biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 64:623-632, 2020 | DOI: 10.32615/bp.2020.071

The role of gasotransmitters in movement of stomata: mechanisms of action and importance for plant immunity

S. GAHIR, P. BHARATH, A.S. RAGHAVENDRA*
Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India

Stomatal guard cells are specialized epidermal cells regulating gas exchange. The ability to open or close in response to external and internal cues makes stomata a dynamic and fascinating system. Stomatal closure upon infection ensures restriction of pathogen entry into the plant and forms an essential component of innate immunity. The opening or closure of stomata is dependent on the turgidity or flaccidity of guard cells, respectively, facilitated by several signaling components, including reactive oxygen species, nitric oxide (NO) and Ca2+. Among these, NO is the most extensively studied gasotransmitter. Its pivotal role in stomatal closure by modulating various downstream components as well as regulation of crucial proteins by post-translational modifications makes NO an essential factor. Two more gasotransmitters, carbon monoxide and hydrogen sulfide, also trigger stomatal closure. Other gaseous molecules, like ethylene, methane, sulfur dioxide, ozone, and CO2, can modulate stomatal closure, but they are not considered strictly as gasotransmitters due to specific criteria. We review the signaling events in guard cells triggered by these gasotransmitters leading to stomatal closure. We point out the dual role of NO to promote stomatal closure and stomatal opening. Both NO and H2S help in reinforcing the innate immunity against pathogen attack. Although there is extensive information on the mechanism of NO action on stomata, the enzymatic source of NO or CO is still ambiguous. Similarly, research is warranted to establish the relative importance of and interactions among the three main gasotransmitters. Further studies on gasotransmitters would answer the ambiguity about their functions and confirm if they can act independently.

Keywords: carbon monoxide, guard cells, hydrogen sulfide, nitric oxide, signaling compounds.

Received: April 4, 2020; Revised: May 6, 2020; Accepted: May 11, 2020; Published online: September 2, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
GAHIR, S., BHARATH, P., & RAGHAVENDRA, A.S. (2020). The role of gasotransmitters in movement of stomata: mechanisms of action and importance for plant immunity. Biologia plantarum64, Article 623-632. https://doi.org/10.32615/bp.2020.071
Download citation

Supplementary files

Download fileGahir6464_Suppl.pdf

File size: 316.41 kB

References

  1. Acharya, B.R., Assmann, S.M.: Hormone interactions in stomatal function. - Plant mol. Biol. 69: 451-462, 2009. Go to original source...
  2. Agurla S., Gahir S., Munemasa S., Murata Y., Raghavendra A.S.: Mechanism of stomatal closure in plants exposed to drought and cold stress. - In: Iwaya-Inoue, M., Sakurai, M., Uemura, M. (ed.): Advances in Experimental Medicine and Biology. Vol. 1081: Survival Strategies in Extreme Cold and Desiccation. Pp. 215-232. Springer, Singapore 2018a. Go to original source...
  3. Agurla, S., Gayatri, G., Raghavendra, A.S.: Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. - Nitric Oxide 43: 89-96, 2014. Go to original source...
  4. Agurla, S., Gayatri, G., Raghavendra, A.S.: Polyamines increase nitric oxide and reactive oxygen species in guard cells of Arabidopsis thaliana during stomatal closure. - Protoplasma 255: 153-162, 2018b. Go to original source...
  5. Agurla, S., Raghavendra, A.S.: Convergence and divergence of signaling events in guard cells during stomatal closure by plant hormones or microbial elicitors. - Front. Plant Sci. 7: 1332, 2016. Go to original source...
  6. Alcázar, R., Cuevas, J.C., Patron, M., Altabella, T., Tiburcio, A.F.: Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. - Physiol. Plant. 128: 448-455, 2006. Go to original source...
  7. Arnaud, D., Hwang, I.: A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. - Mol. Plant 8: 566-581, 2015. Go to original source...
  8. Balmant, K.M., Zhang, T., Chen, S.: Protein phosphorylation and redox modification in stomatal guard cells. - Front. Physiol. 7: 26, 2016. Go to original source...
  9. Bright, J., Desikan, R., Hancock, J.T., Weir, I.S., Neill, S.J.: ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. - Plant J. 45: 113-122, 2006. Go to original source...
  10. Calderwood, A., Kopriva, S.: Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. - Nitric Oxide 41: 72-78, 2014. Go to original source...
  11. Cao, Z.Y., Huang, B.K., Wang, Q.Y., Xuan, W., Ling, T.F., Zhang, B.: Involvement of carbon monoxide produced by heme oxygenase in ABA-induced stomatal closure in Vicia faba and its proposed signal transduction pathway. - Chin. Sci. Bull. 52: 2365-2373, 2007. Go to original source...
  12. Chen, Z.H., Wang, Y., Wang, J.W., Babla, M., Zhao, C., García-Mata, C., Sani, E., Differ, C., Mak, M., Hills, A. Amtmann, A.: Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis. - New Phytol. 209: 1456-1469, 2016. Go to original source...
  13. Czékus, Z., Poór, P., Tari, I., Ördög, A.: Effects of light and daytime on the regulation of chitosan-induced stomatal responses and defence in tomato plants. - Plants 9: DOI: 10.3390/plants9010059, 2020. Go to original source...
  14. Daszkowska-Golec, A., Szarejko, I.: Open or close the gate - stomata action under the control of phytohormones in drought stress conditions. - Front. Plant Sci. 4: 138, 2013. Go to original source...
  15. Desikan, R., Last, K., Harrett-Williams, R., Tagliavia, C., Harter, K., Hooley, R., Hancock, J.T., Neill, S.J.: Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. - Plant J. 47: 907-916, 2006. Go to original source...
  16. Distefano, A.M., García-Mata, C., Lamattina, L., Laxalt, A.M.: Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure. - Plant Cell Environ. 31: 187-194, 2008. Go to original source...
  17. Fancy, N.N., Bahlmann, A.K., Loake, G.J.: Nitric oxide function in plant abiotic stress. - Plant Cell Environ. 40: 462-472, 2017. Go to original source...
  18. García-Mata, C., Gay, R., Sokolovski, S., Hills, A., Lamattina, L., Blatt, M.R.: Nitric oxide regulates K+ and Cl-channels in guard cells through a subset of abscisic acid-evoked signaling pathways. - Proc. nat. Acad. Sci. USA 100: 11116-11121, 2003. Go to original source...
  19. García-Mata, C., Lamattina, L.: Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange. - Plant Sci. 201: 66-73, 2013. Go to original source...
  20. Gayatri, G., Agurla, S., Kuchitsu, K., Anil, K., Podile, A.R., Raghavendra, A.S.: Stomatal closure and rise in ROS/NO of Arabidopsis guard cells by tobacco microbial elicitors: Cryptogein and Harpin. - Front. Plant Sci. 8: 1096, 2017. Go to original source...
  21. Gayatri, G., Agurla, S., Raghavendra, A.S.: Nitric oxide in guard cells as an important secondary messenger during stomatal closure. - Front. Plant Sci. 4: 425, 2013. Go to original source...
  22. Ge, X. M., Cai, H.L., Lei, X., Zhou, X., Yue, M., He, J.M.: Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis. - Plant J. 82: 138-150, 2015. Go to original source...
  23. Gonugunta, V.K., Srivastava, N., Puli, M.R., Raghavendra, A.S.: Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid. - Plant Cell Environ. 31: 1717-1724, 2008. Go to original source...
  24. Gotor, C., García, I., Aroca, Á., Laureano-Marín, A.M., Arenas-Alfonseca, L., Jurado-Flores, A., Moreno, I., Romero, L.C.: Signaling by hydrogen sulfide and cyanide through post-translational modification. - J. exp. Bot. 70: 4251-4265, 2019. Go to original source...
  25. Gross, I., Durner, J.: In search of enzymes with a role in 3', 5'-cyclic guanosine monophosphate metabolism in plants. - Front. Plant Sci. 7: 576, 2016. Go to original source...
  26. Guo, F.Q., Okamoto, M., Crawford, N.M.: Identification of a plant nitric oxide synthase gene involved in hormonal signaling. - Science 302: 100-103, 2003. Go to original source...
  27. Hancock, J.T., Neill, S.J.: Nitric Oxide: Its generation and interactions with other reactive signaling compounds. - Plants 8: 41, 2019. Go to original source...
  28. Hancock, J.T., Whiteman, M.: Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species. - Ann. New York Acad. Sci. 1365: 5-14, 2016. Go to original source...
  29. He, H., He, L.: Heme oxygenase 1 and abiotic stresses in plants. - Acta Physiol. Plant. 36: 581-588, 2014. Go to original source...
  30. Héloir, M.C., Adrian, M., Brulé, D., Claverie, J., Cordelier, S., Daire, X., Dorey, S., Gauthier, A., Lemaître-Guillier, C., Negrel, J., Trdá, L.: Recognition of elicitors in grapevine: from MAMP and DAMP perception to induced resistance. - Front. Plant Sci. 10: 1117, 2019. Go to original source...
  31. Hetherington, A.M., Woodward, F.I.: The role of stomata in sensing and driving environmental change. - Nature 424: 901-908, 2003. Go to original source...
  32. Honda, K., Yamada, N., Yoshida, R., Ihara, H., Sawa, T., Akaike, T., Iwai, S.: 8-Mercapto-cyclic GMP mediates hydrogen sulfide-induced stomatal closure in Arabidopsis. - Plant Cell Physiol. 56: 1481-1489, 2015. Go to original source...
  33. Hou, Z., Wang, L., Liu, J., Hou, L., Liu, X.: Hydrogen sulfide regulates ethylene-induced stomatal closure in Arabidopsis thaliana. - J. integr. Plant Biol. 55: 277-289, 2013. Go to original source...
  34. Huang, D., Wu, W., Abrams, S.R., Cutler, A.J.: The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. - J. exp. Bot. 59: 2991-3007, 2008. Go to original source...
  35. Jin, Z., Xue, S., Luo, Y., Tian, B., Fang, H., Li, H., Pei, Y.: Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. - Plant Physiol. Biochem. 62: 41-46, 2013. Go to original source...
  36. Kangasjärvi, J., Jaspers, P., Kollist, H.: Signalling and cell death in ozone-exposed plants. - Plant Cell Environ. 28: 1021-1036, 2005. Go to original source...
  37. Khokon, M.A.R., Hossain, M.A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I.C., Murata, Y.: Yeast elicitor-induced stomatal closure and peroxidase-mediated ROS production in Arabidopsis. - Plant Cell Physiol. 51: 1915-1921, 2010. Go to original source...
  38. Kolbert, Z., Barroso, J.B., Brouquisse, R., Corpas, F.J., Gupta, K.J., Lindermayr, C., Loake, G.J., Palma, J.M., Petøivalský, M., Wendehenne, D., Hancock, J.T.: A forty-year journey: the generation and roles of NO in plants. - Nitric Oxide 93: 53-70, 2019a. Go to original source...
  39. Kolbert, Z., Feigl, G., Freschi, L., Poór, P.: Gasotransmitters in action: nitric oxide-ethylene crosstalk during plant growth and abiotic stress responses. - Antioxidants 8: 167, 2019b. Go to original source...
  40. Kolla, V.A., Raghavendra, A.S., Nitric oxide is a signaling intermediate during bicarbonate-induced stomatal closure in Pisum sativum. - Physiol. Plant. 130: 91-98, 2007. Go to original source...
  41. Kolla, V.A., Vavasseur, A., Raghavendra, A.S.: Hydrogen peroxide production is an early event during bicarbonate induced stomatal closure in abaxial epidermis of Arabidopsis. - Planta 225: 1421-1429, 2007. Go to original source...
  42. Kollist, T., Moldau, H., Rasulov, B., Oja, V., Rämma, H., Hüve, K., Jaspers, P., Kangasjärvi, J., Kollist, H.: A novel device detects a rapid ozone-induced transient stomatal closure in intact Arabidopsis and its absence in abi2 mutant. - Physiol. Plant. 129: 796-803, 2007. Go to original source...
  43. Lawrence, S.R., Gaitens, M., Guan, Q., Dufresne, C., Chen, S.: S-nitroso-proteome revealed in stomatal guard cell response to Flg22. - Int. J. mol. Sci. 21: 1688, 2020. Go to original source...
  44. Laxalt, A.M., García-Mata, C., Lamattina, L.: The dual role of nitric oxide in guard cells: promoting and attenuating the ABA and phospholipid-derived signals leading to the stomatal closure. - Front. Plant Sci. 7: 476, 2016. Go to original source...
  45. Li, F.C., Wang, J., Wu, M.M., Fan, C.M., Li, X., He, J.M.: Mitogen-activated protein kinase phosphatases affect UV-B-induced stomatal closure via controlling NO in guard cells. - Plant Physiol. 173: 760-770, 2017. Go to original source...
  46. Li, Z.G., Min, X., Zhou, Z.H.: Hydrogen sulfide: a signal molecule in plant cross-adaptation. - Front. Plant Sci. 7: 1621, 2016. Go to original source...
  47. Liu, J., Hou, L., Liu, G., Liu, X., Wang, X.: Hydrogen sulfide induced by nitric oxide mediates ethylene-induced stomatal closure of Arabidopsis thaliana. - Chin. Sci. Bull. 56: 3547-3553, 2011. Go to original source...
  48. Liu, J., Liu, G., Hou, L., Liu, X.: Ethylene-induced nitric oxide production and stomatal closure in Arabidopsis thaliana depending on changes in cytosolic pH. - Chin. Sci. Bull. 55: 2403-2409, 2010. Go to original source...
  49. Lounifi, I., Arc, E., Molassiotis, A., Job, D., Rajjou, L., Tanou, G.: Interplay between protein carbonylation and nitrosylation in plants. - Proteomics 13: 568-578, 2013. Go to original source...
  50. Lv, S., Zhang, Y., Li, C., Liu, Z., Yang, N., Pan, L., Wu, J., Wang, J., Yang, J., Lv, Y., Zhang, Y.: Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. - New Phytol. 217: 290-304, 2018. Go to original source...
  51. Ma, Y., Berkowitz, G.A.: NO and Ca2+: critical components of cytosolic signaling systems involved in stomatal immune responses. - Adv. Bot. Res. 77: 285-323, 2016. Go to original source...
  52. Malcheska, F., Ahmad, A., Batool, S., Müller, H.M., Ludwig-Müller, J., Kreuzwieser, J., Randewig, D., Hänsch, R., Mendel, R.R., Hell, R. Wirtz, M.: Drought-enhanced xylem sap sulfate closes stomata by affecting ALMT12 and guard cell ABA synthesis. - Plant Physiol. 174: 798-814, 2017. Go to original source...
  53. Melotto, M., Underwood, W., Koczan, J., Nomura, K., He, S.Y.: Plant stomata function in innate immunity against bacterial invasion. - Cell 126: 969-980, 2006. Go to original source...
  54. Melotto, M., Zhang, L., Oblessuc, P.R., He, S.Y.: Stomatal defense a decade later. - Plant Physiol. 174: 561-571, 2017. Go to original source...
  55. Munemasa, S., Hauser, F., Park, J., Waadt, R., Brandt, B., Schroeder, J.I.: Mechanisms of abscisic acid-mediated control of stomatal aperture. - Curr. Opin. Plant Biol. 28: 154-162, 2015. Go to original source...
  56. Munemasa, S., Hirao, Y., Tanami, K., Mimata, Y., Nakamura, Y., Murata, Y.: Ethylene inhibits methyl jasmonate-induced stomatal closure by modulating guard cell slow-type anion channel activity via the OPEN STOMATA 1/SnRK2. 6 kinase-independent pathway in Arabidopsis. - Plant Cell Physiol. 60: 2263-2271, 2019. Go to original source...
  57. Munemasa, S., Oda, K., Watanabe-Sugimoto, M., Nakamura, Y., Shimoishi, Y., Murata, Y.: The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. - Plant Physiol. 143: 1398-1407, 2007. Go to original source...
  58. Mur, L. A. J., Simpson, C., Kumari, A., Gupta, A.K., Gupta, K. J.: Moving nitrogen to the centre of plant defence against pathogens. - Ann. Bot. 119: 703-709, 2017. Go to original source...
  59. Neill, S., Barros, R., Bright, J., Desikan, R., Hancock, J., Harrison, J., Morris, P., Ribeiro, D., Wilson, I.: Nitric oxide, stomatal closure, and abiotic stress. - J. exp. Bot. 59: 165-176, 2008. Go to original source...
  60. Newman, M.A., Sundelin, T., Nielsen, J.T., Erbs, G.: MAMP (microbe-associated molecular pattern) triggered immunity in plants. - Front. Plant Sci. 4: 139, 2013. Go to original source...
  61. Ooi, L., Matsuura, T., Munemasa, S., Murata, Y., Katsuhara, M., Hirayama, T., Mori, I. C.: The mechanism of SO2-induced stomatal closure differs from O3 and CO2 responses and is mediated by nonapoptotic cell death in guard cells. - Plant Cell Environ. 42: 437-447, 2019. Go to original source...
  62. Pandey, S.: Hydrogen Sulfide: a new node in the abscisic acid-dependent guard cell signaling network?. - Plant Physiol. 166: 1680, 2014. Go to original source...
  63. Pei, Y., Jin, Z., Liu, Z., Fang, H., Zhang, L., Hao, X., Liu, D., Du, X., Zhang, Y., Tian, B., Ma, X.: Gasotransmitters in Plants. - In: Wang, R. (ed.): Metallobiology. Series No. 12: Gasotransmitters.: Pp. 235-282, Royal Society of Chemistry, London 2018. Go to original source...
  64. Poschenrieder, C., Fernández, J.A., Rubio, L., Pérez, L., Terés, J., Barceló, J.: Transport and use of bicarbonate in plants: current knowledge and challenges ahead. - Int. J. mol. Sci. 19: 1352, 2018. Go to original source...
  65. Puli, M.R., Rajsheel, P., Aswani, V., Agurla, S., Kuchitsu, K., Raghavendra, A.S.: Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum. - Planta 244: 831-841, 2016. Go to original source...
  66. Raghavendra, A.S., Murata, Y.: Signal transduction in stomatal guard cells. - Front. Plant Sci 8: 114, 2017. Go to original source...
  67. Rosnoblet, C., Bourque, S., Nicolas-Francès, V., Lamotte, O., Besson-Bard, A., Jeandroz, S., Wendehenne, D.: NO signalling in plant immunity. - In: García-Mata, C., Lamattina, L (ed.): Gasotransmitters in Plants. Pp. 219-238, Springer, Dordrecht 2016. Go to original source...
  68. Ruiz-May, E., Segura-Cabrera, A., Elizalde-Contreras, J. M., Shannon, L. M., Loyola-Vargas, V. M.: A recent advance in the intracellular and extracellular redox post-translational modification of proteins in plants. - J. Mol. Recognition 32: e2754, 2019. Go to original source...
  69. Saito, N., Yoshimasa, N., Mori, I.C., Murata, Y.: Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. - Plant Signal. Behav. 4: 119-120, 2009. Go to original source...
  70. Saito, S., Uozumi, N.: Guard cell membrane anion transport systems and their regulatory components: an elaborate mechanism controlling stress-induced stomatal closure. - Plants 8: 9, 2019. Go to original source...
  71. Sami, F., Faizan, M., Faraz, A., Siddiqui, H., Yusuf, M., Hayat, S.: Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post-translational modifications in modulating diverse plant stress. - Nitric Oxide 73: 22-38, 2018. Go to original source...
  72. Santa-Cruz, D.M., Pacienza, N.A., Polizio, A.H., Balestrasse, K.B., Tomaro, M.L., Yannarelli, G.G.: Nitric oxide synthase-like dependent NO production enhances heme oxygenase up-regulation in ultraviolet-B-irradiated soybean plants. - Phytochemistry 71: 1700-1707, 2010. Go to original source...
  73. Scuffi, D., Álvarez, C., Laspina, N., Gotor, C., Lamattina, L., García-Mata, C.: Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. - Plant Physiol. 166: 2065-2076, 2014. Go to original source...
  74. Scuffi, D., Lamattina, L., García-Mata, C.: Gasotransmitters and stomatal closure: is there redundancy, concerted action, or both?. - Front. Plant Sci. 7: 277, 2016. Go to original source...
  75. Scuffi, D., Nietzel, T., Di Fino, L.M., Meyer, A.J., Lamattina, L., Schwarzländer, M., Laxalt, A.M. Garcia-Mata, C.: Hydrogen sulfide increases production of NADPH oxidase-dependent hydrogen peroxide and phospholipase D-derived phosphatidic acid in guard cell signaling. - Plant Physiol. 176: 2532-2542, 2018. Go to original source...
  76. Sehrawat, A., Deswal, R.: Sub-proteome S-nitrosylation analysis in Brassica juncea hints at the regulation of Brassicaceae specific as well as other vital metabolic pathway(s) by nitric oxide and suggests post-translational modifications cross-talk. - Nitric Oxide 43: 97-111, 2014. Go to original source...
  77. She, X.P., Song, X.G.: Carbon monoxide-induced stomatal closure involves generation of hydrogen peroxide in Vicia faba guard cells. - J. Integr. Plant Biol. 50: 1539-1548, 2008. Go to original source...
  78. Shekhawat, G.S., Verma, K.: Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence. - J. exp. Bot. 61: 2255-2270, 2010. Go to original source...
  79. Shi, C., Chen, F., Peng, T., She, X.: Role of cytoplasmic alkalization and nitric oxide in ethylene-induced stomatal closure in Arabidopsis. - Int. J. agr. Biol. 19: 1220-1226, 2017. Go to original source...
  80. Shi, C., Qi, C., Ren, H., Huang, A., Hei, S., She, X.: Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis. - Plant J. 82: 280-301, 2015a. Go to original source...
  81. Shi, H., Ye, T., Han, N., Bian, H., Liu, X., Chan, Z.: Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. - J. integr. Plant Biol. 57: 628-640, 2015b. Go to original source...
  82. Shi, K., Li, X., Zhang, H., Zhang, G., Liu, Y., Zhou, Y., Xia, X., Chen, Z., Yu, J.: Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2-induced stomatal movement in tomato. - New Phytol. 208: 342-353, 2015c. Go to original source...
  83. Sobahan, M.A., Akter, N., Okuma, E., Uraji, M., Ye, W., Mori, I.C., Nakamura, Y., Murata, Y.: Allyl isothiocyanate induces stomatal closure in Vicia faba. - Biosci. Biotech. Biochem. 79: 1737-1742, 2015. Go to original source...
  84. Sokolovski, S., Blatt, M.R.: Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. - Plant Physiol. 136: 4275-4284, 2004. Go to original source...
  85. Song, X.G., She, X.P., Zhang, B.: Carbon monoxide-induced stomatal closure in Vicia faba is dependent on nitric oxide synthesis. - Physiol. Plant. 132: 514-525, 2008. Go to original source...
  86. Su, J., Yang, X., He, J., Zhang, Y., Duan, X., Wang, R., Shen, W.: Methyl-coenzyme M reductase-dependent endogenous methane enhances plant tolerance against abiotic stress and alters ABA sensitivity in Arabidopsis thaliana. - Plant mol. Biol. 101: 439-454, 2019. Go to original source...
  87. Sun, L.R., Hao, F.S., Lu, B.S., Ma, L.Y.: AtNOA1 modulates nitric oxide accumulation and stomatal closure induced by salicylic acid in Arabidopsis. - Plant Signal. Behav. 5: 1022-1024, 2010. Go to original source...
  88. Takemiya, A., Yamauchi, S., Yano, T., Ariyoshi, C., Shimazaki, K.I.: Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening. - Plant Cell Physiol. 54: 24-35, 2013. Go to original source...
  89. Tamaoki, M.: The role of phytohormone signaling in ozone-induced cell death in plants. - Plant Signal. Behav. 3: 166-174, 2008. Go to original source...
  90. Tao, C., Tian, M., Han, Y.: Hydrogen sulfide: A multi-tasking signal molecule in the regulation of oxidative stress responses - J. exp. Bot. 71: 2862-2869, 2020. Go to original source...
  91. Underwood, W., Melotto, M., He, S.Y.: Role of plant stomata in bacterial invasion. - Cell. Microbiol. 9: 1621-1629, 2007. Go to original source...
  92. Uraji, M., Katagiri, T., Okuma, E., Ye, W., Hossain, M.A., Masuda, C., Miura, A., Nakamura, Y., Mori, I.C., Shinozaki, K., Murata, Y.: Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis. - Plant Physiol. 159: 450-460, 2012. Go to original source...
  93. Vahisalu, T., Puzõrjova, I., Brosché, M., Valk, E., Lepiku, M., Moldau, H., Pechter, P., Wang, Y.S., Lindgren, O., Salojärvi, J., Loog, M.: Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. - Plant J. 62: 442-453, 2010. Go to original source...
  94. Vandelle, E., Delledonne, M.: Peroxynitrite formation and function in plants. - Plant Sci. 181: 534-539, 2011. Go to original source...
  95. Wang, L., Ma, X., Che, Y., Hou, L., Liu, X., Zhang, W.: Extracellular ATP mediates H2S-regulated stomatal movements and guard cell K+ current in a H2O2-dependent manner in Arabidopsis. - Sci. Bull. 60: 419-427, 2015. Go to original source...
  96. Wang, M., Liao, W.: Carbon monoxide as a signaling molecule in plants. - Front. Plant Sci.7: 572, 2016. Go to original source...
  97. Wang, R.: Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter?. - FASEB J. 16: 1792-1798, 2002. Go to original source...
  98. Wu, L., Wu, H., Chen, L., Zhang, H., Gao, X.: Induction of systemic disease resistance in Nicotiana benthamiana by the cyclodipeptides cyclo (l-Pro-l-Pro) and cyclo (d-Pro-d-Pro). - Mol. Plant Pathol. 18: 67-74, 2017. Go to original source...
  99. Xie, Y., Mao, Y., Duan, X., Zhou, H., Lai, D., Zhang, Y., Shen, W.: Arabidopsis HY1-modulated stomatal movement: an integrative hub is functionally associated with ABI4 in dehydration-induced ABA responsiveness. - Plant Physiol. 170: 1699-1713, 2016. Go to original source...
  100. Xie, Y., Mao, Y., Zhang, W., Lai, D., Wang, Q., Shen, W.: Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. - Plant Physiol. 165: 759-773, 2014. Go to original source...
  101. Yang, W., Zhang, W., Wang, X.: Post-translational control of ABA signalling: the roles of protein phosphorylation and ubiquitination. - Plant Biotechnol. J. 15: 4-14, 2017. Go to original source...
  102. Yao, Y., Yang, Y., Li, C., Huang, D., Zhang, J., Wang, C., Li, W., Wang, N., Deng, Y., Liao, W.: Research progress on the functions of gasotransmitters in plant responses to abiotic stresses. - Plants 8: 605, 2019. Go to original source...
  103. Yin, Y., Adachi, Y., Ye, W., Hayashi, M., Nakamura, Y., Kinoshita, T., Murata, Y.: Difference in abscisic acid perception mechanisms between closure induction and opening inhibition of stomata. - Plant Physiol. 163: 600-610, 2013. Go to original source...
  104. Yu, M., Lamattina, L., Spoel, S.H., Loake, G.J.: Nitric oxide function in plant biology: a redox cue in deconvolution. - New Phytol. 202: 1142-1156, 2014. Go to original source...
  105. Zhang, T., Chen, S., Harmon, A.C.: Protein phosphorylation in stomatal movement. - Plant Signal. Behav. 9: e972845, 2014. Go to original source...
  106. Zhang, T.Y., Li, F.C., Fan, C.M., Li, X., Zhang, F.F., He, J.M.: Role and interrelationship of MEK1-MPK6 cascade, hydrogen peroxide and nitric oxide in darkness-induced stomatal closure. - Plant Sci. 262: 190-199, 2017. Go to original source...
  107. Zhao, X., Li, Y.Y., Xiao, H.L., Xu, C.S., Zhang, X.: Nitric oxide blocks blue light-induced K+ influx by elevating the cytosolic Ca2+ concentration in Vicia faba L. guard cells. - J. Integr. Plant Biol. 55: 527-536, 2013. Go to original source...