EVALUATION OF THE INFLUENCE OF MULTIPLE PATERNITY ON THE IMMUNE STATUS OF SYRIAN HAMSTER (MESOCRICETUS AURATUS, CRICETIDAE, RODENTIA) YOUNG

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of multiple paternity on the development of the humoral immune response in Syrian hamster pups was studied. The paternity type was found to be determined by 10 microsatellite markers. Pups were immunized with T-dependent antigens (fissurella hemocyanin, KLH) at 33 days of age, with the level of specific antibodies (anti-KLH IgG) measured in blood samples at 5, 10, 20 and 25 days after immunization. As much as 24% pups from multiple paternity litters and 25% from single paternity litters were revealed to develop no immune response. At the same time, in all pups that responded to immunization, the level of anti-KLH IgG significantly increased over time, starting with the 5th day after immunization. However, there were significant differences in the concentration of anti-KLH IgG in the blood serum of pups derived neither from litters with multiple paternity nor litters obtained from one male. Therefore, our results fail to support the hypothesis that multiple paternity enhances the immunity of Syrian hamster pups.

About the authors

E. V. Potashnikova

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Author for correspondence.
Email: potashnikova.k@gmail.com
Russia, 119071, Moscow, Leninsky Prospect, 33

E. V. Kuznetsova

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Author for correspondence.
Email: kuznetsovaekvl@gmail.com
Russia, 119071, Moscow, Leninsky Prospect, 33

N. Yu. Feoktistova

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Author for correspondence.
Email: feoktistovanyu@gmail.com
Russia, 119071, Moscow, Leninsky Prospect, 33

N. A. Vasilieva

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Author for correspondence.
Email: ninavasilieva@gmail.com
Russia, 119071, Moscow, Leninsky Prospect, 33

S. I. Meshcherskii

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Author for correspondence.
Email: nervaner6892236@gmail.com
Russia, 119071, Moscow, Leninsky Prospect, 33

References

  1. Громов В.С., 2008. Пространственно-этологическая структура популяций грызунов. М.: Товарищество научных изданий КМК. 582 с.
  2. Громов В.С., Осадчук Л.В., 2015. Забота о потомстве и секреция тестостерона у самцов лесных грызунов: сенситизация и андрогенная стимуляция родительского поведения // Известия Российской академии наук. Серия биологическая. № 4. С. 423–430.
  3. Громов В.С., 2017. Эволюция социальности у млекопитающих. М.: Товарищество научных изданий КМК. 364 с.
  4. Кузнецова Е.В., 2019. Эколого-физиологические адаптации представителей подсемейства Cricetinae к осенне-зимним условиям Автореф. … дис. канд. биол. наук. М.: Институт проблем экологии и эволюции им. А.Н. Северцова РАН. 24 с.
  5. Симонова Е.Ю., Косырева А.М., Макарова О.В., Диатроптов М.Е., 2014. Возрастные изменения морфофункционального состояния иммунной системы у крыс Вистар // Клиническая и экспериментальная морфология. № 1. № 9. С. 35–41.
  6. Стрельцов В.В., Ильченко О.Г., Котенкова Е.В., 2022. Влияние инбридинга на репродуктивные показатели желтых пеструшек (Eolagurus luteus, Rodentia, Cricetidae) в лабораторной колонии // Зоологический журнал. Т. 101. № 9. С. 1039–1047.
  7. Abolins S.R., Pocock M.J., Hafalla J.C., Riley E.M., Viney M.E., 2011. Measures of immune function of wild mice, Mus musculus // Molecular Ecology. V. 20. № 5. P. 881–892.
  8. Batova O.N., Vasilieva N.A., Titov S.V., Savinetskaya L.E., Tchabovsky A.V., 2021. Female polyandry dilutes inbreeding in a solitary fast-living hibernator // Behavioral Ecology and Sociobiology. V. 75. № 10. P. 1–13.
  9. Bergeron P., Reale D., Humphries M.M., Garant D., 2011. Evidence of multiple paternity and mate selection for inbreeding avoidance in wild eastern chipmunks // Journal of evolutionary biology. V. 24. № 8. P. 1685–1694.
  10. Birkhead T.R., Moller A.P., Sutherland W.J., 1993. Why do females make it so difficult for males to fertilize their eggs? // Journal of Theoretical Biology. V. 161. № 1. P. 51–60.
  11. Birkhead T., 2000. Promiscuity: an evolutionary history of sperm competition and sexual conflict. Harvard University Press. 272 p.
  12. Burns-Naas L.A., Hastings K.L., Ladics G.S., Makris S.L., Parker G.A., Holsapple M.P., 2008. What’s so special about the developing immune system? // International journal of toxicology. V. 27. № 2. P. 223–254.
  13. Clayton D.H., 1991. The influence of parasites on host sexual selection // Parasitology today. V. 7. P. 329–334.
  14. Clemens L., Witcher J., 1985. Sexual Differentiation and Development // The Hamster: Reproduction and Behavior. NY: Plenum Press. P. 155–171.
  15. Demas G.E., 2002. Splenic Denervation Blocks Leptin-Induced Enhancement of Humoral Immunity in Siberian Hamsters (Phodopus sungorus) // Neuroendocrinology. V. 76. № 3. P. 178–184.
  16. Dietert R.R., Holsapple M.P., 2007. Methodologies for developmental immunotoxicity (DIT) testing // Methods. V. 41. № 1. P. 123–131.
  17. Drazen D.L. Kriegsfeld L.J., Schneider J.E., Nelson R.J., 2000. Leptin, but not immune function, is linked to reproductive responsiveness to photoperiod // American Journal of Physiology. V. 278. № 6. P. R1401–R1407.
  18. Drazen D.L., Demas G.E., Nelson R.J., 2001. Leptin Effects on Immune Function and Energy Balance Are Photoperiod Dependent in Siberian Hamsters (Phodopus sungorus) // Endocrinology. V. 142. № 7. P. 2768–2775.
  19. Dugdale H.L., Macdonald D.W., Pope L.C., Burke. T., 2007. Polygynandry, extra-group paternity and multiple-paternity litters in European badger (Meles meles) social groups // Molecular Ecology. V. 16. № 24. P. 5294–5306.
  20. Dunn P.O., Lifjeld J.T., Whittingham L.A., 2009. Multiple paternity and offspring quality in tree swallows // Behavioral Ecology and Sociobiology. V. 63. № 6. P. 911–922.
  21. Firman R.C., Simmons L.W., 2008. Polyandry, sperm competition, and reproductive success in mice // Behavioral Ecology. V. 19. P. 695–702.
  22. Fisher D.O., Double M.C., Blomberg S.P., Jennions M.D., Cockburn A., 2006. Post-mating sexual selection increases lifetime fitness of polyandrous females in the wild // Nature. V. 444. № 7115. P. 89–92.
  23. Foerster K., Delhey K., Johnsen A., Lifjeld J.T., Kempenaers B., 2003. Females increase offspring heterozygosity and fitness through extra-pair matings // Nature. V. 425. № 6959. P. 714–717.
  24. Fritzsche P., Neumann K., Nasdal K., Gattermann R., 2006. Differences in reproductive success between laboratory and wild-derived golden hamsters (Mesocricetus auratus) as a consequence of inbreeding // Behavioral Ecology and Sociobiology. V. 60. № 2. P. 220–226.
  25. Garant D., Dodson J.J., Bernatchez L., 2005. Offspring genetic diversity increases fitness of female Atlantic salmon (Salmo salar) // Behavioral Ecology and Sociobiology. V. 57. № 3. P. 240–244.
  26. Hamilton W. D., Zuk M., 1982. Heritable true fitness and bright birds: A role for parasites // Science. V. 218. P. 384–387.
  27. Heimann M., Käsermann H.P., Pfister R., Roth D.R., Bürki K., 2009. Blood collection from the sublingual vein in mice and hamsters: a suitable alternative to retrobulbar technique that provides large volumes and minimizes tissue damage // Laboratory animals. V. 43. № 3. P. 255–260.
  28. Holsapple M.P., West L.J., Landreth K.S., 2003. Species comparison of anatomical and functional immune system development // Birth Defects Research Part B: Developmental and Reproductive Toxicology. V. 68. № 4. P. 321–334.
  29. Hoogland J.L., 1998. Why do female Gunnison’s prairie dogs copulate with more than one male? // Animal behaviour. V. 55. № 2. P. 351–359.
  30. Huchard E., Canale C.I., Le Gros C., Perret M., Henry P.Y., Kappeler P.M., 2012. Convenience polyandry or convenience polygyny? Costly sex under female control in a promiscuous primate // Proceedings. Biological Sciences // The Royal Society. V. 279. № 1732. P. 1371–1379.
  31. Huck U.W., Quinn R.P., Lisk R.D., 1985. Determinants of mating success in the golden hamster (Mesocricetus auratus) IV. Sperm competition // Behavioral Ecology and Sociobiology. V. 17. № 3. P. 239–252.
  32. Jennions M.D., Petrie M., 2000. Why do females mate multiply? A review of the genetic benefits // Biological Reviews. Cambridge Philosophical Society. V. 75. № 1. P. 21–64.
  33. Keil A., Sachser N., 1998. Reproductive benefits from female promiscuous mating in a small mammal // Ethology. V. 104. P. 897–903.
  34. Keller L., Reeve H.K., 1995. Why do females mate with multiple males? The sexually selected sperm hypothesis // Advances in the Study of Behavior. V. 24. P. 291–315.
  35. Klemme I., Ylönen H., 2010. Polyandry enhances offspring survival in an infanticidal species // Biology Letters. V. 6. № 1. P. 24–26.
  36. Kozielska M., Krzemińska A., Radwan J., 2004. Good genes and the maternal effects of polyandry on offspring reproductive success in the bulb mite // Proceedings of the Royal Society of London. Series B: Biological Sciences. V. 271. № 1535. P. 165–170.
  37. Krajnak K., Manzanares J., Lookingland K.J., Nunez A.A., 1994. Gender differences in tuberoinfundibular dopaminergic neuronal activity in a photoperiodic rodent (Mesocricetus auratus) // Brain Res. V. 634. P. 159–162.
  38. Kuper C.F., van Bilsen J., Cnossen H., Houben G., Garthoff J., Wolterbeek A., 2016. Development of immune organs and functioning in humans and test animals: Implications for immune intervention studies // Reproductive Toxicology. V. 64. P. 180–190.
  39. Lisk R.D., 1985. The estrous cycle // The hamster. Springer, Boston, MA. P. 23–51.
  40. Madsen T., Shine R., Loman J., Hakansson T., 1992. Why do female adders copulate so frequently? // Nature. V. 355. № 6359. P. 440–441.
  41. Murphy M.R., 1977. Intraspecific sexual preferences of female hamsters // Journal of Comparative and Physiological Psychology. V. 91. № 6. P. 1337–1346.
  42. Murphy M.R., 1985. History of the capture and domestication of the Syrian golden hamster (Mesocricetus auratus Waterhouse). The hamster. Springer, Boston, MA. P. 3–20.
  43. Neumann K., Maak S., Fritzsche P., Gattermann R., 2005. Microsatellites for diversity studies in the golden hamster (Mesocricetus auratus) // Molecular Ecology Notes. V. 5. № 4. P. 876–878.
  44. Olsson M., Gullberg A., Tegelström H., Madsen T., Shine R., 1994. Can female adders multiply? // Nature. V. 369. № 6481. P. 528–528.
  45. Parker G.A., 1984. Sperm competition and the evolution of animal mating strategies. Academic Press. INC. Orlando. Florida. P. 1–60.
  46. Parker P.G., Tang-Martinez Z., 2005. Bateman gradients in field and laboratory studies: a cautionary tale // Integrative and Comparative Biology. V. 45. № 5. P. 895–902.
  47. Seger J., Hamilton W.D., 1988. Parasites and sex // The evolution of sex. V. 176. P. 193.
  48. Silverman J., 2012. Biomedical research techniques // The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. Academic Press. P. 786–787.
  49. Simmons L.W., 2005. The evolution of polyandry: sperm competition, sperm selection, and offspring viability // Annual Review of Ecology, Evolution, and Systematics. V. 36. P. 125–146.
  50. Soboleva A.S., Alekseeva G.S., Erofeeva M.N., Klyuchnikova P.S., Sorokin P.A., Naidenko S.V., 2021. Leukocytes count and profile during early postnatal ontogenesis in domestic cats: Effect of litter size and multiple paternity // Journal of Experimental Zoology. Part A: Ecological and Integrative Physiology. V. 335. № 8. P. 637–648.
  51. Stockley P., Searle J.B., Macdonald D.W., Jones C.S., 1993. Female multiple mating behaviour in the common shrew as a strategy to reduce inbreeding // Proceedings of the Royal Society of London. Series B: Biological Sciences. V. 254. № 1341. P. 173–179.
  52. Stockley P., 2003. Female multiple mating behaviour, early reproductive failure and litter size variation in mammals // Proceedings of the Royal Society of London. Series B: Biological Sciences. V. 270. № 1512. P. 271–278.
  53. Thonhauser K.E., Raveh S., Thoss M., Penn D.J., 2016. Does multiple paternity influence offspring disease resistance? // Journal of Evolutionary Biology. V. 9. № 6. P. 1142–1150.
  54. Tian Y., Zhao H., Xu D., Zhao M., Zhang Q., Zhao Q., Zhang Y., Zhang Q., Hu X., Li Z.-Y., 2018. Wang Effect of Gradually Decreasing Photoperiod on Immune Function in Siberian Hamsters // Trends Journal of Sciences Research. V. 3. № 1. P. 1–9.
  55. Tregenza T., Wedell N., 1998. Benefits of multiple mates in the cricket Gryllus bimaculatus // Evolution. V. 52. № 6. P. 1726–1730.
  56. Tregenza T., Wedell N., 2002. Polyandrous females avoid costs of inbreeding // Nature. V. 415. № 686. P. 71–73.
  57. Tregenza T., Wedell N., Hosken D.J., Ward P.I., 2003. Maternal effects on offspring depend on female mating pattern and offspring environment in yellow dung flies // Evolution. V. 57. № 2. P. 297–304.
  58. Waser P.M., De Woody J.A., 2006. Multiple paternity in a philopatric rodent: the interaction of competition and choice // Behavioral Ecology. V. 17. № 6. P. 971–978.
  59. Weigensberg I., Carrie’re Y., Roff D.A., 1998. Effects of male genetic contribution and paternal investment to egg and hatchling size in the cricket Gryllus firmus // Journal of Evolutionary Biology. V. 11. № 2. P. 135–146.
  60. Williams G.C., 1975. Sex and Evolution. New Jersey: Princeton University Press. 202 p.
  61. Wolff J.O., Macdonald D.W., 2004. Promiscuous females protect their offspring // Trends in Ecology & Evolution. V. 19. № 3. P. 127–134.
  62. Yasui Y., 2001. Female multiple mating as a genetic bet-hedging strategy when mate choice criteria are unreliable // Ecological Research. V. 16. № 4. P. 605–616.
  63. Yellon S.M., Fagoaga O.R., Nehlsen-Cannarella S.L., 1999. Influence of photoperiod on immune cell functions in the male Siberian hamster // American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. V. 276. № 1. P. R97–R102.
  64. Zeh D.W., Zeh J.A., 2001. Reproductive mode and the genetic benefits of polyandry // Animal Behaviour. V. 61. № 6. P. 1051–1063.
  65. Zeh J.A., Zeh D.W., 2006. Outbred embryos rescue inbred half-siblings in mixed-paternity broods of live-bearing females // Nature. V. 439. № 7073. P. 201–203.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (541KB)
3.

Download (124KB)

Copyright (c) 2023 Е.В. Поташникова, Е.В. Кузнецова, Н.Ю. Феоктистова, Н.А. Васильева, С.И. Мещерский

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies