The role of human serum albumin in prevention and treatment of Alzheimer’s disease

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Alzheimer’s disease (AD) has been and remains the main cause of dementia in aging patients. This neurodegenerative disease belongs to the progressive and socially significant ones. There are several hypotheses for the development of AD: the tau hypothesis, the amyloid cause, the cholinergic cause, the cause of oxidative stress and inflammation. The lack of a generally accepted understanding of the etiology and pathogenesis of AD hinders the development of new effective mechanisms for its treatment and prevention. In 2021, for the first time, a drug for pathogenetic therapy of AD (aducanumab) was approved, which helps to reduce the content of amyloid-β peptide (Aβ) in the brain of patients. Another promising approach to the treatment of AD, aimed at removing Aβ from the patient’s central nervous system, is the impact on human serum albumin (HSA), which carries 90% of Aβ in the blood serum and 40–90% of Aβ in the cerebrospinal fluid. In clinical practice, plasmapheresis has already been tested and shown to be effective with the replacement of one’s own HSA with a purified therapeutic albumin preparation. Another variant of this approach is to enhance the interaction of HSA with Aβ through the action of exogenous and endogenous HSA ligands, such as serotonin, ibuprofen and some unsaturated fatty acids. In vivo studies confirm the association of this group of ligands with the pathogenesis of AD. These substances are well-studied natural metabolites or drugs, which greatly simplifies the development of new methods of therapy and prevention of AD with their use. In general, a new direction of scientific research devoted to the study of HSA as a carrier and depot of Aβ in the blood and cerebrospinal fluid will expand our understanding of Aβ metabolism and its role in the pathogenesis of AD.

About the authors

M. P. Shevelyova

Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research, RAS

Email: ealitus@gmail.com
Russia, 142290, Pushchino, Prosp. Nauki, 3

E. I. Deryusheva

Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research, RAS

Email: ealitus@gmail.com
Russia, 142290, Pushchino, Prosp. Nauki, 3

E. L. Nemashkalova

Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research, RAS

Email: ealitus@gmail.com
Russia, 142290, Pushchino, Prosp. Nauki, 3

A. V. Machulin

Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, RAS

Email: ealitus@gmail.com
Russia, 142290, Pushchino, Prosp. Nauki, 3

E. A. Litus

Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research, RAS

Author for correspondence.
Email: ealitus@gmail.com
Russia, 142290, Pushchino, Prosp. Nauki, 3

References

  1. Algamal M., Milojevic J., Jafari N., Zhang W., Melacini G., 2013. Mapping the interactions between the Alzheimer’s Aβ-peptide and human serum albumin beyond domain resolution // Biophys. J. V. 105. № 7. P. 1700–1709. https://doi.org/10.1016/j.bpj.2013.08.025
  2. Algamal M., Ahmed R., Jafari N., Ahsan B., Ortega J., Melacini G., 2017. Atomic-resolution map of the interactions between an amyloid inhibitor protein and amyloid β (Aβ) peptides in the monomer and protofibril states // J. Biol. Chem. V. 292. № 42. P. 17158–17168. https://doi.org/10.1074/jbc.M117.792853
  3. Ali M.M., Ghouri R.G., Ans A.H., Akbar A., Toheed A., 2019. Recommendations for anti-inflammatory treatments in Alzheimer’s disease: A comprehensive review of the literature // Cureus. V. 11. № 5. Art. e4620. https://doi.org/10.7759/cureus.4620
  4. Alonso A.C., Zaidi T., Grundke-Iqbal I., Iqbal K., 1994. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease // Proc. Natl. Acad. Sci. V. 91. № 12. P. 5562–5566. https://doi.org/10.1073/pnas.91.12.5562
  5. Andreasen N., Hesse C., Davidsson P., Minthon L., Wallin A. et al., 1999. Cerebrospinal fluid beta-amyloid 1-42 in Alzheimer disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease // Arch. Neurol. V. 56. № 6. P. 673–680. https://doi.org/10.1001/archneur.56.6.673
  6. Arvanitakis Z., Shah R.C., Bennett D.A., 2019. Diagnosis and management of dementia: Review // JAMA. V. 322. № 16. P. 1589–1599. https://doi.org/10.1001/jama.2019.4782
  7. Azizi G., Navabi S.S., Al-Shukaili A., Seyedzadeh M.H., Yazdani R., Mirshafiey A., 2015. The role of inflammatory mediators in the pathogenesis of Alzheimer’s disease // Sultan Qaboos Univ. Med. J. V. 15. № 3. P. e305–316. https://doi.org/10.18295/squmj.2015.15.03.002
  8. Bagheri S., Squitti R., Haertlé T., Siotto M., Saboury A.A., 2017. Role of copper in the onset of Alzheimer’s disease compared to other metals // Front. Aging Neurosci. V. 9. Art. 446. https://doi.org/10.3389/fnagi.2017.00446
  9. Bal W., Sokołowska M., Kurowska E., Faller P., 2013. Binding of transition metal ions to albumin: sites, affinities and rates // Biochim. Biophys. Acta. V. 1830. № 12. P. 5444–5455. https://doi.org/10.1016/j.bbagen.2013.06.018
  10. Bali J., Gheinani A.H., Zurbriggen S., Rajendran L., 2012. Role of genes linked to sporadic Alzheimer’s disease risk in the production of β-amyloid peptides // Proc. Natl. Acad. Sci. USA. V. 109. № 38. P. 15307–15311. https://doi.org/10.1073/pnas.1201632109
  11. Baumketner A., Bernstein S.L., Wyttenbach T., Bitan G., Teplow D.B. et al., 2006. Amyloid beta-protein monomer structure: a computational and experimental study // Protein Sci. V. 15. № 3. P. 420–428. https://doi.org/10.1110/ps.051762406
  12. Bernstein S.L., Wyttenbach T., Baumketner A., Shea J.-E., Bitan G. et al., 2005. Amyloid β-Protein: Monomer structure and early aggregation states of Aβ42 and its Pro 19 alloform // J. Am. Chem. Soc. V. 127. № 7. P. 2075–2084. https://doi.org/10.1021/ja044531p
  13. Biere A.L., Ostaszewski B., Stimson E.R., Hyman B.T., Maggio J.E., Selkoe D.J., 1996. Amyloid β-Peptide is transported on lipoproteins and albumin in human plasma // J. Biol. Chem. V. 271. № 51. P. 32916–32922. https://doi.org/10.1074/jbc.271.51.32916
  14. Bitan G., Kirkitadze M.D., Lomakin A., Vollers S.S., Benedek G.B., Teplow D.B., 2003. Amyloid beta-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways // Proc. Natl. Acad. Sci. USA. V. 100. № 1. P. 330–335. https://doi.org/10.1073/pnas.222681699
  15. Boada M., Ortiz P., Anaya F., Hernández I., Muñoz J. et al., 2009. Amyloid-targeted therapeutics in Alzheimer’s disease: Use of human albumin in plasma exchange as a novel approach for Abeta mobilization // Drug News Perspect. V. 22. № 6. P. 325–339. https://doi.org/10.1358/dnp.2009.22.6.1395256
  16. Boada M., Anaya F., Ortiz P., Olazarán J., Shua-Haim J.R. et al., 2017. Efficacy and safety of plasma exchange with 5% albumin to modify cerebrospinal fluid and plasma amyloid-β concentrations and cognition outcomes in Alzheimer’s disease patients: Amulticenter, randomized, controlled clinical trial // J. Alzheimers Dis. V. 56. № 1. P. 129–143. https://doi.org/10.3233/JAD-160565
  17. Boada M., López O.L., Olazarán J., Núñez L., Pfeffer M. et al., 2020. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: Primary results of the AMBAR Study // Alzheimers Dement. V. 16. № 10. P. 1412–1425. https://doi.org/10.1002/alz.12137
  18. Bode D.C., Stanyon H.F., Hirani T., Baker M.D., Nield J., Viles J.H., 2018. Serum albumin’s protective inhibition of amyloid-β fiber formation is suppressed by cholesterol, fatty acids and warfarin // J. Mol. Biol. V. 430. № 7. P. 919–934. https://doi.org/10.1016/j.jmb.2018.01.008
  19. Bohrmann B., Tjernberg L., Kuner P., Poli S., Levet-Trafit B. et al., 1999. Endogenous proteins controlling amyloid beta-peptide polymerization. Possible implications for beta-amyloid formation in the central nervous system and in peripheral tissues // J. Biol. Chem. V. 274. № 23. P. 15990–15995. https://doi.org/10.1074/jbc.274.23.15990
  20. Brier M.R., Gordon B., Friedrichsen K., McCarthy J., Stern A. et al., 2016. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease // Sci. Transl. Med. V. 8. № 338. Art. 338ra66. https://doi.org/10.1126/scitranslmed.aaf2362
  21. Brinkman S.D., Gershon S., 1983. Measurement of cholinergic drug effects on memory in alzheimer’s disease // Neurobiol. Aging. V. 4. № 2. P. 139–145. https://doi.org/10.1016/0197-4580(83)90038-6
  22. Bunin M.A., Wightman R.M., 1998. Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: An investigation of extrasynaptic transmission // J. Neurosci. V. 18. № 13. P. 4854–4860. https://doi.org/10.1523/JNEUROSCI.18-13-04854.1998
  23. Butterfield D.A., Lauderback C.M., 2002. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress // Free Radic. Biol. Med. V. 32. № 11. P. 1050–1060. https://doi.org/10.1016/S0891-5849(02)00794-3
  24. Butterfield D.A., Reed T., Newman S.F., Sultana R., 2007. Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment // Free Radic. Biol. Med. V. 43. № 5. P. 658–677. https://doi.org/10.1016/j.freeradbiomed.2007.05.037
  25. Carrillo-Mora P., Luna R., Colín-Barenque L., 2014. Amyloid beta: Multiple mechanisms of toxicity and only some protective effects? // Oxid. Med. Cell. Longev. V. 2014. Art. 795375. https://doi.org/10.1155/2014/795375
  26. Cheignon C., Tomas M., Bonnefont-Rousselot D., Faller P., Hureau C., Collin F., 2018. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease // Redox Biol. V. 14. P. 450–464. https://doi.org/10.1016/j.redox.2017.10.014
  27. Choi T.S., Lee H.J., Han J.Y., Lim M.H., Kim H.I., 2017. Molecular insights into human serum albumin as a receptor of amyloid-β in the extracellular region // J. Am. Chem. Soc. V. 139. № 43. P. 15437–15445. https://doi.org/10.1021/jacs.7b08584
  28. Christen Y., 2000. Oxidative stress and Alzheimer disease // Am. J. Clin. Nutr. V. 71. № 2. P. 621S–629S. https://doi.org/10.1093/ajcn/71.2.621s
  29. Cirrito J.R., Disabato B.M., Restivo J.L., Verges D.K., Goebel W.D. et al., 2011. Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans // Proc. Natl. Acad. Sci. USA. V. 108. № 36. P. 14968–14973. https://doi.org/10.1073/pnas.1107411108
  30. Costa M., Ortiz A.M., Jorquera J.I., 2012. Therapeutic albumin binding to remove amyloid-β // J. Alzheimers Dis. V. 29. № 1. P. 159–170. https://doi.org/10.3233/JAD-2012-111139
  31. Cuberas-Borrós G., Roca I., Boada M., Tárraga L., Hernández I. et al., 2018. Longitudinal neuroimaging analysis in mild-moderate Alzheimer’s disease patients treated with plasma exchange with 5% human albumin // J. Alzheimers Dis. V. 61. № 1. P. 321–332. https://doi.org/10.3233/JAD-170693
  32. Cunnane S.C., Schneider J.A., Tangney C., Tremblay-Mercier J., Fortier M. et al., 2012. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer’s disease // J. Alzheimers Dis. V. 29. № 3. P. 691–697. https://doi.org/10.3233/JAD-2012-110629
  33. Deane R., Bell R.D., Sagare A., Zlokovic B.V., 2009. Clearance of amyloid-beta peptide across the blood-brain barrier: Implication for therapies in Alzheimer’s disease // CNS Neurol. Disord. Drug Targets. V. 8. № 1. P. 16–30. https://doi.org/10.2174/187152709787601867
  34. DeMattos R.B., Bales K.R., Parsadanian M., O’Dell M.A., Foss E.M. et al., 2002. Plaque-associated disruption of CSF and plasma amyloid-beta (Abeta) equilibrium in a mouse model of Alzheimer’s disease // J. Neurochem. V. 81. № 2. P. 229–236. https://doi.org/10.1046/j.1471-4159.2002.00889.x
  35. Du X., Wang X., Geng M., 2018. Alzheimer’s disease hypothesis and related therapies // Transl. Neurodegener. V. 7. № 1. Art. 2. https://doi.org/10.1186/s40035-018-0107-y
  36. Ezra A., Rabinovich-Nikitin I., Rabinovich-Toidman P., Solomon B., 2016. Multifunctional effect of human serum albumin reduces Alzheimer’s disease related pathologies in the 3xTg mouse model // J. Alzheimers Dis. V. 50. № 1. P. 175–188. https://doi.org/10.3233/JAD-150694
  37. Fändrich M., 2007. On the structural definition of amyloid fibrils and other polypeptide aggregates // Cell. Mol. Life Sci. V. 64. № 16. P. 2066–2078. https://doi.org/10.1007/s00018-007-7110-2
  38. Fändrich M., Meinhardt J., Grigorieff N., 2009. Structural polymorphism of Alzheimer Aβ and other amyloid fibrils // Prion. V. 3. № 2. P. 89–93. https://doi.org/10.4161/pri.3.2.8859
  39. Fasano M., Curry S., Terreno E., Galliano M., Fanali G., et al., 2005. The extraordinary ligand binding properties of human serum albumin // IUBMB Life. V. 57. № 12. P. 787–796. https://doi.org/10.1080/15216540500404093
  40. GBD 2019 Dementia Forecasting Collaborators, 2022. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019 // Lancet. Public Heal. V. 7. № 2. P. e105–e125. https://doi.org/10.1016/S2468-2667(21)00249-8
  41. Gella A., Durany N., 2009. Oxidative stress in Alzheimer disease // Cell Adh. Migr. V. 3. № 1. P. 88–93. https://doi.org/10.4161/cam.3.1.7402
  42. Ghersi-Egea J.F., Gorevic P.D., Ghiso J., Frangione B., Patlak C.S., Fenstermacher J.D., 1996. Fate of cerebrospinal fluid-borne amyloid beta-peptide: Rapid clearance into blood and appreciable accumulation by cerebral arteries // J. Neurochem. V. 67. № 2. P. 880–883. https://doi.org/10.1046/j.1471-4159.1996.67020880.x
  43. Gibson G.L., Allsop D., Austen B.M., 2004. Induction of cellular oxidative stress by the beta-amyloid peptide involved in Alzheimer’s disease // Protein Pept. Lett. V. 11. № 3. P. 257–270. https://doi.org/10.2174/0929866043407101
  44. Goedert M., Spillantini M.G., 2001. Tau gene mutations and neurodegeneration // Biochem. Soc. Symp. V. 67. № 67. P. 59–71. https://doi.org/10.1042/bss0670059
  45. Gong Y., Chang L., Viola K.L., Lacor P.N., Lambert M.P. et al., 2003. Alzheimer’s disease-affected brain: Presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss // Proc. Natl. Acad. Sci. USA. V. 100. № 18. P. 10417–10422. https://doi.org/10.1073/pnas.1834302100
  46. Hayden K.M., Zandi P.P., Khachaturian A.S., Szekely C.A., Fotuhi M. et al., 2007. Does NSAID use modify cognitive trajectories in the elderly? The Cache County Study // Neurology. V. 69. № 3. P. 275–282. https://doi.org/10.1212/01.wnl.0000265223.25679.2a
  47. Hirao K., Smith G.S., 2014. Positron emission tomography molecular imaging in late-life depression // J. Geriatr. Psychiatry Neurol. V. 27. № 1. P. 13–23. https://doi.org/10.1177/0891988713516540
  48. Ishima Y., Mimono A., Tuan Giam Chuang V., Fukuda T., Kusumoto K. et al., 2020. Albumin domain mutants with enhanced Aβ binding capacity identified by phage display analysis for application in various peripheral Aβ elimination approaches of Alzheimer’s disease treatment // IUBMB Life. V. 72. № 4. P. 641–651. https://doi.org/10.1002/iub.2203
  49. Kayed R., Head E., Thompson J.L., McIntire T.M., Milton S.C. et al., 2003. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis // Science. V. 300. № 5618. P. 486–489. https://doi.org/10.1126/science.1079469
  50. Kinney J.W., Bemiller S.M., Murtishaw A.S., Leisgang A.M., Salazar A.M., Lamb B.T., 2018. Inflammation as a central mechanism in Alzheimer’s disease // Alzheimers Dement. Transl. Res. Clin. Interv. V. 4. № 1. P. 575–590. https://doi.org/10.1016/j.trci.2018.06.014
  51. Kirkitadze M.D., Condron M.M., Teplow D.B., 2001. Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis // J. Mol. Biol. V. 312. № 5. P. 1103–1119. https://doi.org/10.1006/jmbi.2001.4970
  52. Kirschner D.A., Abraham C., Selkoe D.J., 1986. X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation // Proc. Natl. Acad. Sci. USA. V. 83. № 2. P. 503–507. https://doi.org/10.1073/pnas.83.2.503
  53. Kragh-Hansen U., 1990. Structure and ligand binding properties of human serum albumin // Dan. Med. Bull. V. 37. № 1. P. 57–84. http://www.ncbi.nlm.nih.gov/pubmed/2155760
  54. Kumar A., Sidhu J., Goyal A., Tsao J.W., 2022. Alzheimer Disease. Treasure Island (FL): StatPearls Publishing. http://www.ncbi.nlm.nih.gov/pubmed/29763097
  55. Kuo Y.M., Kokjohn T.A., Kalback W., Luehrs D., Galasko D.R. et al., 2000. Amyloid-beta peptides interact with plasma proteins and erythrocytes: Implications for their quantitation in plasma // Biochem. Biophys. Res. Commun. V. 268. № 3. P. 750–756. https://doi.org/10.1006/bbrc.2000.2222
  56. Laitinen M.H., Ngandu T., Rovio S., Helkala E.-L., Uusitalo U. et al., 2006. Fat intake at midlife and risk of dementia and Alzheimer’s disease: A population-based study // Dement. Geriatr. Cogn. Disord. V. 22. № 1. P. 99–107. https://doi.org/10.1159/000093478
  57. Lim G.P., Yang F., Chu T., Chen P., Beech W. et al., 2000. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease // J. Neurosci. V. 20. № 15. P. 5709–5714. https://doi.org/10.1523/JNEUROSCI.20-15-05709.2000
  58. Litus E.A., Kazakov A.S., Sokolov A.S., Nemashkalova E.L., Galushko E.I. et al., 2019. The binding of monomeric amyloid β peptide to serum albumin is affected by major plasma unsaturated fatty acids // Biochem. Biophys. Res. Commun. V. 510. № 2. P. 248–253. https://doi.org/10.1016/j.bbrc.2019.01.081
  59. Litus E.A., Kazakov A.S., Deryusheva E.I., Nemashkalo-va E.L., Shevelyova M.P. et al., 2021. Serotonin promotes serum albumin interaction with the monomeric amyloid-β peptide // Int. J. Mol. Sci. V. 22. № 11. Art. 5896. https://doi.org/10.3390/ijms22115896
  60. Litus E.A., Kazakov A.S., Deryusheva E.I., Nemashkalova E.L., Shevelyova M.P. et al., 2022. Ibuprofen favors binding of amyloid-β peptide to its depot, serum albumin // Int. J. Mol. Sci. V. 23. № 11. Art. 6168. https://doi.org/10.3390/ijms23116168
  61. Llewellyn J.D., Langa M.K., Friedland P.R., Lang A.I., 2010. Serum albumin concentration and cognitive impairment // Curr. Alzheimer Res. V. 7. № 1. P. 91–96. https://doi.org/10.2174/156720510790274392
  62. Loeffler D.A., 2020. AMBAR, an encouraging Alzheimer’s trial that raises questions // Front. Neurol. V. 11. Art. 459. https://doi.org/10.3389/fneur.2020.00459
  63. Matsuoka Y., Saito M., LaFrancois J., Saito M., Gaynor K. et al., 2003. Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to β-amyloid // J. Neurosci. V. 23. № 1. P. 29–33. https://doi.org/10.1523/JNEUROSCI.23-01-00029.2003
  64. McCormick J.W., Ammerman L., Chen G., Vogel P.D., Wise J.G., 2021. Transport of Alzheimer’s associated amyloid-β catalyzed by P-glycoprotein // PLoS One. V. 16. № 4. Art. e0250371. https://doi.org/10.1371/journal.pone.0250371
  65. McKee A.C., Carreras I., Hossain L., Ryu H., Klein W.L. et al., 2008. Ibuprofen reduces Aβ, hyperphosphorylated tau and memory deficits in Alzheimer mice // Brain Res. V. 1207. P. 225–236. https://doi.org/10.1016/j.brainres.2008.01.095
  66. Menendez-Gonzalez M., Gasparovic C., 2019. Albumin exchange in Alzheimer’s disease: Might CSF be an alternative route to plasma? // Front. Neurol. V. 10. Art. 1036. https://doi.org/10.3389/fneur.2019.01036
  67. Meraz-Ríos M.A., Toral-Rios D., Franco-Bocanegra D., Villeda-Hernández J., Campos-Peña V., 2013. Inflammatory process in Alzheimer’s Disease // Front. Integr. Neurosci. V. 7. Art. 59. https://doi.org/10.3389/fnint.2013.00059
  68. Metaxas A., Kempf S.J., 2016. Neurofibrillary tangles in Alzheimer’s disease: Elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics // Neural Regen. Res. V. 11. № 10. P. 1579–1581. https://doi.org/10.4103/1673-5374.193234
  69. Miguel-Álvarez M., Santos-Lozano A., Sanchis-Gomar F., Fiuza-Luces C., Pareja-Galeano H. et al., 2015. Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: A systematic review and meta-analysis of treatment effect // Drugs Aging. V. 32. № 2. P. 139–147. https://doi.org/10.1007/s40266-015-0239-z
  70. Milojevic J., Melacini G., 2011. Stoichiometry and affinity of the human serum albumin-Alzheimer’s Aβ peptide interactions // Biophys. J. V. 100. № 1. P. 183–192. https://doi.org/10.1016/j.bpj.2010.11.037
  71. Milojevic J., Raditsis A., Melacini G., 2009. Human serum albumin inhibits Abeta fibrillization through a “monomer-competitor” mechanism // Biophys. J. V. 97. № 9. P. 2585–2594. https://doi.org/10.1016/j.bpj.2009.08.028
  72. Milojevic J., Esposito V., Das R., Melacini G., 2007. Understanding the molecular basis for the inhibition of the Alzheimer’s Abeta-peptide oligomerization by human serum albumin using saturation transfer difference and off-resonance relaxation NMR spectroscopy // J. Am. Chem. Soc. V. 129. № 14. P. 4282–4290. https://doi.org/10.1021/ja067367+
  73. Moreira P.I., Carvalho C., Zhu X., Smith M.A., Perry G., 2010. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology // Biochim. Biophys. Acta. V. 1802. № 1. P. 2–10. https://doi.org/10.1016/j.bbadis.2009.10.006
  74. Morris M.C., Evans D.A., Bienias J.L., Tangney C.C., Bennett D.A. et al., 2003. Dietary fats and the risk of incident Alzheimer disease // Arch. Neurol. V. 60. № 2. P. 194–200. https://doi.org/10.1001/archneur.60.2.194
  75. Mullard A., 2021. Failure of first anti-tau antibody in Alzheimer disease highlights risks of history repeating // Nat. Rev. Drug Discov. V. 20. № 1. P. 3–5. https://doi.org/10.1038/d41573-020-00217-7
  76. Murphy M.P., LeVine H., 2010. Alzheimer’s disease and the amyloid-β peptide // J. Alzheimers Dis. V. 19. № 1. P. 311–323. https://doi.org/10.3233/JAD-2010-1221
  77. Pitschke M., Prior R., Haupt M., Riesner D., 1998. Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy // Nat. Med. V. 4. № 7. P. 832–834. https://doi.org/10.1038/nm0798-832
  78. Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F. et al., 2017. Oxidative stress: Harms and benefits for human health // Oxid. Med. Cell. Longev. V. 2017. P. 1–13. https://doi.org/10.1155/2017/8416763
  79. Poduslo J.F., Curran G.L., Sanyal B., Selkoe D.J., 1999. Receptor-mediated transport of human amyloid beta-protein 1-40 and 1-42 at the blood-brain barrier // Neurobiol. Dis. V. 6. № 3. P. 190–199. https://doi.org/10.1006/nbdi.1999.0238
  80. Poorkaj P., Grossman M., Steinbart E., Payami H., Sadovnick A. et al., 2001. Frequency of tau gene mutations in familial and sporadic cases of non-Alzheimer dementia // Arch. Neurol. V. 58. № 3. P. 383–387. https://doi.org/10.1001/archneur.58.3.383
  81. Qiang W., Yau W.-M., Luo Y., Mattson M.P., Tycko R., 2012. Antiparallel β-sheet architecture in Iowa-mutant β‑amyloid fibrils // Proc. Natl. Acad. Sci. V. 109. № 12. P. 4443–4448. https://doi.org/10.1073/pnas.1111305109
  82. Ramos-Fernández E., Tajes M., Palomer E., Ill-Raga G., Bosch-Morató M. et al., 2014. Posttranslational nitro-glycative modifications of albumin in Alzheimer’s disease: Implications in cytotoxicity and amyloid-β peptide aggregation // J. Alzheimers Dis. V. 40. № 3. P. 643–657. https://doi.org/10.3233/JAD-130914
  83. Rayner H.C., Hasking D.J., 1986. Hyperparathyroidism associated with severe hypercalcaemia and myocardial calcification despite minimal bone disease // BMJ. V. 293. № 6557. P. 1277–1278. https://doi.org/10.1136/bmj.293.6557.1277-a
  84. Reyes Barcelo A.A., Gonzalez-Velasquez F.J., Moss M.A., 2009. Soluble aggregates of the amyloid-beta peptide are trapped by serum albumin to enhance amyloid-beta activation of endothelial cells // J. Biol. Eng. V. 3. № 1. Art. 5. https://doi.org/10.1186/1754-1611-3-5
  85. Rivers-Auty J., Mather A.E., Peters R., Lawrence C.B., Brough D., 2020. Anti-inflammatories in Alzheimer’s disease – potential therapy or spurious correlate? // Brain Commun. V. 2. № 2. Art. fcaa109. https://doi.org/10.1093/braincomms/fcaa109
  86. Roberts K.F., Elbert D.L., Kasten T.P., Patterson B.W., Sigurdson W.C. et al., 2014. Amyloid-β efflux from the central nervous system into the plasma // Ann. Neurol. V. 76. № 6. P. 837–844. https://doi.org/10.1002/ana.24270
  87. Rodríguez-Martín T., Cuchillo-Ibáñez I., Noble W., Nyenya F., Anderton B.H., Hanger D.P., 2013. Tau phosphorylation affects its axonal transport and degradation // Neurobiol. Aging. V. 34. № 9. P. 2146–2157. https://doi.org/10.1016/j.neurobiolaging.2013.03.015
  88. Rózga M., Kłoniecki M., Jabłonowska A., Dadlez M., Bal W., 2007. The binding constant for amyloid Aβ40 peptide interaction with human serum albumin // Biochem. Biophys. Res. Commun. V. 364. № 3. P. 714–718. https://doi.org/10.1016/j.bbrc.2007.10.080
  89. Sadigh-Eteghad S., Sabermarouf B., Majdi A., Talebi M., Farhoudi M., Mahmoudi J., 2015. Amyloid-Beta: A crucial factor in Alzheimer’s disease // Med. Princ. Pract. V. 24. № 1. P. 1–10. https://doi.org/10.1159/000369101
  90. Schilde L.M., Kösters S., Steinbach S., Schork K., Eisenacher M. et al., 2018. Protein variability in cerebrospinal fluid and its possible implications for neurological protein biomarker research // PLoS One. V. 13. № 11. Art. e0206478. https://doi.org/10.1371/journal.pone.0206478
  91. Sevigny J., Chiao P., Bussière T., Weinreb P.H., Williams L. et al., 2016. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease // Nature. V. 537. № 7618. P. 50–56. https://doi.org/10.1038/nature19323
  92. Shankar G.M., Walsh D.M., 2009. Alzheimer’s disease: Synaptic dysfunction and Abeta // Mol. Neurodegener. V. 4. № 1. Art. 48. https://doi.org/10.1186/1750-1326-4-48
  93. Sharma K., 2019. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review) // Mol. Med. Rep. V. 20. № 2. P. 1479–1487. https://doi.org/10.3892/mmr.2019.10374
  94. Sheppard O., Coleman M., 2020. Alzheimer’s disease: Etiology, neuropathology and pathogenesis // Alzheimer’s Disease: Drug Discovery. Brisbane: Exon Publications. https://doi.org/10.36255/exonpublications.alzheimersdisease.2020.ch1
  95. Shibata M., Yamada S., Kumar S.R., Calero M., Bading J. et al., 2000. Clearance of Alzheimer’s amyloid-β 1-40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier // J. Clin. Invest. V. 106. № 12. P. 1489–1499. https://doi.org/10.1172/JCI10498
  96. Sjogren M., 2001. Both total and phosphorylated tau are increased in Alzheimer’s disease // J. Neurol. Neurosurg. Psychiatry. V. 70. № 5. P. 624–630. https://doi.org/10.1136/jnnp.70.5.624
  97. Spires-Jones T.L., Hyman B.T., 2014. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease // Neuron. V. 82. № 4. P. 756–771. https://doi.org/10.1016/j.neuron.2014.05.004
  98. Stanyon H.F., Viles J.H., 2012. Human serum albumin can regulate amyloid-β peptide fiber growth in the brain interstitium: Implications for Alzheimer disease // J. Biol. Chem. V. 287. № 33. P. 28163–28168. https://doi.org/10.1074/jbc.C112.360800
  99. Summers W.K., Viesselman J.O., Marsh G.M., Candelora K., 1981. Use of THA in treatment of Alzheimer-like dementia: Pilot study in twelve patients // Biol. Psychiatry. V. 16. № 2. P. 145–153. http://www.ncbi.nlm.nih.gov/pubmed/7225483
  100. Summers W.K., Majovski L.V., Marsh G.M., Tachiki K., Kling A., 1986. Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type // N. Engl. J. Med. V. 315. № 20. P. 1241–1245. https://doi.org/10.1056/NEJM198611133152001
  101. Suvorina M.Y., Selivanova O.M., Grigorashvili E.I., Nikulin A.D., Marchenkov V.V. et al., 2015. Studies of polymorphism of amyloid-β42 peptide from different suppliers // J. Alzheimers Dis. V. 47. № 3. P. 583–593. https://doi.org/10.3233/JAD-150147
  102. Tampi R.R., Forester B.P., Agronin M., 2021. Aducanumab: Evidence from clinical trial data and controversies // Drugs Context. V. 10. P. 1–9. https://doi.org/10.7573/dic.2021-7-3
  103. Tiraboschi P., Sabbagh M.N., Hansen L.A., Salmon D.P., Merdes A. et al., 2004. Alzheimer disease without neocortical neurofibrillary tangles // Neurology. V. 62. № 7. P. 1141–1147. https://doi.org/10.1212/01.WNL.0000118212.41542.E7
  104. Tschanz J.T., Norton M.C., Zandi P.P., Lyketsos C.G., 2013. The Cache County Study on Memory in Aging: Factors affecting risk of Alzheimer’s disease and its progression after onset // Int. Rev. Psychiatry. V. 25. № 6. P. 673–685. https://doi.org/10.3109/09540261.2013.849663
  105. Vandesquille M., Po C., Santin M., Herbert K., Comoy E., Dhenain M., 2014. Amyloid plaques detection by MRI: Comparison of five mouse models of amyloidosis // Alzheimers Dement. V. 10. Art. 15. https://doi.org/10.1016/j.jalz.2014.05.020
  106. Vlad S.C., Miller D.R., Kowall N.W., Felson D.T., 2008. Protective effects of NSAIDs on the development of Alzheimer disease // Neurology. V. 70. № 19. P. 1672–1677. https://doi.org/10.1212/01.wnl.0000311269.57716.63
  107. Vusse G.J., van der, 2009. Albumin as fatty acid transporter // Drug Metab. Pharmacokinet. V. 24. № 4. P. 300–307. https://doi.org/10.2133/dmpk.24.300
  108. Wang C., Cheng F., Xu L., Jia L., 2016. HSA targets multiple Aβ42 species and inhibits the seeding-mediated aggregation and cytotoxicity of Aβ42 aggregates // RSC Adv. V. 6. № 75. P. 71165–71175. https://doi.org/10.1039/C6RA14590F
  109. Wang D.-S., Dickson D.W., Malter J.S., 2006. β-Amyloid degradation and Alzheimer’s disease // J. Biomed. Biotechnol. V. 2006. № 3. Art. 58406. https://doi.org/10.1155/JBB/2006/58406
  110. Wang J., Tan L., Wang H.-F., Tan C.-C., Meng X.-F. et al., 2015. Anti-inflammatory drugs and risk of Alzheimer’s disease: An updated systematic review and meta-analysis // J. Alzheimers Dis. V. 44. № 2. P. 385–396. https://doi.org/10.3233/JAD-141506
  111. Wang W., Dong X., Sun Y., 2019. Modification of serum albumin by high conversion of carboxyl to amino groups creates a potent inhibitor of amyloid β-protein fibrillogenesis // Bioconjug. Chem. V. 30. № 5. P. 1477–1488. https://doi.org/10.1021/acs.bioconjchem.9b00209
  112. Whiley L., Chappell K.E., D’Hondt E., Lewis M.R., Jiménez B. et al., 2021. Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer’s disease // Alzheimers Res. Ther. V. 13. № 1. Art. 20. https://doi.org/10.1186/s13195-020-00741-z
  113. Xie B., Li X., Dong X.-Y., Sun Y., 2014. Insight into the inhibition effect of acidulated serum albumin on amyloid β‑protein fibrillogenesis and cytotoxicity // Langmuir. V. 30. № 32. P. 9789–9796. https://doi.org/10.1021/la5025197
  114. Xie H., Guo C., 2020. Albumin alters the conformational ensemble of amyloid-β by promiscuous interactions: Implications for amyloid inhibition // Front. Mol. Biosci. V. 7. Art. 629520. https://doi.org/10.3389/fmolb.2020.629520
  115. Yan Q., Zhang J., Liu H., Babu-Khan S., Vassar R. et al., 2003. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease // J. Neurosci. V. 23. № 20. P. 7504–7509. https://doi.org/10.1523/JNEUROSCI.23-20-07504.2003
  116. Zhang H., Liu D., Huang H., Zhao Y., Zhou H., 2018. Characteristics of insulin-degrading enzyme in Alzheimer’s disease: A meta-analysis // Curr. Alzheimer Res. V. 15. № 7. P. 610–617. https://doi.org/10.2174/1567205015666180119105446
  117. Zhang S., Iwata K., Lachenmann M.J., Peng J.W., Li S. et al., 2000. The Alzheimer’s peptide Aβ adopts a collapsed coil structure in water // J. Struct. Biol. V. 130. № 2–3. P. 130–141. https://doi.org/10.1006/jsbi.2000.4288
  118. Zhang W., Xiong H., Callaghan D., Liu H., Jones A. et al., 2013. Blood-brain barrier transport of amyloid beta peptides in efflux pump knock-out animals evaluated by in vivo optical imaging // Fluids Barriers CNS. V. 10. № 1. Art. 13. https://doi.org/10.1186/2045-8118-10-13
  119. Zhao M., Guo C., 2021. Multipronged regulatory functions of serum albumin in early stages of amyloid-β aggregation // ACS Chem. Neurosci. V. 12. № 13. P. 2409–2420. https://doi.org/10.1021/acschemneuro.1c00150
  120. Zhao Y., Marcel Y.L., 1996. Serum albumin is a significant intermediate in cholesterol transfer between cells and lipoproteins // Biochemistry. V. 35. № 22. P. 7174–7180. https://doi.org/10.1021/bi952242v

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (597KB)
3.

Download (224KB)
4.

Download (219KB)

Copyright (c) 2023 М.П. Шевелёва, Е.И. Дерюшева, Е.Л. Немашкалова, А.В. Мачулин, Е.А. Литус

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies