to original source...
  19. Karimi M., Ahmadi N., Ebrahimi M.: Red LED light promotes biomass, flowering and secondary metabolites accumulation in hydroponically grown Hypericum perforatum L. (cv. Topas). - Ind. Crop. Prod. 175: 114239, 2022. Go to original source...
  20. Khan N., Essemine J., Hamdani S. et al.: Natural variation in the fast phase of chlorophyll a fluorescence induction curve (OJIP) in a global rice minicore panel. - Photosynth Res. 150: 137-158, 2021. Go to original source...
  21. Kothari D., Thakur R., Kumar R.: Saffron (Crocus sativus L.): gold of the spices - a comprehensive review. - Hortic. Environ. Biotech. 62: 661-677, 2021. Go to original source...
  22. Li L., Zhou Z., Liang J., Lv R.: In vivo evaluation of the high-irradiance effects on PSII activity in photosynthetic stems of Hexinia polydichotoma. - Photosynthetica 53: 621-624, 2015. Go to original source...
  23. Li Y., Li L., Liu J., Qin R.: Light absorption and growth response of Dunaliella under different light qualities. - J. Appl. Phycol. 32: 1041-1052, 2020. Go to original source...
  24. Lin C.: Plant blue-light receptors. - Trends Plant Sci. 5: 337-342, 2000. Go to original source...
  25. Liu J., Mu J., Zheng C. et al.: Systems-pharmacology dissection of traditional Chinese medicine compound saffron formula reveals multi-scale treatment strategy for cardiovascular diseases. - Sci Rep.-UK 6: 19809, 2016. Go to original source...
  26. Liu J., van Iersel M.W.: Photosynthetic physiology of blue, green, and red light: light intensity effects and underlying mechanisms. - Front. Plant Sci. 12: 619987, 2021. Go to original source...
  27. McCree K.J.: The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. - Agr. Meteorol. 9: 191-216, 1971. Go to original source...
  28. Miao Y., Chen Q., Qu M. et al.: Blue light alleviates 'red light syndrome' by regulating chloroplast ultrastructure, photosynthetic traits and nutrient accumulation in cucumber plants. - Sci. Hortic.-Amsterdam 257: 108680, 2019. Go to original source...
  29. Mihalhević I., Viljevac Vuletić M., Tomaš V. et al.: PSII photochemistry responses to drought stress in autochthonous and modern sweet cherry cultivars. - Photosynthetica 59: 517-528, 2021. Go to original source...
  30. Oukarroum A., Schansker G., Strasser R.J.: Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. - Physiol. Plantarum 137: 188-199, 2009. Go to original source...
  31. Paradiso R., Proietti S.: Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern led systems. - J. Plant Growth Regul. 41: 742-780, 2022. Go to original source...
  32. Paunov M., Koleva L., Vassilev A. et al.: Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. - Int. J. Mol. Sci. 19: 787, 2018. Go to original source...
  33. Renau-Morata B., Nebauer S.G., Sánchez M., Molina R.V.: Effect of corm size, water stress and cultivation conditions on photosynthesis and biomass partitioning during the vegetative growth of saffron (Crocus sativus L.). - Ind. Crop. Prod. 39: 40-46, 2012. Go to original source...
  34. Sabzalian M.R., Heydarizadeh P., Zahedi M. et al.: High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production. - Agron. Sustain. Dev. 34: 879-886, 2014. Go to original source...
  35. Samarghandian S., Borji A.: Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. - Pharmacognosy Res. 6: 99-107, 2014. Go to original source...
  36. Sendker J., Sheridan H.: History and Current Status of Herbal Medicines. - In: Pelkonen O., Duez P., Vuorela P., Vuorela H. (ed.): Toxicology of Herbal Products. Pp. 11-27. Springer, Cham 2017. Go to original source...
  37. Shimizu H., Saito Y., Nakashima H. et al.: Light environment optimization for lettuce growth in plant factory. - IFAC Proc. Vol. 44: 605-609, 2011. Go to original source...
  38. Strasser R.J., Srivastava A., Govindjee G.: Polyphasic chloro­phyll a fluorescence transient in plants and cyanobacteria. - Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
  39. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluores­cence transient as a tool to characterize and screen photosyn­thetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor & Francis, London 2000.
  40. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  41. Tsai Y.C., Chen K.C., Cheng T.S. et al.: Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. - BMC Plant Biol. 19: 403, 2019. Go to original source...
  42. Wang Y., Tong Y., Chu H. et al.: Effects of different light qualities on seedling growth and chlorophyll fluorescence parameters of Dendrobium officinale. - Biologia 72: 735-744, 2017. Go to original source...
  43. Wu Q., Su N., Shen W., Cui J.: Analyzing photosynthetic activity and growth of Solanum lycopersicum seedlings exposed to different light qualities. - Acta Physiol. Plant. 36: 1411-1420, 2014. Go to original source...
  44. Xu Y., Yang M., Cheng F. et al.: Effects of LED photoperiods and light qualities on in vitro growth and chlorophyll fluorescence of Cunninghamia lanceolata. - BMC Plant Biol. 20: 269, 2020. Go to original source...
  45. Yarami N., Sepaskhah A.R.: Physiological growth and gas exchange response of saffron (Crocus sativus L.) to irrigation water salinity, manure application and planting method. - Agr. Water Manage. 154: 43-51, 2015. Go to original source...
  46. Yeh N., Chung J.P.: High-brightness LEDs - Energy efficient lighting sources and their potential in indoor plant cultivation. -Renew. Sust. Energ. Rev. 13: 2175-2180, 2009. Go to original source...
  47. Zha Q., Xi X., He Y. et al.: Effect of short-time high-temperature treatment on the photosynthetic performance of different heat-tolerant grapevine cultivars. - Photochem. Photobiol. 97: 763-769, 2021. Go to original source...
  48. Zhou T., Qiu X., Zhao L. et al.: Optimal light intensity and quality increased the saffron daughter corm yield by inhibiting the degradation of reserves in mother corms during the reproductive stage. - Ind. Crop. Prod. 176: 114396, 2022. Go to original source...