Optimum Time and Temperature for Biodiesel Production using Melon (Cucumeropsismannii), Groundnut (Arachis Hypogea), and Soybean (Glycine max)

Keywords: Renewable fuels, environment, biodiesel, fuel properties, energy

Abstract

Abstract Views: 158

This study investigated the optimum condition for biodiesel production at varying temperatures and time using melon (Cucumeropsismannii), groundnut (Arachis hypogea), and soybean (Glycine max) seed oils. Oil was extracted from Cucumeropsismannii, A. hypogea, and G. max using n-hexane(67.7-69.2oC) as the solvent. Biodiesel was produced from three different seed oils at varying temperatures of 65oC, 55oC, and 45oC at varied durations of 60mins, 50mins, and 40mins. The best percentage yield was obtained at 65oC for the duration of 60 minutes. The transesterification process was not complete at 40 min; however, at 50 min the process was completed. The process also remained incomplete at 45oC.The maximum percentage yield of biodiesel obtained through transesterification was 90.83% for G. max, 78.00%for A. hypogea, and 77.58% for Cucumeropsismannii seedoils. Fuel properties of biodeisels, such as kinematic viscosity, pour point, carbon residue, cloud point, water content, flash point, cetane index, and sulfated ash, were examined. The flashpoint, carbon residue, kinematic viscosity, and water content of biodiesels were within the standard specified for petrol diesel; however, cloud point and pour points of this product were found to be greater than that of petrol diesel. The cetane index of biodiesels was lower than the standard specified for petrol diesel. Additionally, the samples were not found to contain sulfated ash. Therefore, Cucumeropsismannii, A. hypogea), and G. max are goodsources of biodiesel production.

Keywords

biodiesel, energy, environment, fuel properties, renewable fuel

Copyright (c) The Authors

Downloads

Download data is not yet available.

References

Soliman, M.N.; Guen, F.Z.; Ahmed, S.A.; Saleem, H.; Khalil, M.J.; Zaidi, S.J. Energy consumption and environmental impact assessment of desalination plants and brine disposal strategies. Process Saf. Environ. Prot. 2021; 147, 589–608. DOI: https://doi.org/10.1016/j.psep.2020.12.038

Chong, C.T.; Loe, T.Y.; Wong, K.Y.; Ashokkumar, V.; Lam, S.S.; Chong, W.T.; Borrion, A.; Tian, B.; Ng, J.-H. Biodiesel sustainability: The global impact of potential biodiesel production on the energy–water–food (EWF) nexus. Environ. Technol. Innov; 2021; 22, 101408. DOI: https://doi.org/10.1016/j.eti.2021.101408

Supriyanto, E.; Sentanuhady, J.; Dwiputra, A.; Permana, A.; Muflikhun, M.A. The Recent Progress of Natural Sources and Manufacturing Process of Biodiesel: A Review. Sustainability, 2021; 13, 5599. https://doi.org/ 10.3390/su13105599 DOI: https://doi.org/10.3390/su13105599

Refaat A. A., Attia N. K., Sibak H. A., El SheltaryS. T. and EL Diwani G. I. Production optimization and quality assessment of biodiesel from waste vegetable oil. Int. J. Environ. Sci. Tech. 2008; 5(1), 75-82. DOI: https://doi.org/10.1007/BF03325999

Luque, R.; Lin, C.S.K.;Wilson, K.; Clark, J. Handbook of Biofuels Production: Processes and Technologies, 2nd ed.;Woodhead Publishing: Cambridge, UK, 2016; ISBN 9780081004562.

De Oliveira Matias J. C. and Devezas T. C. Consumption dynamics of primary-energy sources. The century of alternative energies. Appl. Energy 2007; 84(7-8), 763-770. DOI: https://doi.org/10.1016/j.apenergy.2007.01.007

Panjeshahi M. H. and Ataei A. Application of an environmentally optimum cooling water system design in water and energy conservation. Int. J. Environ. Sci. Tech. 2008; 5(2), 251-262. DOI: https://doi.org/10.1007/BF03326019

HaktanyrlarMatus B. Determination of the appropriate energy policy for Turkey. Energy 2005; 30(7), 1146-1161. DOI: https://doi.org/10.1016/j.energy.2004.08.009

Aksoy F. The effect of opium poppy oil diesel fuel mixture on engine performance and emissions. Int. J. Environ. Sci. Tech. 2011; 8(1), 57-62. DOI: https://doi.org/10.1007/BF03326195

Rittman B. E., Marcus A. and Torres C. I. Thermodynamic analysis of biohydrogen and microbial fuel cells. In Bioenergy production: Biohydrogen and electricity generation using microbial fuel cells B. Logan and T. E MalbukEds; Symposium paper presented before the Division of Environmental Chemistry, American Chemical Society Philadelphia PA, 2004; 22-26.

Cerik Y., Bulut C., Karabekta M., and Ergen G. The effects of supplementary air application on the performance of a diesel engine fuelled with biodiesel produced from waste vegetable oil. Int. Combust. Symposium. Sakarya, Turkey, 2008; 9-10 October.

Tandon A., Kumar A., Mondal P., Vijay P., Bhangale U. D. and Tyagi D. Tribological issues related to the use of Biofuels: A new environmental challenge. British J. of Environment and Climate Change 2011; 1(2), 28-43. DOI: https://doi.org/10.9734/BJECC/2011/359

Vogel CFA, KadoSY, Kobayashi R, Liu X, Wong P, Na K, Durbin T, Okamoto RA, and Kado NY. Inflammatory marker and aryl hydrocarbon receptor-dependent responses in human macro phages exposed to emissions from biodiesel fuels. Chemosphere, 2019; 220: 993–1002. DOI: https://doi.org/10.1016/j.chemosphere.2018.12.178

KatlegoBombo, TumeletsoLekgoba, OluwatosinAzeez and Edison Muzenda. The Sustainability of Biodiesel Synthesis from Different Feedstocks: A Review. Petroleum and Coal; 2021; 63(2): 284-291

Jeong G. T. and Park D. H. Batch (one and two stage) production of Biodiesel fuel from rapeseed oil. Biotechnol. Appl. Bioc. 1996; 131(1-3), 668-679 DOI: https://doi.org/10.1385/ABAB:131:1:668

Çaynak S., Guru M., Bicer A., Keskin A. and Ycingur Y. Biodiesel production from pomace oil and improvement of its properties with synthetic manganese additive. Fuel 2009; 88 (3), 534-538. DOI: https://doi.org/10.1016/j.fuel.2008.09.031

Vicente G., Martinez M. and Aracil J. Integrated biodiesel production: a comparison of different homogenous catalysts systems, Bioresource Tech. 2004; 92(3), 297-305. DOI: https://doi.org/10.1016/j.biortech.2003.08.014

Meka P. K., Tripathi V. and Singh R. P. Synthesis of biodiesel fuel from safflower oil using various reaction parameters, J. Oleo. Sci. 2007; 56(1), 9-12 DOI: https://doi.org/10.5650/jos.56.9

Singh A. B. H, Thompson J. and Van Gerpen J. (2006). Process optimization of biodiesel production using different alkaline catalysts, Appl. Eng. Agric. 22(4), 597-600. DOI: https://doi.org/10.13031/2013.21213

Darnoko D. and Cheryman M. Kinetic of palm oil transesterification in a batch reactor. J. Am. Oil Chem. Soc. 2000; 77(12), 1263-1267. DOI: https://doi.org/10.1007/s11746-000-0198-y

El-Mashad H. M., Ruihong Z. and Roberto J. A. Biodidiesel production from fish oil. ASABE 2006; http://dx.doi.org/10.13031/2013.21514 DOI: https://doi.org/10.13031/2013.21514

Dorado M. P., Ballesteros E., De Almeida J. A., Schellert C., Lo hrlein H. P. and Krause R. Transesterification of Karanja (Pongemiapinnatan) oil by solid basic catalyst, Am. Soc. Agr. Biol. Eng. 2002; 45(3), 525-529

Cetinkaya M. andKaraosmanolu F. Optimization of base-catalyzed transesterification reaction of used cooking oil. Energ. Fuel 2004; 18(6), 1888-1895. DOI: https://doi.org/10.1021/ef049891c

Encinar J. M., Juan F., Gonzalez J. F. and Rodriguez-Reinares A. Biodiesel from used frying oil: Variable affecting the yields and characteristics of the biodiesel, Ind. Eng. Chem. Res. 2005; 44(15), 5491-5499. DOI: https://doi.org/10.1021/ie040214f

Felizardo P., Correia M. J., Raposo I., Mendes J. F., Berkemeier R. and Bordado J. M. Production of biodiesel from waste frying oils, Waste Management 2006; 26(5), 487-494. DOI: https://doi.org/10.1016/j.wasman.2005.02.025

Ugheoke B. I., Patrick D. O., Kefas H. M. and Onche E. O. Determination of optimal catalyst concentration for maximum biodiesel yield from tiger nut (Cyperusesculentus) oil, Leonardo J. Sci. 2007; 10, 131-136.

Karmee S. K. and Chadha A. Preparation of biodiesel from crude oil of Pongamiapinnata. Bioresource Tech. 2005; 96(13), 1425-1429. DOI: https://doi.org/10.1016/j.biortech.2004.12.011

Refaat A. A. Different techniques for the production of biodiesel from waste vegetable oil, Int. J. Environ. Sci. Tech. 2010; 7(1): 183-213. DOI: https://doi.org/10.1007/BF03326130

Pinto A. C., Gnarieiro L. N., Rezende M. J., Ribeiro N. M. and Torres E. A. Biodiesel: An overview. J. Brazil. Chem. Soc. 2005; 16(6B), 1313-1330. DOI: https://doi.org/10.1590/S0103-50532005000800003

Kalam M. A. and Masjuki H. H. Emissions and deposit characteristics of a small diesel engine when operated on preheated crude palm oil. Biomass Bioenergy 2004; 27(3), 289-297. DOI: https://doi.org/10.1016/j.biombioe.2004.01.009

Huzayyin A. S., Bawady A. H, Rady M. A. and Dawood A. Experimental evaluation of Diesel engine performance and emission using blends of jojoba oil and diesel fuels. Energ. Convers. Manage. 2004; 45 (13-14), 2093-2112. DOI: https://doi.org/10.1016/j.enconman.2003.10.017

Reni Banowati Istiningrum, Toni Aprianto and Febria Lutfi Udin Pamungkas. Effect of Reaction Temperature on Biodiesel Production from Waste Cooking Oil Using Lipase as Biocatalyst. AIP Conference Proceedings 1911, 020031 (2017); https://doi.org/10.1063/1.5016024 DOI: https://doi.org/10.1063/1.5016024

Valentinoh Cuaca, Wendi and Taslim. Effect of Reaction Time and Molar Ratio of Alcohol to Beef Tallow for Producing Biodiesel from Waste Beef Tallow Using Heterogeneous Catalyst CaO from Waste Eggshell. The 5th Sriwijaya International Seminar on Energy and Environmental Science & Technology Palembang, Indonesia September 10-11, 2014

Abba E. C., Nwakuba N. R., Obasi S. N., and Enem J. I. Effect of Reaction Time on the Yield of Biodiesel from Neem Seed Oil American Journal of Energy Science 2017; 4(2): 5-9

National Population Commission (NPC, 2006). National Population Census Figure, Abuja, Nigeria.

Ume S. I., Ezeano C.I., and Gbughemobi, B. O. Analysis of the Environmental Effect of Pig Production in Okigwe Local Government Area of Imo State, Nigeria. International Journal of Environmental & Agriculture Research 2018; 4(6), 12 – 21.

American Oil Chemists Society (AOCS) Official method, sampling and analysis of commercial fats and oils. Official methods of analysis of American Oil Chemists Society 1960; pp. 801-855.

American Society for Testing and Materials (ASTM). American Society for Testing and Materials, Standard specification for Biodiesel fuel (B100) Blend stock for Distillate Fuels, Designation D6751-02, ASTM International, West Conshohocken, PA. 2002.

American Society for Testing and Materials (ASTM). Annual book of ASTM standards vol. 01:02. Standard test method for Ramsboth carbon residue of petroleum products 2001; pp. 149-153.

American Society for Testing and Materials (ASTM). Annual book of ASTM standards vol. 02:03. Standard test method for pour point of petroleum products. 2006; pp. 34-40.

American Society for testing and materials (ASTM). Annual book of ASTM standards vol. 04:05 standard test method for kinematic viscosity of transparent and opaque liquids. 1993; pp. 37-42.

American Society for Testing and Materials (ASTM) Annual book of ASTM standards vol. 05:03. Standard test method for sulphated ash from lubricating oils and additives 1994; pp. 4430-4431.

American Society for Testing and Materials (ASTM) 2002. Annual book of ASTM standards vol.03:04 standard test methods for flash point of petroleum product. By Cleveland open flash point. 2002; pp 94-110.

Pischinger G. H. and Falcon A. M. Biodiesel cetane number Engine testing comparison to calculated cetane index number. Final report to the material Biodiesel Board. 1993; p. 755

Dorado M. P., Ballesteros E., Francisco J. andMittelbach M. Optimization of alkali catalyzed transesterification of Brassica carinata oil for biodiesel production. Energ. Fuel. 2004; 18(1), 77-83. DOI: https://doi.org/10.1021/ef0340110

Cheng S. F., Chow Y. M., Ma A. N. andChuah C. H. 2004. Kinetics study on transesterification of palm oil, J. Oil Palm Res. 2004; 16(2), 19-29.

Encinar J. M., Juan F., Gonzalez J. F. and Rodriguez-Reinares A. Ethanolysis of used frying oils: Biodiesel preparation and characterization, Fuel Proc. Tech. 2007; 88, 513-522 DOI: https://doi.org/10.1016/j.fuproc.2007.01.002

Ozsezen A. N., Canakcy M., Turkcan A. and Sayyn C. Performance and combustion characteristics of a DI diesel engine fueled with waste palm oil and canola oil methyl esters, Fuel 2009; 88(4), 629-636 DOI: https://doi.org/10.1016/j.fuel.2008.09.023

Ajiwe V. I. E., Ndukwe G. I. and Anyadiegwu I. E. Vegetable diesel fuels from Luffa cylindrical oil. Its methyl ester and ester-diesel blends. Chem. Class Journal 2005; 2,1-4.

Schumacher L. 2005. Biodiesel lubricity. In the biodiesel Handbook. G. Knothe J. Krahl, J. Van GerpenEds; AOCS Press; Champaign IL: 2005; pp 137-144. DOI: https://doi.org/10.1201/9781439822357.ch6.5

Singh A. K. and Fernando S. Catalyzed fast-transesterification of soya bean oil using ultrasonication. American Society of Agricultural Engineers ASAE annual meeting paper 2006; No. 066220.

Balko B., Dobek T. K. and Koniuszy A. Evaluation of vegetable and petroleum based diesel fuels in the aspect of lubricity in steel-aluminum association. J. Int. Agrophys. 2008; 22, 31-34.

Knothe G. and Steidley K. R. Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity. Energy and Fuels 2005; 19, 1192-1200 DOI: https://doi.org/10.1021/ef049684c

Oniya O. O. and Bamgboye A. I. Production of biodiesel from groundnut (Arachis hypogea, L.) oil AgricEngInt: CIGR Journal 2014; Vol. 16 (1); 143 – 150

Knothe, G. Analytical methods used in the production and fuel quality assessment of biodiesel., Am. Soc. Agr. Eng., 2001; 44 (2), 193-200. DOI: https://doi.org/10.13031/2013.4740

Mushatq Ahmad, Shoaib Ahmed, Fayyaz-Ul-Hassan, Muhammad Arshad, Mir Ajab Khan, Muhammad Zafar and Shazia Sultana. Base catalyzed transesterification of sunflower oil biodiesel. African Journal of Biotechnology 2010; Vol. 9(50), pp. 8630-8635.

Published
2021-12-31
How to Cite
Onyenze, U., Igwe, J. C., Sonde, C. U., Udo , P. E., Ogwuda, U. A., & Edozie, O. I. (2021). Optimum Time and Temperature for Biodiesel Production using Melon (Cucumeropsismannii), Groundnut (Arachis Hypogea), and Soybean (Glycine max). BioScientific Review, 3(4). https://doi.org/10.32350/BSR.0304.07
Section
Research Articles