The Study of the Mechanism of Gamma-Aminobutyric Acid Inhibitory Effect on the Myotube Formation Process in Cell Culture

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Gamma-aminobutyric acid (GABA) is commonly regarded as a signaling molecule in CNS synapses, where it plays the role of the main inhibitory neurotransmitter in the mature brain and is involved in the process of neurogenesis. Recently, data have been obtained indicating that GABA can also be involved in the early stages of the skeletal muscle development process. In the present study performed on rat cultured myocytes, we a-nalyzed the effect of exogenous GABA on the process of myocyte fusion into myotubes as assessed by the morphometric parameter “fusion index”. Addition of GABA to the cell culture resulted in a significant concentration-dependent inhibition, up to complete cessation, of myotube formation. Of possible proteins that can mediate this effect, GABAA receptors and GABA transporters (GAT-2) have been considered. Evidence of the presence of these proteins on cultured cells was obtained by immunohistochemistry methods. The blockade of GABAA receptors by gabazine had no effect on the fusion index, and GABA exerted its inhibitory effect in the presence of gabazine. Inhibition of GABA transporters by nipecotic acid, in itself, reduced the myocyte fusion index; however, there was no effect of GABA in the presence of this blocker of GABA transporters. The data obtained are consistent with the hypothesis about the participation of GABA in the early stages of skeletal muscle development. Results suggest that the inhibitory effect of exogenous GABA may be due to an increase in its concentration in the sarcoplasm, since both the addition of a GABA transporter inhibitor and an increase in the extracellular concentration of GABA inhibited the formation of myotubes.

About the authors

A. R. Tokmakova

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: artur57@list.ru
Russia, 420111, Kazan

G. V. Sibgatullina

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences

Email: artur57@list.ru
Russia, 420111, Kazan

K. R. Gilizhdinova

Kazan Federal University

Email: artur57@list.ru
Russia, 420008, Kazan

A. I. Malomouzh

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences; Kazan National Research Technical University named after A.N. Tupolev (KAI)

Author for correspondence.
Email: artur57@list.ru
Russia, 420111, Kazan; Russia, 420111, Kazan

References

  1. Abmayr S.M., Pavlath G.K. 2012. Myoblast fusion: Lessons from flies and mice. Development. 139 (4), 641–656. https://doi.org/10.1242/dev.068353
  2. Murphy M., Kardon G. 2011. Origin of vertebrate limb muscle: The role of progenitor and myoblast populations. Curr. Top. Dev. Biol. 96, 1–32. https://doi.org/10.1016/B978-0-12-385940-2.00001-2
  3. Watanabe M., Maemura K., Kanbara K., Tamayama T., Hayasaki H. 2002. GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol. 213, 1–47. https://doi.org/10.1016/s0074-7696(02)13011-7
  4. Sibgatullina G.V., Malomouzh A.I. 2020. GABA in developing rat skeletal muscle and motor neurons. Protoplasma. 257 (3), 1009–1015. https://doi.org/10.1007/s00709-020-01485-1
  5. Sibgatullina G., Al Ebrahim R., Gilizhdinova K., Tokmakova A., Malomouzh A. 2023. Differentiation of myoblasts in culture: Focus on serum and GABA. Cells Tissues Organs. (In press). https://doi.org/10.1159/000529839
  6. Das M., Rumsey J.W., Bhargava N., Stancescu M., Hickman J.J. 2010. A defined long-term in vitro tissue engineered model of neuromuscular junctions. Biomaterials. 31 (18), 4880–4888. https://doi.org/10.1016/j.biomaterials.2010.02.055
  7. Baccam A., Benoni-Sviercovich A., Rocchi M., Moresi V., Seelaender M., Li Z., Adamo S., Xue Z., Coletti D. 2019. The mechanical stimulation of myotubes counteracts the effects of tumor-derived factors through the modulation of the activin/follistatin ratio. Front. Physiol. 10: 401. https://doi.org/10.3389/fphys.2019.00401
  8. Wu C., Sun D. 2015. GABA receptors in brain development, function, and injury. Metab. Brain. Dis. 30 (2), 367–379. https://doi.org/10.1007/s11011-014-9560-1
  9. Zhou Y., Danbolt N.C. 2013. GABA and glutamate transporters in brain. Front. Endocrinol (Lausanne). 4, 165. https://doi.org/10.3389/fendo.2013.00165
  10. Borodinsky L.N., Spitzer N.C. 2007. Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction. Proc. Natl. Acad. Sci. USA. 104 (1), 335–340. https://doi.org/10.1073/pnas.0607450104
  11. Nurullin L.F., Nikolsky E.E., Malomouzh A.I. 2018. Elements of molecular machinery of GABAergic signaling in the vertebrate cholinergic neuromuscular junction. Acta. Histochem. 120 (3), 298–301. https://doi.org/10.1016/j.acthis.2018.02.003
  12. Bai D., Zhu G., Pennefather P., Jackson M.F., MacDonald J.F., Orser B.A. 2001. Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid(A) receptors in hippocampal neurons. Mol. Pharmacol. 59 (4), 814–824. https://doi.org/10.1124/mol.59.4.814
  13. Moldavan M., Cravetchi O., Allen C.N. 2017. GABA transporters regulate tonic and synaptic GABAA receptor-mediated currents in the suprachiasmatic nucleus neurons. J. Neurophysiol. 118 (6), 3092–3106. https://doi.org/10.1152/jn.00194.2017
  14. Bowery N.G., Bettler B., Froestl W., Gallagher J.P., Marshall F., Raiteri M., Bonner T.I., Enna S.J. 2002. International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: Structure and function. Pharmacol. Rev. 54, 247–264. https://doi.org/10.1124/pr.54.2.247
  15. Olsen R.W., Sieghart W., 2008. International union of pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: Classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol. Rev. 60, 243–260. https://doi.org/10.1124/pr.108.00505
  16. Naffaa M.M., Hung S., Chebib M., Johnston G.A.R., Hanrahan J.R., 2017. GABA-ρ receptors: Distinctive functions and molecular pharmacology. Br. J. Pharmacol. 174 (13), 1881–1894. https://doi.org/10.1111/bph.13768
  17. Behar T.N., Schaffner A.E., Scott C.A., Greene C.L., Barker J.L., 2000. GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb. Cortex. 10, 899–909. https://doi.org/10.1093/cercor/10.9.899
  18. Kleinrok Z., Matuszek M., Jesipowicz J., Matuszek B., Opolski A., Radzikowski C., 1998. GABA content and GAD activity in colon tumors taken from patients with colon cancer or from xenografted human colon cancer cells growing as s.c. tumors in athymic nu/nu mice. J. Physiol. Pharmacol. 49, 303–310.
  19. Moss F.J., Imoukhuede P.I., Scott K., Hu J., Jankowsky J.L., Quick M.W., Lester H.A., 2009. GABA transporter function, oligomerization state, and anchoring: Correlates with subcellularly resolved FRET. J. Gen. Physiol. 134 (6), 489–521. https://doi.org/10.1085/jgp.200910314
  20. Kardos J., Dobolyi Á., Szabó Z., Simon Á., Lourmet G., Palkovits M., Héja L. 2019. Molecular plasticity of the nucleus accumbens revisited—astrocytic waves shall rise. Mol. Neurobiol. 56, 7950–7965. https://doi.org/10.1007/s12035-019-1641-z
  21. Ben-Ari Y., Khalilov I., Kahle K.T., Cherubini E., 2012. The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist. 18 (5), 467–486. https://doi.org/10.1177/1073858412438697
  22. Attwell D., Barbour B., Szatkowski M., 1993. Nonvesicular release of neurotransmitter. Neuron. 11 (3), 401–407. https://doi.org/10.1016/0896-6273(93)90145-h
  23. Levi G., Raiteri M., 1993. Carrier-mediated release of neurotransmitters. Trends Neurosci. 16 (10), 415–419. https://doi.org/10.1016/0166-2236(93)90010-j
  24. Pin J.P., Bockaert J., 1989. Two distinct mechanisms, differentially affected by excitatory amino acids, trigger GABA release from fetal mouse striatal neurons in primary culture. J. Neurosci. 9 (2), 648–656. https://doi.org/10.1523/JNEUROSCI.09-02-00648.1989
  25. Wu Y., Wang W., Richerson G.B. 2001. GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter. J. Neurosci. 21 (8), 2630–2639. https://doi.org/10.1523/JNEUROSCI.21-08-02630.2001
  26. Héja L., Simon Á., Szabó Z., Kardos J. 2019. Feedback adaptation of synaptic excitability via Glu: Na+ symport driven astrocytic GABA and Gln release. Neuropharmacology. 161, 107629. https://doi.org/10.1016/j.neuropharm.2019.05.006
  27. Conti F., Minelli A., Melone M., 2004. GABA transporters in the mammalian cerebral cortex: Localization, development and pathological implications. Brain Res. Brain Rew. 45 (3), 196–212. https://doi.org/10.1016/j.brainresrev.2004.03.003

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (37KB)
3.

Download (1MB)
4.

Download (56KB)
5.

Download (55KB)

Copyright (c) 2023 Токмакова А.R., Сибгатуллина Г.V., Гилиждинова К.R., Маломуж А.I.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies