A new mouse strain with mutation in the NFE2L2 (NRF2 gene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The transcription factor NRF2 is involved in inflammatory reactions, maintenance of redox balance, metabolism of xenobiotics, and is of particular interest for aging studies. In the present work, CRISPR/Cas9 genome editing technology was used to generate NRF2ΔNeh2 mice containing a substitution of eight amino acid residues at the N-terminus of the NRF2 protein, upstream of the functional Neh2 domain, which ensures binding of NRF2 to its inhibitor KEAP1. Heterozygote NRF2wt/ΔNeh2 mice gave birth to homozygous mice with lower than expected frequency, accompanied by their increased embryonic lethality and visual signs of anemia. Mouse embryonic fibroblasts (MEFs) from NRF2ΔNeh2/ΔNeh2 homozygotes showed impaired resistance to oxidative stress compared to wild-type MEFs. The tissues of homozygous NRF2ΔNeh2/ΔNeh2 animals had a decreased expression of NRF2 target genes: NAD(P)H: Quinone oxidoreductase-1 (Nqo1); aldehyde oxidase-1 (Aox1); glutathione-S-transferase A4 (Gsta4); while the relative mRNA level of monocyte chemoattractant protein 1 (Ccl2), vascular cell adhesion molecule 1 (Vcam1) and chemokine Cxcl8 was increased. Thus, the resulting mutation in the Nfe2l2 gene partially impaired the function of this transcription factor, expanding the insights into the functional role of the unstructured N-terminus of NRF2. The obtained NRF2ΔNeh2 mouse line can be used as a model object for studying various pathologies associated with oxidative stress and inflammation.

About the authors

E. S Egorov

Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University

119234 Moscow, Russia

N. D Kondratenko

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University;Russian Clinical Research Center for Gerontology of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University

119992 Moscow, Russia;129226 Moscow, Russia

O. A Averina

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University;Institute of Functional Genomics, Lomonosov Moscow State University;Faculty of Chemistry, Lomonosov Moscow State University

119992 Moscow, Russia;119991 Moscow, Russia;119991 Moscow, Russia

O. A Permyakov

Institute of Functional Genomics, Lomonosov Moscow State University;Faculty of Chemistry, Lomonosov Moscow State University

119991 Moscow, Russia;119991 Moscow, Russia

M. A Emelyanova

Institute of Functional Genomics, Lomonosov Moscow State University;Faculty of Chemistry, Lomonosov Moscow State University

119991 Moscow, Russia;119991 Moscow, Russia

A. S Prikhodko

Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University;Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University

119234 Moscow, Russia;119992 Moscow, Russia

L. A Zinovkina

Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University

119234 Moscow, Russia

P. V Sergiev

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University;Institute of Functional Genomics, Lomonosov Moscow State University;Faculty of Chemistry, Lomonosov Moscow State University

119992 Moscow, Russia;119991 Moscow, Russia;119991 Moscow, Russia

R. A Zinovkin

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University;HSE University

Email: roman.zinovkin@gmail.com
119992 Moscow, Russia;101000 Moscow, Russia

References

  1. Kobayashi, A., Kang, M.-I., Okawa, H., Ohtsuji, M., Zenke, Y., Chiba, T., Igarashi, K., and Yamamoto, M. (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2, Mol. Cell. Biol., 24, 7130-7139, doi: 10.1128/MCB.24.16.7130-7139.2004.
  2. Kobayashi, A., Kang, M.-I., Watai, Y., Tong, K. I., Shibata, T., Uchida, K., and Yamamoto, M. (2006) Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1, Mol. Cell. Biol., 26, 221-229, doi: 10.1128/MCB.26.1.221-229.2006.
  3. Motohashi, H., Katsuoka, F., Engel, J. D., and Yamamoto, M. (2004) Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway, Proc. Natl. Acad. Sci. USA, 101, 6379-6384, doi: 10.1073/pnas.0305902101.
  4. Tonelli, C., Chio, I. I. C., and Tuveson, D. A. (2018) Transcriptional regulation by Nrf2, Antioxid. Redox Signal., 29, 1727-1745, doi: 10.1089/ars.2017.7342.
  5. Saha, S., Buttari, B., Panieri, E., Profumo, E., and Saso, L. (2020) An overview of Nrf2 signaling pathway and its role in inflammation, Molecules, 25, 5474, doi: 10.3390/molecules25225474.
  6. Tong, K. I., Katoh, Y., Kusunoki, H., Itoh, K., Tanaka, T., and Yamamoto, M. (2006) Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model, Mol. Cell. Biol., 26, 2887-2900, doi: 10.1128/MCB.26.8.2887-2900.2006.
  7. Zhang, D. D., Lo, S.-C., Cross, J. V., Templeton, D. J., and Hannink, M. (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex, Mol. Cell Biol., 24, 10941-10953, doi: 10.1128/MCB.24.24.10941-10953.2004.
  8. Katoh, Y., Itoh, K., Yoshida, E., Miyagishi, M., Fukamizu, A., and Yamamoto, M. (2001) Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription, Genes Cells, 6, 857-868, doi: 10.1046/j.1365-2443.2001.00469.x.
  9. Wang, H., Liu, K., Geng, M., Gao, P., Wu, X., Hai, Y., et al. (2013) RXRα inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2, Cancer Res., 73, 3097-3108, doi: 10.1158/0008-5472.CAN-12-3386.
  10. Rada, P., Rojo, A. I., Chowdhry, S., McMahon, M., Hayes, J. D., and Cuadrado, A. (2011) SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner, Mol. Cell. Biol., 31, 1121-1133, doi: 10.1128/MCB.01204-10.
  11. McMahon, M., Thomas, N., Itoh, K., Yamamoto, M., and Hayes, J. D. (2004) Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron, J. Biol. Chem., 279, 31556-31567, doi: 10.1074/jbc.M403061200.
  12. Nioi, P., Nguyen, T., Sherratt, P. J., and Pickett, C. B. (2005) The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation, Mol. Cell. Biol., 25, 10895-10906, doi: 10.1128/MCB.25.24.10895-10906.2005.
  13. Karunatilleke, N. C., Fast, C. S., Ngo, V., Brickenden, A., Duennwald, M. L., Konermann, L., et al. (2021) Nrf2, the major regulator of the cellular oxidative stress response, is partially disordered, Int. J. Mol. Sci., 22, 7434, doi: 10.3390/ijms22147434.
  14. Kansanen, E., Jyrkkänen, H.-K., and Levonen, A.-L. (2012) Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids, Free Radic. Biol. Med., 52, 973-982, doi: 10.1016/j.freeradbiomed.2011.11.038.
  15. Reddy, N. M., Potteti, H. R., Mariani, T. J., Biswal, S., and Reddy, S. P. (2011) Conditional deletion of Nrf2 in airway epithelium exacerbates acute lung injury and impairs the resolution of inflammation, Am. J. Respir. Cell Mol. Biol., 45, 1161-1168, doi: 10.1165/rcmb.2011-0144OC.
  16. Rushworth, S. A., Shah, S., and MacEwan, D. J. (2011) TNF mediates the sustained activation of Nrf2 in human monocytes, J. Immunol., 187, 702-707, doi: 10.4049/jimmunol.1004117.
  17. Lu, X.-Y., Wang, H.-D., Xu, J.-G., Ding, K., and Li, T. (2015) Deletion of Nrf2 exacerbates oxidative stress after traumatic brain injury in mice, Cell. Mol. Neurobiol., 35, 713-721, doi: 10.1007/s10571-015-0167-9.
  18. Chan, K., Lu, R., Chang, J. C., and Kan, Y. W. (1996) NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development, Proc. Natl. Acad. Sci. USA, 93, 13943-13948, doi: 10.1073/pnas.93.24.13943.
  19. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., and Zhang, F. (2013) Genome engineering using the CRISPR-Cas9 system, Nat. Protoc., 8, 2281-2308, doi: 10.1038/nprot.2013.143.
  20. Cho, A., Haruyama, N., and Kulkarni, A. B. (2009) Generation of transgenic mice, Curr. Protoc. Cell Biol., 42, 19.11.1-19.11.22, doi: 10.1002/0471143030.cb1911s42.
  21. Averina, O. A., Vysokikh, M. Y., Permyakov, O. A., and Sergiev, P. V. (2020) Simple recommendations for improving efficiency in generating genome-edited mice, Acta Naturae, 12, 42-50, doi: 10.32607/actanaturae.10937.
  22. Bonaparte, D., Cinelli, P., Douni, E., Hérault, Y., Maas, M., Pakarinen, P., et al. (2013) FELASA guidelines for the refinement of methods for genotyping genetically-modified rodents: a report of the Federation of European Laboratory Animal Science Associations Working Group, Lab. Anim., 47, 134-145, doi: 10.1177/0023677212473918.
  23. Truett, G. E., Heeger, P., Mynatt, R. L., Truett, A. A., Walker, J. A., and Warman, M. L. (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT), Biotechniques, 29, 52-54, doi: 10.2144/00291bm09.
  24. Qiu, L.-Q., Lai, W. S., Stumpo, D. J., and Blackshear, P. J. (2016) Mouse embryonic fibroblast cell culture and stimulation, Bio Protoc., 6, e1859, doi: 10.21769/BioProtoc.1859.
  25. Zinovkina, L. A., Galivondzhyan, M. K., Prikhodko, A. S., Galkin, I. I., and Zinovkin, R. A. (2020) Mitochondria-targeted triphenylphosphonium-based compounds do not affect estrogen receptor alpha, PeerJ, 8, e8803, doi: 10.7717/peerj.8803.
  26. Zinovkin, R. A., Romaschenko, V. P., Galkin, I. I., Zakharova, V. V., Pletjushkina, O. Y., Chernyak, B. V., and Popova, E. N. (2014) Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium, Aging, 6, 661-674, doi: 10.18632/aging.100685.
  27. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D., and Yamamoto, M. (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain, Genes Dev., 13, 76-86, doi: 10.1101/gad.13.1.76.
  28. Katoh, Y., Iida, K., Kang, M.-I., Kobayashi, A., Mizukami, M., Tong, K. I., McMahon, M., Hayes, J. D., Itoh, K., and Yamamoto, M. (2005) Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome, Arch. Biochem. Biophys., 433, 342-350, doi: 10.1016/j.abb.2004.10.012.
  29. Cho, H.-Y., Jedlicka, A. E., Reddy, S. P. M., Kensler, T. W., Yamamoto, M., Zhang, L.-Y., and Kleeberger, S. R. (2002) Role of NRF2 in protection against hyperoxic lung injury in mice, Am. J. Respir. Cell Mol. Biol., 26, 175-182, doi: 10.1165/ajrcmb.26.2.4501.
  30. Rangasamy, T., Cho, C. Y., Thimmulappa, R. K., Zhen, L., Srisuma, S. S., Kensler, T. W., Yamamoto, M., Petrache, I., Tuder, R. M., and Biswal, S. (2004) Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice, J. Clin. Invest., 114, 1248-1259, doi: 10.1172/jci200421146.
  31. Aoki, Y., Sato, H., Nishimura, N., Takahashi, S., Itoh, K., and Yamamoto, M. (2001) Accelerated DNA adduct formation in the lung of the Nrf2 knockout mouse exposed to diesel exhaust, Toxicol. Appl. Pharmacol., 173, 154-160, doi: 10.1006/taap.2001.9176.
  32. Rangasamy, T., Guo, J., Mitzner, W. A., Roman, J., Singh, A., Fryer, A. D., Yamamoto, M., Kensler, T. W., Tuder, R. M., Georas, S. N., and Biswal, S. (2005) Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice, J. Exp. Med., 202, 47-59, doi: 10.1084/jem.20050538.
  33. Thimmulappa, R. K., Lee, H., Rangasamy, T., Reddy, S. P., Yamamoto, M., Kensler, T. W., et al. (2016) Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis, J. Clin. Invest., 116, 984-995, doi: 10.1172/JCI25790.
  34. Osburn, W. O., Wakabayashi, N., Misra, V., Nilles, T., Biswal, S., Trush, M. A., et al. (2006) Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion, Arch. Biochem. Biophys., 454, 7-15, doi: 10.1016/j.abb.2006.08.005.
  35. Higgins, L. G., Kelleher, M. O., Eggleston, I. M., Itoh, K., Yamamoto, M., and Hayes, J. D. (2009) Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts in vitro against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents, Toxicol. Appl. Pharmacol., 237, 267-280, doi: 10.1016/j.taap.2009.03.005.
  36. Moi, P., Chan, K., Asunis, I., Cao, A., and Kan, Y. W. (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region, Proc. Natl. Acad. Sci. USA, 91, 9926-9930, doi: 10.1073/pnas.91.21.9926.
  37. Kerins, M. J., and Ooi, A. (2018) The roles of NRF2 in modulating cellular iron homeostasis, Antioxid. Redox Signal., 29, 1756-1773, doi: 10.1089/ars.2017.7176.
  38. Gebel, S., Diehl, S., Pype, J., Friedrichs, B., Weiler, H., Schüller, J., Xu, H., Taguchi, K., Yamamoto, M., and Müller, T. (2010) The transcriptome of Nrf2-/- mice provides evidence for impaired cell cycle progression in the development of cigarette smoke-induced emphysematous changes, Toxicol. Sci., 115, 238-252, doi: 10.1093/toxsci/kfq039.
  39. Muramatsu, H., Katsuoka, F., Toide, K., Shimizu, Y., Furusako, S., and Yamamoto, M. (2013) Nrf2 deficiency leads to behavioral, neurochemical and transcriptional changes in mice, Genes Cells, 18, 899-908, doi: 10.1111/gtc.12083.
  40. Chartoumpekis, D. V., Ziros, P. G., Zaravinos, A., Iskrenova, R. P., Psyrogiannis, A. I., Kyriazopoulou, V. E., Sykiotis, G. P., and Habeos, I. G. (2013) Hepatic gene expression profiling in Nrf2 knockout mice after long-term high-fat diet-induced obesity, Oxid. Med. Cell Longev., 2013, 340731, doi: 10.1155/2013/340731.
  41. Quiles, J. M., Narasimhan, M., Shanmugam, G., Milash, B., Hoidal, J. R., and Rajasekaran, N. S. (2017) Differential regulation of miRNA and mRNA expression in the myocardium of Nrf2 knockout mice, BMC Genomics, 18, 509, doi: 10.1186/s12864-017-3875-3.
  42. Ahmed, S. M. U., Luo, L., Namani, A., Wang, X. J., and Tang, X. (2017) Nrf2 signaling pathway: pivotal roles in inflammation, Biochim. Biophys. Acta Mol. Basis Dis., 1863, 585-597, doi: 10.1016/j.bbadis.2016.11.005.
  43. Zinovkin, R. A., and Grebenchikov, O. A. (2020) Transcription factor Nrf2 as a potential therapeutic target for prevention of cytokine storm in COVID-19 patients, Biochemistry (Moscow), 85, 833-837, doi: 10.1134/S0006297920070111.
  44. Chen, X.-L., Dodd, G., Thomas, S., Zhang, X., Wasserman, M. A., Rovin, B. H., and Kunsch, C. (2006) Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression, Am. J. Physiol. Heart Circ. Physiol., 290, H1862-H1870, doi: 10.1152/ajpheart.00651.2005.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies