Application of Local Species for Sustainable Phytoremediation 10.32526/ennrj/21/20230125

Main Article Content

Naiyanan Ariyakanon

Abstract

Phytoremediation is green technology based on the application of plants to remediate contaminated media. This paper reviews five species of local plants used for phytoremediation in Thailand: Pteris vittata L., Pityrogramma calomelanos L., Chrysopogon zizanioides L., Eichhornia crassipes (Mart.) Solms, and Pistia stratiotes L. For each plant, its pollutant removal efficiency and mechanism is reviewed. The main mechanisms of phytoremediation, such as phytoextraction, rhizofiltration, phytostabilization, phytodegradation, rhizodegradation, and phyto-volatilization, are concisely described. Screening local plants for phytoremediation is a cost-effective and easy to manage approach to derive suitable plants that are resistant to harmful environmental conditions. To be suitable, plants should have a fast growth rate, produce a large biomass yield, have a high tolerance to the toxic effects of the pollutants, and have a good capacity for pollutant uptake. Moreover, applying the proper species for each contaminant enhances the removal efficiency and supports sustainable phytoremediation.

Article Details

How to Cite
Ariyakanon, N. (2023). Application of Local Species for Sustainable Phytoremediation: 10.32526/ennrj/21/20230125. Environment and Natural Resources Journal, 21(5), 381–389. Retrieved from https://ph02.tci-thaijo.org/index.php/ennrj/article/view/249648
Section
Invited Review Article

References

Akhtar ABT, Yasar A, Rabia Ali R, Irfan R. Phytoremediation using aquatic Macrophytes. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L, editors. Phytoremediation: Management of Environmental Contaminants. Springer International Publishing; 2017. p. 259-76.

Ali S, Abbas Z, Rizwan M, Zaheer IE, Yavas I, Unay A, et al. Application of foating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability 2020;12(5):Article No. 1927.

Aqdas A, Hashmi I. Role of water hyacinth (Eichhornia crassipes) in integrated constructed wetlands: A review on its phytoremediation potential. International Journal of Envi-ronmental Science and Technology 2023;20:2259-66.

Ariyakanon A. Water hyacinth and wastewater treatment. Environmental Journal 2018;22:49-55 (in Thai).

Bahraminia M, Zarei M, Ronaghi A, Ghasemi-Fasaei R. Effectiveness of arbuscular mycorrhizal fungi in phytoremediation of lead-contaminated soil by vetiver grass. International Journal of Phytoremediation 2016;18:730-7.

BGO Plant Databases. Pistia stratiotes. The Botanical Garden Organization [internet]. 2023 [cited 2023 Jul 24]. Available from: http://www.qsbg.org/Database/BOTANIC_Book%20 full%20option/search_detail.asp?botanic_id=1625.

Bretaña BL, Salcedo S, Casim L, Manceras R. Growth performance and inorganic mercury uptake of Vetiver (Chrysopogon zizanoides Nash) inoculated with arbuscular mycorrhiza fungi (AMF): Its implication to phytoremediation. Journal of Agricultural Research, Development, Extension and Technology 2019;25(1):39-47.

Bunluesin S, Kruatrachue M, Pokethitiyook P, Lanza GR, Upatham ES, Soonthornsarathool V. Plant screening and comparison of Ceratophyllum demersum and Hydrilla verticillata for cadmium accumulation. Bulletin of Environmental Contamination and Toxicology 2004;73:591-8.

Chunkao K, Nimpee C, Duangmal K. The King’s initiatives using water hyacinth to remove heavy metals and plant nutrients from wastewater through Bueng Makkasan in Bangkok, Thailand. Ecological Engineering 2012;39:40-52.

Das P, Datta R, Makris KC, Sarkar D. Vetiver grass is capable of removing TNT from soil in the presence of urea. Environmetal Pollution 2010;158:1980-3.

Ekanayake MS, Udayanga D, Wijesekara I, Manage P. Phytoremediation of synthetic textile dyes: Biosorption and enzymatic degradation involved in efficient dye decolorization by Eichhornia crassipes (Mart.) Solms and Pistia stratiotes L. Environmental Science and Pollution Research 2021;28: 20476-86.

EnvironWiki. Sustainable remediation [internet]. 2023 [cited 2023 Apr 22]. Available from: http://www.enviro.wiki/index.php? title=Sustainable_Remediation.

Farnese FS, Oliveira JA, Gusman GS, Leao GA, Silveira NM, Silva PM, et al. Effects of adding nitroprusside on arsenic stressed response of Pistia stratiotes L. under hydroponic conditions. International Journal of Phytoremediation 2014; 16(2):123-37.

Fayiga AO, Saha UK. Arsenic hyperaccumulating fern: Implications for remediation of arsenic contaminated soils. Geoderma 2016;284:132-43.

Hettiarachchi E, Paul S, Cadol D, Frey B, Rubasinghege G. Mineralogy controlled dissolution of uranium from airborne dust in simulated lung fluids (SLFs) and possible health implications. Environmental Science and Technology Letters 2019;6(2):62-7.

Jankong P, Visoottiviseth P, Khokiattiwong S. Enhanced phytoremediation of arsenic contaminated land. Chemosphere 2007;68:1906-12.

Kafle A, Timilsina A, Gautam A, Adhikari K, Bhattarai A, Aryal N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances 2022;8:Article No. 100203.

Kiiskila JD, Li K, Sarkar D, Datta R. Metabolic response of vetiver grass (Chrysopogon zizanioides) to acid mine drainage. Chemosphere 2020;240:Article No. 124961.

Kodituwakku K, Yatawara M. Phytoremediation of industrial sewage sludge with Eichhornia crassipes, Salvinia molesta, and Pistia stratiotes in batch fed free water flow constructed wetlands. Bulletin of Environmental Contamination and Toxicology 2020;104:627-33.

Latif A, Abbas A, Iqbal J, Azeem M, Asghar W, Ullah R, et al. Remediation of environmental contaminants through phytotechnology. Water, Air, and Soil Pollution 2023; 234:Article No. 139.

Li Y, Xin J, Tian R. Physiological defense and metabolic strategy of Pistia stratiotes in response to zinc-cadmium co-pollution. Plant Physiology and Biochemistry 2022;178:1-11.

Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety 2016;126:111-21.

Malar S, Sahi SV, Favas PJC, Venkatachalam P. Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths (Eichhornia crassipes Mart.). Environmental Science and Pollution Research 2015;22: 4597-608.

Memon A, Kusur F, Memon M. Metal Hyperaccumulator plants and their role in phytoremediation. In: Prasad R, editor. Phytoremediation for Environmental Sustainability. Springer Nature; 2021. p. 1-24.

Mishra S, Maiti A. The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: A review. Environmental Science and Pollution Research 2017;24:7921-37.

Nedjimi B. Phytoremediation: A sustainable environmental technology for heavy metals decontamination. SN Applied Sciences 2021;3:Article No. 286.

Pandey S, Rai R, Rai LC. Biochemical and molecular basis of As toxicity and tolerance in microbes and plants. In: Flora SJS, editor. Handbook of Arsenic Toxicology. Academic Press; 2015. p. 627-74.

Pang YL, Quek YY, Lim S, Shuit SH. Review on phytoremediation potential of floating aquatic plants for heavy metals: A promising approach. Sustainability 2023;15:1-23.

Patel S. Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: An overview. Reviews in Environmental Science and Bio/Technology 2012;11:249-59.

Plant Pest in Thailand. Eichhornia crassipes (Mart.) Solms [internet]. 2023 [cited 2023 Jul 24]. Available from: http://ippc.acfs.go.th/pest/G001/T010/WEED030.

Prasertsup P, Ariyakanon N. Removal of chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.). International Journal of Phytoremediation 2011;13:383-95.

Priyanka S, Shinde O, Sarkar S. Phytoremediation of industrial mines wastewater using water hyacinth. International Journal of Phytoremediation 2017;19:87-96.

Rosen BP. Biochemistry of arsenic detoxification. FEBS Letters 2002;529(1):86-92.

Roongtanakiat N. Vetiver in Thailand: General aspects and basic studies. KU Science Journal 2006;24:13-9.

Roongtanakiat N, Tangruangkiat S, Meesat R. Utilization of vetiver grass (Vetiveria zizanioides) for removal of heavy metals from industrial wastewaters. ScienceAsia 2007;33: 397-403.

Rotkittikhun P, Chaiyarat R, Kruatrachue M, Pokethitiyook P, Baker AJM. Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: A glasshouse study. Chemosphere 2007;66:45-53.

Sahraoui ALH, Calonne-Salmon M, Labidi S, Meglouli H, Fontaine J. Arbuscular mycorrhizal fungi-assisted phytoremediation: Concepts, challenges, and future perspectives. Assisted Phytoremediation 2022;3:49-99.

Santra SC, Samal AC, Bharttacharya P, Banerjee S, Biswas A, Majumdar J. Arsenic in food chain and community health risk: A study in Gangetic West Bengal. Procedia Environmental Sciences 2013;18:2-13.

Singh H, Pant G. Phytoremediation: Low input‐based ecological approach for sustainable environment. Applied Water Science 2023;13:Article No. 85.

Soongsombat P, Kruatrachue M, Chaiyarat R, Pokethitiyook P, Ngernsansaruay C. Lead tolerance in Pteris vittata and Pityrogramma calomelanos and their potential for phytoremediation of lead-contaminated soil. International Journal of Phytoremediation 2009;11:396-412.

Srivastava M, Ma LQ, Singh N, Singh S. Antioxidant responses of hyperaccumulator and sensitive fern species to arsenic. Journal of Experimental Botany 2005;56:1335-42.

Upatham ES, Pokethitiyook P, Panich-Pat T, Lanza GR. Phytoremediation in Thailand: A summary of selected research and case histories. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L. editors. Phytoremediation: Management of Environmental Contaminants. Switzerland: Springer International Publishing; 2014. p. 333-48.

Visoottiviseth P, Francesconi K, Sridokchan W. The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution 2002;118 453-61.

Wattanapanich C, Durongpongtorn N, Ariyakanon N. Performance of water hyacinth (Eichhornia crassipes) in the treatment of residential and surimi wastewater. Environment Asia 2020;13(2):124-37.

Wei S, Ma LQ, Saha U, Mathews S, Sundaram S, Rathinasabapathi B, et al. Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L. Environmental Pollution 2010;158:1530-5.

Wikipedia. Chrysopogon zizanioides [internet]. 2023a [cited 2023 Apr 9]. Available from: https://en.wikipedia.org/wiki/ Chrysopogon_zizanioides.

Wikipedia. Pistia stratiotes [internet]. 2023c [cited 2023 Jul 24]. Available from: https://en.wikipedia.org/wiki/Pistia.

Wikipedia. Pontederia crassipes [internet]. 2023b [cited 2023 Jul 24]. Available from: https://en.wikipedia.org/wiki/Pontederia _crassipes.

Yan A, Wang Y, Tan SN, Yusof MLM, Ghosh S, Chen Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted soil. Frontiers of Plant Science 2020;11:Article No. 359.

Yang W, Gu J, Zhou H, Huang F, Yuan T, Zhang J, et al. Efect of three napier grass varieties on phytoextraction of Cd- and Zn-contaminated cultivated soil under mowing and their safe utilization. Environmental Science and Pollution Research 2020;27:16134-44.

Zhang F, Wang X, Yin D, Peng B, Tan C, Liu Y, et al. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichhornia crassipes). Journal of Environmental Management 2015;153:68-73.