Cardiorespiratory Reactions During Submaximal Exercise in Humans after 14-Day Simulated Lunar Gravity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents main results of a study on the influence of the physiological effects of simulated lunar gravity on cardiorespiratory responses to exercise in humans. Twelve healthy male volunteers aged 19–31 years (M ± SD: 22.5 ± 4.0 years) took part in the study. They were under 14-day head-up bed rest at +9.6° angle (HUBR) relative to the horizon as a model for the physiological effects of lunar gravity. Cardiopulmonary exercise testing (CPET) was performed 7 days before the onset of HUBR and on the next day after the end of the experimental exposure. A 3-stage cycle ergometer test with 5-minute platforms at 125, 150, and 175 watts was used as a CPET protocol. Exposure of subjects to simulated lunar gravity reduced their tolerance to physical load. This was indicated by more pronounced changes for such parameters of cardiorespiratory system as heart rate, minute ventilation of the lungs, ventilatory equivalents for oxygen and carbon dioxide, as well as a less pronounced increase in oxygen consumption and oxygen pulse during CPET after 14 days of exposure to HUBR.

About the authors

A. A. Puchkova

Institute of Biomedical Problems of the RAS

Author for correspondence.
Email: alina.a.puchkova@gmail.com
Russia, Moscow

A. V. Shpakov

Institute of Biomedical Problems of the RAS; Federal Science Center of Physical Culture and Sport (VNIIFK)

Email: alina.a.puchkova@gmail.com
Russia, Moscow; Russia, Moscow

V. P. Katuntsev

Institute of Biomedical Problems of the RAS

Email: alina.a.puchkova@gmail.com
Russia, Moscow

D. M. Stavrovskaya

Institute of Biomedical Problems of the RAS

Email: alina.a.puchkova@gmail.com
Russia, Moscow

G. K. Primachenko

Institute of Biomedical Problems of the RAS

Email: alina.a.puchkova@gmail.com
Russia, Moscow

References

  1. Johnston R.S., Hull W.E. Apollo missions / Biomedical results of Apollo // Eds. Johnston R.S., Dietlein L.F., Berry Ch.A. Washington, D.C. NASA, 1975. P. 9.
  2. Rummel J.A., Sawin C.F., Michel E.L. Exercise response / Biomedical Results of Apollo // Eds. Johnston RS, Dietlein L.F., Berry C.A. Washington, D.C. NASA, 1975. P. 265.
  3. Richter C., Braunstein B., Winnard A. et al. Human Biomechanical and Cardiopulmonary Responses to Partial Gravity – A Systematic Review // Front. Physiol. 2017. V. 8. P. 583.
  4. Bonjour J., Bringard A., Antonutto G. et al. Effects of acceleration in the Gz axis on human cardiopulmonary responses to exercise // Eur. J. Appl. Physiol. 2011. V. 111. № 12. P. 2907.
  5. Schlabs T., Rosales-Velderrain A., Ruckstuhl H. et al. Comparison of cardiovascular and biomechanical parameters of supine lower body negative pressure and upright lower body positive pressure to simulate activity in 1/6 G and 3/8 G // J. Appl. Physiol. 2013. V. 115. № 2. P. 275.
  6. Diaz-Artiles A., Navarro Tichell P., Perez F. Cardiopulmonary responses to sub-maximal ergometer exercise in a hypo-gravity analog using head-down tilt and head-up tilt // Front. Physiol. 2019. V. 10. P. 720.
  7. Yilmaz K., Burnley M., Böcker J. et al. Influence of simulated hypogravity on oxygen uptake during treadmill running // Physiol. Rep. 2021. V. 9. № 9. P. e14787.
  8. Баранов М.В., Катунцев В.П., Шпаков А.В., Баранов В.М. Метод наземного моделирования физиологических эффектов пребывания человека в условиях гипогравитации // Бюллетень экспериментальной биологии и медицины. 2015. Т. 160. № 9. С. 392. Baranov M.V., Katuntsev V.P., Shpakov A.V., Baranov V.M. A Method of Ground Simulation of Physiological Effects of Hypogravity on Humans // Bull. Exp. Biol. Med. 2016. V. 160. № 3. P. 401.
  9. Kostas V.I., Stenger M.B., Knapp C.F. et al. Cardiovascular models of simulated Moon and Mars gravities: head-up tilt vs. lower body unweighting // Aviat. Space Environ. Med. 2014. V. 85. № 4. P. 414.
  10. Antonutto G., di Prampero P.E. Cardiovascular deconditioning in microgravity: some possible countermeasures // Eur. J. Appl. Physiol. 2003. V. 90. № 3–4. P. 283.
  11. Prisk G.K. Microgravity and the respiratory system // Eur. Respir. J. 2014. V. 43. № 5. P. 1459.
  12. Донина Ж.А., Баранов В.М., Александрова Н.П., Ноздрачев А.Д. Дыхание и гемодинамика при моделировании физиологических эффектов невесомости. СПб.: Наука, 2013. 182 c. Donina Zh.A., Baranov V.M., Aleksandrova N.P., Nozdrachev A.D. Respiration and hemodynamics under simulated microgravity. St. Petersburg: Nauka, 2013. 182 p.
  13. Juhl O.J., Buettmann E.G., Friedman M.A. et al. Update on the effects of microgravity on the musculoskeletal system // NPJ Microgravity. 2021. V. 7. № 1. P. 28.
  14. Trappe T., Trappe S., Lee G. et al. Cardiorespiratory responses to physical work during and following 17 days of bed rest and spaceflight // J. Appl. Physiol. 2006. V. 100. № 3. P. 951.
  15. Лысова Н.Ю., Бабич Д.Р., Резванова С.К. и др. Изменение физической работоспособности испытуемых в условиях 21-суточной “сухой” иммерсии // Авиакосм. и эколог. мед. 2020. Т. 54. № 4. С. 84. Lysova N.Yu., Babich D.R., Rezvanova S.K. et al. [Changes in physical performance of the subjects in the condition of 21-day dry immersion] // Aviakosm. Ekolog. Med. 2020. V. 54. № 4. P. 84.
  16. Convertino V. Exercise and adaptation to microgravity environments / Handbook of Physiology: Section 4. Environmental Physiology. V. 3. Eds. Fregly M.J., Blatteis C.M. New York, NY: Oxford University, 1996. P. 815.
  17. Moore A.D., Downs M.E., Lee S.M. et al. Peak exercise oxygen uptake during and following long-duration spaceflight // J. Appl. Physiol. 2014. V. 117. № 3. P. 231.
  18. Hoffmann U., Moore A.D., Jr., Koschate J., Drescher U. VO2 and HR kinetics before and after International Space Station missions // Eur. J. Appl. Physiol. 2016. V. 116. № 3. P. 503.
  19. Capelli C., Antonutto G., Cautero M. et al. Metabolic and cardiovascular responses during sub-maximal exercise in humans after 14 days of head-down tilt bed rest and inactivity // Eur. J. Appl. Physiol. 2008. V. 104. № 5. P. 909.
  20. Bringard A., Pogliaghi S., Adami A. et al. Cardiovascular determinants of maximal oxygen consumption in upright and supine posture at the end of prolonged bed rest in humans // Respir. Physiol. Neurobiol. 2010. V. 172. № 1–2. P. 53.
  21. Ade C.J., Broxterman R.M., Moore A.D., Barstow T.J. Decreases in maximal oxygen uptake following long-duration spaceflight: Role of convective and diffuse O2 transport mechanisms // J. Appl. Physiol. 2017. V. 122. № 4. P. 968.
  22. Saveko A., Bekreneva M., Ponomarev I. et al. Impact of different ground-based microgravity models on human sensorimotor system // Front. Physiol. 2023. V. 14. P. 1085545.
  23. Lathers C.M., Diamandis P.H., Riddle J.M. et al. Acute and intermediate cardiovascular responses to zero gravity and to fractional gravity levels induced by head-down or head-up tilt // J. Clin. Pharmacol. 1990. V. 30. № 6. P. 494.
  24. Lathers C.M., Riddle J.M., Mulvagh S.L. et al. Echocardiograms during six hours of bedrest at head-down and head-up tilt and during space flight // J. Clin. Pharmacol. 1993. V. 33. № 6. P. 535.
  25. Руденко Е.А., Баранов М.В., Захаров С.Ю. Исследование параметров центральной и периферической гемодинамики при длительном пребывании в условиях ортостатической и антиортостатической гипокинезии // Авиакосм. и эколог. мед. 2019. Т. 53. № 7. С. 40. Rudenko Е.А., Baranov М.V., Zakharov S.Yu. [Studies of central and peripheral hemodynamics during extended orthostatic and antiorthostatic hypokinesia] // Aviakosm. Ekolog. Med. 2019. V. 53. № 7. P. 40.
  26. Руденко Е.А., Черепов А.Б., Баранов М.В. и др. Исследование вегетативной регуляции сердечно-сосудистой системы при длительном пребывании в условиях ортостатической и антиортостатической гипокинезии // Авиакосм. и эколог. мед. 2020. Т. 54. № 1. С. 31. Rudenko Е.А., Cherepov A.B., Baranov М.V. et al. [Studies of cardiovascular system autonomic regulation during extended exposure to horizontal and tilted bed rest and head-down tilt bed rest] Aviakosm. Ekolog. Med. 2020. V. 54. № 1. P. 31.
  27. Whittle R.S., Keller N., Hall E.A. et al. Gravitational dose-response curves for acute cardiovascular hemodynamics and autonomic responses in a tilt paradigm // J. Am. Heart. Assoc. 2022. V. 11. № 14. P. e024175.
  28. Григорьев А.И., Потапов А.Н., Джонс Дж.А. и др. Медицинское обеспечение межпланетных полетов / Космическая биология и медицина. Российско-американское сотрудничество в области космической биологии и медицины // Под ред. Пестова И.Д., Соуин Ч.Ф., Чаус Н.Г., Хансон С.И. М.: Наука, 2009. С. 627. Grigor’ev A.I., Potapov A.N., Jones J. et al. Medical support of interplanetary flights / Space Biology and Medicine. Russian and U.S. Cooperation in Space Biology and Medicine // Eds. Pestov I.D., Souin Ch.F., Chaus N.G., Hanson S.I. Moscow: Nauka, 2009. P. 627.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (306KB)
3.

Download (393KB)
4.

Download (394KB)
5.

Download (392KB)

Copyright (c) 2023 А.А. Пучкова, А.В. Шпаков, В.П. Катунцев, Д.М. Ставровская, Г.К. Примаченко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies