Pathogenesis of Post-Traumatic Stress Disorder, Therapeutic Targets

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract—The review summarizes current literature information on the mechanisms of pathogenesis of severe stress-induced disease – post-traumatic stress disorder (PTSD). Hormonal, biochemical, genetic and morphofunctional changes in peripheral organs and in the central nervous system occurring in PTSD are characterized. It turned out that most researchers have formed an opinion about the leading role of chronic inflammation in PTSD. The data on the study of the action of anti-inflammatory drugs with a narrow biochemical orientation are presented. The review concludes with the presentation of the hypothesis that the pathogenesis of PTSD should be considered as an integrative inflammatory process of peripheral and central systems. The therapeutic agent in this case, most likely, should be a multifunctional drug. Judging by the results of the authors' experiments, it is most likely to be drugs of the pharmacological group of heparins.

About the authors

M. S. Lapshin

South Ural State University

Author for correspondence.
Email: lapshin1982@yandex.ru
Russia, 445080, Chelyabinsk

M. V. Kondashevskaya

Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution
“Petrovsky National Research Centre of Surgery”

Author for correspondence.
Email: actual_probl@mail.ru
Russia, 117418, Moscow

V. V. Epishev

South Ural State University

Author for correspondence.
Email: epishevvv@susu.ru
Russia, 445080, Chelyabinsk

N. A. Patochkina

South Ural State University

Author for correspondence.
Email: patochkinana@susu.ru
Russia, 445080, Chelyabinsk

References

  1. Архипов В.И., Капралова М.В., Першина Е.В. Эксайтотоксичность и экспериментальные подходы к нейропротекции // Современные проблемы науки и образования. 2013. № 5. С. 486.
  2. Большаков А.П., Третьякова Л.В., Квичанский А.А., Гуляева Н.В. Глюкокортикоиды в нейровоспалении гиппокампа: доктор Джекилл и мистер Хайд // Биохимия. 2021. Т. 86. Вып. 2. С. 186–199.
  3. Кадыров Р.В., Венгер В.В. Комплексное посттравматическое стрессовое расстройство: современные подходы к определению понятия, этиологии, диагностика и психотерапия // Психолог. 2021. № 4. С. 45–60. https://doi.org/10.25136/2409-8701.2021.4.35811
  4. Казенная Е.В. Современные зарубежные исследования посттравматического стрессового расстройства и его лечения эффективными психотерапевтическими методами у взрослых // Современная зарубежная психология. 2020. Т. 9. № 4. С. 110–119. https://doi.org/10.17759/jmfp.2020090410
  5. Кондашевская М.В. Сравнительный анализ гормональных и поведенческих изменений в моделях посттравматического стрессового расстройства и остром стрессе // Российский физиологический журн. им. И.М. Сеченова. 2019. Т. 105. № 7. С. 879–887. https://doi.org/10.1134/S0869813919070045
  6. Кондашевская М.В., Комелькова М.В., Цейликман В.Э. и др. Новые морфофункциональные критерии профиля устойчивости при моделировании посттравматического стрессового расстройства – триггера дисфункции надпочечников // Доклады РАН. Науки о Жизни. 2021. Т. 501. С. 28–33. https://doi.org/10.31857/S2686738921060056
  7. Кондашевская М.В. Экосистема тучных клеток – ключевой полифункциональный компонент организма животных и человека. М.: Группа МДВ. 2019. 99 с. ISBN 978-5-906748-08-9.
  8. Кондашевская М.В. Гепарин в модуляции основных свойств центральной нервной системы при экспериментальном посттравматическом стрессовом расстройстве. Новый взгляд на механизмы патогенеза и лечения // Бюллетень экспериментальной биологии и медицины. 2019. Т. 168. № 7. С. 12–16.
  9. Кондашевская М.В., Цейликман В.Э., Манухина Е.Б. и др. Нарушение морфофункционального состояния надпочечников при экспериментальном посттравматическом стрессовом расстройстве у крыс: корреляция с поведенческими маркерами // Росс. физиол. журн. им. И.М. Сеченова. 2017. Т. 103. № 7. С. 808–818.
  10. Никольская К.А., Шпинькова В.Н., Доведова Е.Л., Сергутина А.В., Герштейн Л.М. Типология познавательной деятельности в нейрохимических показателях мозга животных // Электрон. науч. журн. “Исследовано в России”. 2007. Т. 16. № 060207. С. 150–179.
  11. Тушкова К.В., Бундало Н.Л. Реактивная и личностная тревожность у мужчин и женщин при посттравматическом стрессовом расстройстве различной степени тяжести. // Сибирское медицинское обозрение. 2013. Т. 3. № 81. С. 89–93.
  12. Цейликман В.Э., Лапшин М.С., Комелькова М.В. и др. Динамика изменения содержания ГАМК, катехоламинов и активности МАО-А при экспериментальном посттравматическом стрессовом расстройстве у крыс // Росс. физиол. журн. им. И.М. Сеченова. 2018. Т. 104. № 2. С. 156–163.
  13. Albert-Bayo M., Paracuellos I., Gonzlez-Cfstro A.M. et al. Intestinal mucosal mast cells: key modulators of barrier function and homeostasis // Cells. 2019. V. 8. № 2. P. E135. https://doi.org/10.3390/cells8020135
  14. Bajaj J.S., Sikaroodi M., Fagan A., Heuman D., Gilles H., Gavis E.A., Fuchs M., Gonzalez-Maeso J., Nizam S., Gillevet P.M., Wade J.B. Posttraumatic stress disorder is associated with altered gut microbiota that modulates cognitive performance in veterans with cirrhosis // Am. J. Physiol. Gastrointest. Liver Physiol. 2019. V. 317(5). P. G661-G669. https://doi.org/10.1152/ajpgi.00194.2019
  15. Baker J.D., Ozsan I., Ospina S.R., Gulick D., Blair L.J. Hsp90 heterocomplexes regulate steroid hormone receptors: from stress response to psychiatric disease // Int. J. Mol. Sci. 2019. V. 20. P. 79. https://doi.org/10.3390/ijms20010079
  16. Bartsch T., Wulff P. The hippocampus in aging and disease: From plasticity to vulnerability // Neuroscience. 2015. V. 309. P. 1–16. https://doi.org/10.1016/j.neuroscience.2015.07.084
  17. Bercik P., Denou E., Collins J., Jackson W., Lu J., Jury J. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice // Gastroenterology. 2019. V. 141. P. 599–609, 609.e591–593.
  18. Burton O.T., Tamayo J.M., Stranks A.J. et al. Allergen-specific IgG antibody signaling through FcγRIIb promotes food tolerance // J. Allergy Clin. Immunol. 2018. V. 141. № 1. P. 189–201.e3. https://doi.org/10.1016/j.jaci.2017.03.045
  19. Cain D.W., Cidlowski J.A. Immune regulation by glucocorticoids // Nature Reviews Immunology. 2017. V. 17. P. 233–247. https://doi.org/10.1038/nri.2017.1
  20. Carobrez A.P., Bertoglio L.J. Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on // Neurosci. Biobehav. Rev. 2005. V. 8. № 29. P. 1193–1205. https://doi.org/10.1016/j.neubiorev.2005.04.017
  21. Cathomas F., Murrough J.W., Nestler E.J., Han M.H., Russo S.J. Neurobiology of Resilience: Interface Between Mind and Body Biol Psychiatry. 2019. V. 86(6). P. 410–420. https://doi.org/10.1016/j.biopsych.2019.04.011
  22. Chao L.L., Tosun D., Woodward S.H., Kaufer D., Neylan T.C. Preliminary Evidence of Increased Hippocampal Myelin Content in Veterans with Posttraumatic Stress Disorder // Front. Behav. Neurosci. 2015. V. 9. P. 333. https://doi.org/10.3389/fnbeh.2015.00333
  23. Criado-Marrero M., Rein T., Binder E.B., Porter J.T., Koren J. 3rd, Blair L.J. Hsp90 and FKBP51: complex regulators of psychiatric diseases // Philos. Trans. R Soc. Lond. B Biol. Sci. 2018. V. 373(1738). P. 20160532. https://doi.org/10.1098/rstb.2016.0532
  24. d'Ettorre G., Ceccarelli G., Santinelli L., Vassalini P. et al. Post-Traumatic Stress Symptoms in Healthcare Workers Dealing with the COVID-19 Pandemic: A Systematic Review // Int. J. Environ. Res. Public. Health. 2021. V. 18. № 2. P. 601. https://doi.org/10.3390/ijerph18020601
  25. Delahanty D., Raimonde A., Spoonster E. Initial posttraumatic urinary cortisol levels predict subsequent PTSD symptoms in motor vehicle accident victims // Biol. Psychiatry. 2000. V. 48. P. 940–947. https://doi.org/10.1016/S0006-3223(00)00896-9
  26. Dodiya H.B., Forsyth C.B., Voigt R.M. et al. Chronic stress-induced gut dysfunction exacerbates Parkinson’s disease phenotype and pathology in a rotenone-induced mouse model of Parkinson’s disease // Neurobiol Dis. 2020. V. 135. P. 104352. https://doi.org/10.1016/j.nbd.2018.12.012
  27. Dunn A.J. Cytokine activation of the HPA axis // Ann. N.Y. Acad. Sci. 2000. V. 917. P. 608–617. https://doi.org/10.1111/j.1749-6632.2000.tb05426.x
  28. Egan M.F., Kojima M., Callicott J.H. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function // Cell. 2003. V. 112. P. 257–269. https://doi.org/10.1016/s0092-8674(03)00035-7
  29. Felger J.C. Imaging the Role of Inflammation in Mood and Anxiety-related Disorders // Curr Neuropharmacol. 2018. V. 16. № 5. P. 33–558. https://doi.org/10.2174/1570159X15666171123201142
  30. Ford J.D, Courtois C.A. Complex PTSD and borderline personality disorder // Borderline Personal Disord Emot Dysregul. 2021. V. 8. № 1. P. 16. https://doi.org/10.1186/s40479-021-00155-9
  31. Frank M.G., Miguel Z.D., Watkins L.R., Maier S.F. Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide // Brain Behav. Immun. 2010. V. 24. P. 19–30. https://doi.org/10.1016/j.bbi.2009.07.008
  32. Ganci M., Suleyman E., Butt H. et al. The role of the brain-gut-microbiota axis in psychology: The importance of considering gut microbiota in the development, perpetuation, and treatment of psychological disorders // Brain Behav. 2019. V. 9. № 11. P. e01408. https://doi.org/10.1002/brb3.1408
  33. Gellhorn E. Hypothalamus, sino-aortic reflexes and activity of the gut // Acta. Neuroveg. (Wien). 1959. V. 19. № (3–4). P. 221–234. https://doi.org/10.1007/BF01227097
  34. Girolamo F., Coppola C., Ribatti D. Immunoregulatory effect of mast cells influenced by microbes in neurodegenerative diseases // Brain Behav. Immun. 2017. № 65. P. 68–89. https://doi.org/10.1016/j.bbi.2017.06.017
  35. Gong Q., Yan X.J., Lei F. et al. Proteomic profiling of the neurons in mice with depressive-like behavior induced by corticosterone and the regulation of berberine: pivotal sites of oxidative phosphorylation // Mol. Brain. 2019. V. 12. № 1. P. 118. https://doi.org/10.1186/s13041-019-0518-4
  36. Groc L., Choquet D., Stephenson F. et al. NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin // J. Neurosci. 2007. V. 27. № 38. P. 10165–75. https://doi.org/10.1523/JNEUROSCI.1772-07.2007
  37. Guiducci C., Gong M., Xu Z. et al. TLR recognition of self-nucleic acids hampers glucocorticoid activity in lupus // Nature. 2010. V. 465. P. 937–941. https://doi.org/10.1038/nature09102
  38. Hartmann J., Dedic N., Pöhlmann M.L. et al. Forebrain glutamatergic, but not GABAergic, neurons mediate anxiogenic effects of the glucocorticoid receptor // Mol. Psychiatry. 2017. V. 22. № 3. P. 466–475. https://doi.org/10.1038/mp.2016.87
  39. Herrmann L., Ebert T., Rosen H., Novak B., Philipsen A., Touma C., Schreckenbach M., Gassen N.C., Rein T., Schmidt U. Analysis of the cerebellar molecular stress response led to first evidence of a role for FKBP51 in brain FKBP52 expression in mice and humans // Neurobiol. Stress. 2021. V. 15. P. 100401. https://doi.org/10.1016/j.ynstr.2021.100401
  40. Hogwood J., Pitchford S., Mulloy B., Page C., Gray E. Heparin and non-anticoagulant heparin attenuate histone-induced inflammatory responses in whole blood // PLoS One. 2020. V. 15. № 5. P. e0233644. https://doi.org/10.1371/journal.pone.0233644
  41. Hori H., Itoh M., Yoshida F. et al. The BDNF Val66Met polymorphism affects negative memory bias in civilian women with PTSD // Sci. Rep. 2020. V. 10. № 1. P. 3151. https://doi.org/10.1038/s41598-020-60096-1
  42. Horowitz M., Becker S. Cognitive Response to Stressful Stimuli // Arch. Gen. Psychiatry. 1971. V. 25. № 5. P. 419-28. https://doi.org/10.1001/archpsyc.1971.01750170035007
  43. Horowitz M., Wilner N., Kaltreider N., Alvarez W. Signs and Symptoms of Posttraumatic Stress Disorder // Archives of General Psychiatry. 1980. V. 37. № 1. P. 85–92. https://doi.org/10.1001/archpsyc.1980.01780140087010
  44. Huang F.L., Li F., Zhang W.J. et al. Brd4 participates in epigenetic regulation of the extinction of remote auditory fear memory // Neurobiol. Learn Mem. 2021. V. 179. P. 107383. https://doi.org/10.1016/j.nlm.2021.107383
  45. Jiang A., Zhou C., Samsom J., Yan S., Yu D.Z., Jia Z.P., Wong A.H.C., Liu F. The GR-FKBP51 interaction modulates fear memory but not spatial or recognition memory // Prog Neuropsychopharmacol Biol. Psychiatry. 2022. V. 119. P. 110604. https://doi.org/10.1016/j.pnpbp.2022.110604
  46. Kästle M., Kistler B., Lamla T., Bretschneider T., Lamb D. et al. FKBP51 modulates steroid sensitivity and NFκB signalling: A novel anti"inflammatory drug target // Eur. J. Immunol. 2018. V. 48. 1904–1914. https://doi.org/10.1002/eji.201847699
  47. Kondashevskaya M.V., Ponomarenko E.A. Features of behavioral changes accompanied by decreases in corticosterone levels in post-traumatic stress disorder. Experimental application of novel models and test methods // Neurosci. And Behav. Physiol. 2018. V. 48. № 5. P. 521–527.
  48. Kroemer G., Galluzzi L., Vandenabeele P. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009 // Cell Death Differ. 2009. V. 16. № 1. P. 3–11. https://doi.org/10.1038/cdd.2008.150
  49. Kuan P.F., Yang X., Clouston S., Ren X., Kotov R., Waszczuk M., Singh P.K., Glenn S.T., Gomez E.C., Wang J., Bromet E., Luft B.J. Cell type-specific gene expression patterns associated with posttraumatic stress disorder in World Trade Center responders // Transl. Psychiatry. 2019. V. 9(1). P. 1. https://doi.org/10.1038/s41398-018-0355-8
  50. Lee B., Shim I., Lee H., Hahm D.H. Effect of oleuropein on cognitive deficits and changes in hippocampal brain-derived neurotrophic factor and cytokine expression in a rat model of post-traumatic stress disorder // J. Nat. Med. 2018. V. 72. № 1. P. 44–56. https://doi.org/10.1007/s11418-017-1103-8
  51. Li H., Su P., Lai T.K., Jiang A., Liu J., Zhai D., Campbell C.T., Lee F.H., Yong W., Pasricha S., Li S., Wong A.H., Ressler K.J., Liu F. The glucocorticoid receptor-FKBP51 complex contributes to fear conditioning and posttraumatic stress disorder // J. Clin. Invest. 2020. V. 130(2). P. 877–889. https://doi.org/10.1172/JCI130363
  52. Li R., Tong J., Tan Y. et al. Low molecular weight heparin prevents lipopolysaccharide induced-hippocampus-dependent cognitive impairments in mice // Int. J. Clin. Exp. Pathol. 2015. V. 8. № 8. P. 8881–8891.
  53. McKim D.B., Weber M.D., Niraula A., Sawicki C.M., Liu X., Jarrett B.L. et al. Microglial recruitment of IL-1beta-producing monocytes to brain endothelium causes stress-induced anxiety // Mol. Psychiatry. 2018. V. 23. P. 1421–1431. https://doi.org/10.1038/mp.2017.64
  54. Menard C., Pfau M.L., Hodes G.E., Kana V., Wang V.X., Bouchard S. et al. Social stress induces neurovascular pathology promoting depression // Nature neuroscience. 2017. V. 20. P. 1752–1760. https://doi.org/10.1038/s41593-017-0010-3
  55. Mouchiroud L., Houtkooper R.H., Moullan N., Katsyuba E., Ryu D., Cantó C. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling // Cell. 2013. V. 154(2). P. 430. https://doi.org/10.1016/j.cell.2013.06.016
  56. Meijsing S.H. Mechanisms of glucocorticoidregulated gene transcription // Adv. Exp. Med. Biol. 2015. V. 872. P. 59–81. https://doi.org/10.1007/978-1-4939-2895-8_3
  57. Notaras M., van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders // Mol. Psychiatry. 2020. V. 25. № 10. P. 2251–2274. https://doi.org/10.1038/s41380-019-0639-2
  58. Oroian B.A., Ciobica A., Timofte D., Stefanescu C., Serban I.L. New Metabolic, Digestive, and Oxidative Stress-Related Manifestations Associated with Posttraumatic Stress Disorder // Oxid Med. Cell Longev. 2021. V. 2021. P. 5599265. https://doi.org/10.1155/2021/5599265
  59. Osorio C., Probert T., Jones E. et al. Adapting to Stress: Understanding the Neurobiology of Resilience // Behav. Med. 2017. V. 43. № 4. P. 307–322. https://doi.org/10.1080/08964289.2016.1170661
  60. Poterucha T.J., Libby P., Goldhaber S.Z. More than an anticoagulant: Do heparins have direct anti-inflammatory effects? // Thromb Haemost. 2017. V. 117. № 3. P. 437–444. https://doi.org/10.1160/TH16-08-0620
  61. Renga G., Moretti S., Oikonomou V. et al. IL-9 and Mast Cells Are Key Players of Candida albicans Commensalism and Pathogenesis in the Gut // Cell Rep. 2018. V. 23. № 6. P. 1767–1778. https://doi.org/10.1016/j.celrep.2018.04.034
  62. Ridker P.M. Inflammatory biomarkers and risks of myocardial infarction, stroke, diabetes, and total mortality: implications for longevity // Nutr. Rev. 2007. V. 65. № 12. Pt 2. S253–259. https://doi.org/10.1111/j.1753-4887.2007.tb00372.x
  63. Sabbagh J.J., Cordova R.A., Zheng D., Criado–Marrero M., Lemus A., Li P., Baker J.D., Nordhues B.A., Darling A.L., Martinez-Licha C., Rutz D.A., Patel S., Buchner J., Leahy J.W., Koren J. 3rd, Dickey C.A., Blair L.J. Targeting the FKBP51/GR/Hsp90 Complex to Identify Functionally Relevant Treatments for Depression and PTSD // ACS Chem Biol. 2018. V. 13(8). P. 2288–2299. https://doi.org/10.1021/acschembio.8b00454
  64. Sarapultsev A., Sarapultsev P., Dremencov E. et al. Low glucocorticoids in stress-related disorders: the role of inflammation // Stress. 2020. V. 23. № 6. P. 651–661. https://doi.org/10.1080/10253890.2020.1766020
  65. Seetharaman S., Fleshner M., Park C.R., Diamond D.M. Influence of daily social stimulation on behavioral and physiological outcomes in an animal model of PTSD // Brain Behav. 2016. V. 6(5). P. e00458. https://doi.org/10.1002/brb3.458
  66. Somvanshi P.R., Mellon S.H., Yehuda R. et al. Role of enhanced glucocorticoid receptor sensitivity in inflammation in PTSD: insights from computational model for circadian-neuroendocrine-immune interactions // Am. J. Physiol. Endocrinol. Metab. 2020. V. 319. № 1. E48–66. https://doi.org/10.1152/ajpendo.00398.2019
  67. Sugama S., Kakinuma Y. Stress and brain immunity: Microglial homeostasis through hypothalamus-pituitary-adrenal gland axis and sympathetic nervous system // Brain Behav. Immun. Health. 2020. V. 7. P. 100 111. https://doi.org/10.1016/j.bbih.2020.100111
  68. Tang W., Hu T., Hu B. et al. Prevalence and correlates of PTSD and depressive symptoms one month after the outbreak of the COVID-19 epidemic in a sample of home-quarantined Chinese university students // J. Affect Disord. 2020. V. 274. P. 1–7. https://doi.org/10.1016/j.jad.2020.05.009
  69. Toft H., Lien L., Neupane S.P., Abebe D.S., Tilden T., Wampold B.E., Bramness J.G. Cytokine concentrations are related to level of mental distress in inpatients not using anti-inflammatory drugs // Acta Neuropsychiatr. 2020. V. 32(1). P. 23–31. https://doi.org/10.1017/neu.2019.36
  70. Wang Q., Yu K., Wang J. et al. Predator stress-induced persistent emotional arousal is associated with alterations of plasma corticosterone and hippocampal steroid receptors in rat // Behav. Brain Res. 2012. V. 230. № 1. P. 167-74. https://doi.org/10.1016/j.bbr.2012.01.051
  71. Witteveen A.B., Huizink A.C., Slottje P., Bramsen I., Smid T., Van Der Ploeg H.M. Associations of cortisol with posttraumatic stress symptoms and negative life events: A study of police officers and firefighters // Psychoneuroendocrinology. 2010. V. 35. P. 1113–1118. https://doi.org/10.1016/j.psyneuen.2009.12.013
  72. Yabuki Y., Fukunaga K. Clinical Therapeutic Strategy and Neuronal Mechanism Underlying Post-Traumatic Stress Disorder (PTSD) // Int. J. Mol. Sci. 2019. V. 20. № 15. P. 3614. https://doi.org/10.3390/ijms20153614
  73. Ye S., Yang R., Xiong Q. et al. Acute stress enhances learning and memory by activating acid-sensing ion channels in rats // Biochem. Biophys. Res. Commun. 2018. V. 498. № 4. P. 1078–1084. https://doi.org/10.1016/j.bbrc.2018.03.122
  74. Yehuda R., Bierer L.M. Transgenerational transmission of cortisol and PTSD risk // Prog. Brain Res. 2008. V. 167. P. 121-35. https://doi.org/10.1016/S0079-6123(07)67009-5
  75. Yehuda R., Flory J., Pratchett L. et al. Putative biological mechanisms for the association between early life adversity and the subsequent development of PTSD // Psychopharmacology. 2010. V. 212. № 3. P. 405-17. https://doi.org/10.1007/s00213-010-1969-6
  76. Yehuda R., Koenen K., Galea S., Flory J. The role of genes in defining a molecular biology of PTSD // Disease Markers. 2011. V. 30. № 2–3. P. 67–76. https://doi.org/10.3233/DMA-2011-0794
  77. Yehuda R., Neylan T., Flory J., McFarlane A. The use of biomarkers in the military: From theory to practice // Psychoneuroendocrinology. 2013. V. 389. P. 1912–1922. https://doi.org/10.1016/j.psyneuen.2013.06.009
  78. Yehuda R., Seckl J. Minireview: Stress-related psychiatric disorders with low cortisol levels: a metabolic hypothesis // Endocrinology. 2011. V. 15212. P. 4496-503. https://doi.org/10.1210/en.2011-1218
  79. Zass L.J., Hart S.A., Seedat S., Hemmings S.M., Malan–Müller S. Neuroinflammatory genes associated with post-traumatic stress disorder: implications for comorbidity // Psychiatr Genet. 2017. V. 27. № 1. P. 1–16. https://doi.org/10.1097/YPG.0000000000000143
  80. Zoladz P.R., Del Valle C.R., Smith I.F., Goodman C.S., Dodson J.L., Elmouhawesse K.M., Kasler C.D., Rorabaugh B.R. Glucocorticoid Abnormalities in Female Rats Exposed to a Predator-Based Psychosocial Stress Model of PTSD // Front Behav. Neurosci. 2021. V. 15. P. 675 206. https://doi.org/10.3389/fnbeh.2021.675206

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (646KB)
4.

Download (467KB)

Copyright (c) 2023 М.С. Лапшин, М.В. Кондашевская, В.В. Епишев, Н.А. Паточкина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies