Comparison of Changes in the Content of Plasma Membrane and Tonoplast Sterols under Oxidative and Osmotic Stress

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Changes in the content of plasma membrane and tonoplast sterols isolated from stored beet root crops (Beta vulgaris L.) under oxidative and osmotic stress were compared. The most significant differences between the membranes were noted when the cholesterol content changed under all the studied stress effects: it decreased in the plasmalemma but increased 4–6 times in the tonoplast. Similar changes occurred with other sterols, but in different ways under different stresses. Particularly noticeable differences were noted in hyperosmotic stress. The increase in the content of sterols was much more pronounced in the vacuolar membrane compared to the plasmalemma. This observation allows us to conclude that the tonoplast plays a more significant role in protecting the plant cell from stress than the plasmalemma.

About the authors

N. V. Ozolina

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: ozol@sifibr.irk.ru
Russia, 664033, Irkutsk

V. V. Gurina

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences

Email: ozol@sifibr.irk.ru
Russia, 664033, Irkutsk

I. S. Kapustina

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences

Email: ozol@sifibr.irk.ru
Russia, 664033, Irkutsk

E. V. Spiridonova

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences

Email: ozol@sifibr.irk.ru
Russia, 664033, Irkutsk

V. N. Nurminsky

Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences

Email: ozol@sifibr.irk.ru
Russia, 664033, Irkutsk

References

  1. Okazaki Y., Saito K. 2014. Roles of lipids as signaling molecules and mitigators during stress response in plants. Plant J. 79, 584–596.
  2. Валитова Ю.Н., Сулкарнаева А., Минибаева Ф.В. 2016. Растительные стерины: многообразие, биосинтез, физиологические функции. Биохимия. 18, 1050–1068.
  3. Orvar B.L., Sangwan V., Omann F., Dhindsa R.S. 2000. Early steps in cold sensing by plant cells: The role of actin cytoskeleton and membrane fluidity. Plant J. 23 (6), 785–794.
  4. Саляев Р.К., Кузеванов В.Я., Хаптагаев С.Б., Копытчук В.Н. 1981. Выделение и очистка вакуолей и вакуолярных мембран из клеток растений. Физиология растений. 28, 1295–1305.
  5. Larsson C., Widell S., Kjellbon P. 1987. Preparation of high-purity plasma membranes. Methods in Enzymology. 148, 558–568.
  6. Ozolina, N.V., Gurina V.V., Nesterkina, I.S. Nurminsky V.N. 2020. Variations in the content of tonoplast lipids under abiotic stress. Planta. 251, 107.
  7. Ristic Z., Ashworth E.N. 1993. Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L. (Heyn) cv. Columbia during rapid cold acclimation. Protoplasma. 172, 111–123.
  8. Владимиров Ю.А., Арчаков А.И. 1972. Перекисное окисление липидов в биологических мембранах. М.: Наука. 252 с.
  9. Nurminsky V.N., Ozolina N.V., Nesterkina I.S., Kolesnikova E.V., Korzun A.M., Chernyshov M.Yu., Tikhonov N.V., Tarkov M.S., Salyaev R.K. 2011. Stability of plant vacuolar membranes under the conditions of osmotic stress and influence of redox agents. Biochemistry (Moscow). Supplement Series A: Membrane and Cell Biology. 5 (2), 185–190.
  10. Bligh E., Dyer W. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37 (8), 911–917.
  11. Болдырев А.А. 1985. Биологические мембраны и транспорт ионов. М.: МГУ. 208 с.

Copyright (c) 2023 Озолина Н.V., Гурина В.V., Капустина И.S., Спиридонова Е.V., Нурминский В.N.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies