DYNAMICS OF A SYSTEM OF TWO EQUATIONS WITH A LARGE DELAY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The local dynamics of systems of two equations with delay is considered. The main assumption is that the delay parameter is large enough. Critical cases in the problem of the stability of the equilibrium state are highlighted and it is shown that they have infinite dimension. Methods of infinite-dimensional normalisation were used and further developed. The main result is the construction of special nonlinear boundary value problems which play the role of normal forms. Their nonlocal dynamics determines the behaviour of all solutions of the original system in а neighbourhood of the equilibrium state.

About the authors

S. A. Kashchenko

Regional Scientific and Educational Mathematical Center “Centre of Integrable Systems”,
P.G. Demidov Yaroslavl State University

Author for correspondence.
Email: kasch@uniyar.ac.ru
Russian Federation, Yaroslavl

A. O. Tolbey

Regional Scientific and Educational Mathematical Center “Centre of Integrable Systems”,
P.G. Demidov Yaroslavl State University

Author for correspondence.
Email: a.tolbey@uniyar.ac.ru
Russian Federation, Yaroslavl

References

  1. Шарковский А.Н., Майстренко Ю.Л., Романенко Е.Ю. Разностные уравнения и их приложения. Киев: Наукова думка, 1986. 280 с.
  2. Kashchenko S.A. The Dynamics of Second-order Equations with Delayed Feedback and a Large Coefficient of Delayed Control // Regular and Chaotic Dynamics. 2016. V. 21. № 7/8. P. 811–820. https://doi.org/10.1134/S1560354716070042
  3. Giacomelli G., Politi A. Relationship between delayed and spatially extended dynamical systems // Physical review letters. 1996. V. 76. № 15. P. 2686.
  4. Mensour B., Longtin A. Power spectra and dynamical invariants for delay-differential and difference equations // Physica D: Nonlinear Phenomena. 1998. V. 113. № 1. P. 1–25.
  5. Wolfrum M., Yanchuk S. Eckhaus instability in systems with large delay // Physical review letters. 2006. V. 96. № 22. P. 220201.
  6. Bestehorn M., Grigorieva E.V., Haken H., Kashchenko S.A. Order parameters for class-B lasers with a long time delayed feedback // Physica D: Nonlinear Phenomena. 2000. V. 145. № 1/2. P. 110–129. https://doi.org/10.1016/S0167-2789(00)00106-8
  7. Giacomelli G., Politi A. Multiple scale analysis of delayed dynamical systems // Physica D: Nonlinear Phenomena. 1998. V. 117. № 1–4. P. 26–42.
  8. Ikeda K., Daido H., Akimoto O. Optical turbulence: chaotic behavior of transmitted light from a ring cavity // Physical Review Letters. 1980. V. 45. № 9. P. 709.
  9. Hale J.K. Theory of Functional Differential Equations, 2nd ed.; Springer: New York, NY, USA, 1977. 626 p. https://doi.org/10.1007/978-1-4612-9892-2
  10. D’Huys O., Vicente R., Erneux T., Danckaert J., Fischer I. Synchronization properties of network motifs: Influence of coupling delay and symmetry // Chaos: An Interdisciplinary Journal of Nonlinear Science. 2008/12/03. AIP, 2008. V. 18. № 3. P. 37116.
  11. Klinshov V.V., Nekorkin V.I. Synchronization of time-delay coupled pulse oscillators // Chaos, Solitons and Fractals. 2011. V. 44. № 1–3. P. 98–107.
  12. Клиньшов В.В., Некоркин В.И. Синхронизация автоколебательных сетей с запаздывающими связями // Успехи физических наук. 2013. Т. 183, № 12. С. 1323–1336.
  13. Klinshov V., Shchapin D., Yanchuk S., Nekorkin V. Jittering waves in rings of pulse oscillators // Physical Review E. 2016. V. 94. № 1. P. 012206.
  14. Yanchuk S., Perlikowski P. Delay and periodicity // Physical Review E. APS. 2009. V. 79. № 4. P. 1–9.
  15. Кащенко С.А. Применение метода нормализации к изучению динамики дифференциально-разностных уравнений с малым множителем при производной // Дифференциальные уравнения. 1989. Т. 25. № 8. С. 1448–1451.
  16. Kashchenko S.A. Van der Pol Equation with a Large Feedback Delay // Mathematics. 2023. V. 11. № 6. P. 1301. https://doi.org/10.3390/math11061301
  17. Kaschenko S.A. Normalization in the systems with small diffusion // Int. J. Bifurc. Chaos Appl. Sci. Eng. 1996. V. 6. P. 1093–1109. https://doi.org/10.1142/S021812749600059X
  18. Kashchenko S.A. The Ginzburg–Landau equation as a normal form for a second-order difference-differential equation with a large delay // Computational Mathematics and Mathematical Physics. 1998. V. 38. № 3. P. 443–451.
  19. Vasil’eva A.B., Butuzov V.F. Asymptotic expansions of the solutions of singularly perturbed equations. Moscow: Nauka, 1973. 272 p.
  20. Butuzov V.F., Nefedov N.N., Omel’chenko O., and Recke L. Boundary layer solutions to singularly perturbed quasilinear systems. Discrete and Continuous Dynamical Systems. Series B. 2022. V. 27. № 8. P. 4255–4283. https://doi.org/10.3934/dcdsb.2021226
  21. Nefedov N.N. Development of methods of asymptotic analysis of transitionlayers in reaction–diffusion–advection equations: theory and applications // Computational Mathematics and Mathematical Physics. 2021. V. 61. № 12. P. 2068–2087. https://doi.org/10.1134/S0965542521120095

Copyright (c) 2023 С.А. Кащенко, А.О. Толбей

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies