Some Methodological Approaches to the Identification of Heat Resistant Genotypes of Cultivated Plants (on the Example of Cereals)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of cultivated plants resistance to heat as the effect of high air temperatures leading to physiological drought is extremely relevant not only in the conditions of predicted climate aridization, but also when studying the effects of relatively short-term “heat waves”. Modern breeding is focused on the creation of high-yielding heat-resistant varieties of cultivated plants, especially cereals as the main world food resource. During breeding developments, it is necessary to first identify heat-resistant cereal genotypes for their insertion in the appropriate programs. The article provides a critical analysis of a number of approaches presented in the literature to identify such genotypes (modeling of the effect of the high temperature stress factor in experimental conditions in situ; the use of anthers in such conditions as the generative structures more sensitive to the effects of this stress factor in comparison with vegetative organs), which can be assessed as methodological. In addition, from the standpoint of descriptive and experimental plant embryology, the use of interrelated concepts (developed by T.B. Batygina, 2014 and earlier) is proposed as the promising methodological approach: the assessment of the anther as the complex integrated tissue system and the presence of critical stages in the development of this system.

About the authors

N. N. Kruglova

Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences

Author for correspondence.
Email: kruglova@anrb.ru
Russia, Ufa

A. E. Zinatullina

Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences

Email: kruglova@anrb.ru
Russia, Ufa

References

  1. Алабушев А.В., Ионова Е.В., Лиховидова В.А., Газе В.Л. Оценка засухоустойчивости озимой мягкой пшеницы в условиях модельной засухи // Земледелие. 2019. № 7. С. 35–37.
  2. Батыгина Т.Б. Биология развития растений. Симфония жизни. СПб.: ДЕАН, 2014. 764 с.
  3. Батыгина Т.Б., Круглова Н.Н., Горбунова В.Ю. и др. От микроспоры – к сорту / Ред. В.А. Вахитов. М.: Наука, 2010. 174 с.
  4. Драгавцев В.А. Решения технологических задач селекционного повышения урожаев, вытекающие из теории эколого-генетической организации количественных признаков // Бюл. ГНБС. 2019. № 132. С. 17–28.
  5. Дубровная О.В. Селекция in vitro пшеницы на устойчивость к абиотическим стрессовым факторам // Физиол. раст. генет. 2017. Т. 49. № 4. С. 279–292.
  6. Дьячук Т.И., Хомякова О.В., Акинина В.Н. и др. Микроспоровый эмбриогенез in vitro – роль стрессов // Вавилов. журн. генет. селекц. 2019. Т. 23. № 1. С. 86–94.
  7. Зинатуллина А.Е. Модельная система “зародыш–зародышевый каллус” в экспресс-оценке стрессовых и антистрессовых воздействий (на примере злаков) // Экобиотех. 2020. Т. 3. № 1. С. 38–50.
  8. Камелина О.П. Систематическая эмбриология цветковых растений. Т. 1. Двудольные. Барнаул: АRТИКА, 2009. 501 с.
  9. Круглова Н.Н. Инновационная биотехнология андроклинной гаплоидии пшеницы на основе комплекса эмбриологических и цитофизиологических данных // Экобиотех. 2019. Т. 2. № 3. С. 234–245.
  10. Круглова Н.Н. Системный подход к морфогенезу пыльника цветковых растений // Бюл. ГНБС. 2022а. Вып. 145. В печати.
  11. Круглова Н.Н. Экспериментальное выявление засухоустойчивых генотипов хлебных злаков на основе использования пыльников как интегрированных систем: постановка проблемы // Таврич. вест. агр. науки. 2022б. № 4 (32). С. 106–121.
  12. Круглова Н.Н., Зинатуллина А.Е. Системный подход к органогенезу пыльника in vivo как методологическая основа экспериментальных исследований in vitro (на примере злаковых и бобовых) // Экобиотех. 2018. Т. 1. № 3. С. 143–160.
  13. Круглова Н.Н., Зинатуллина А.Е. Культура in vitro автономных зародышей как модельная система для исследования стресс-устойчивости растений к абиотическим факторам (на примере злаков) // Успехи соврем. биол. 2021. Т. 141. № 5. С. 483–495.
  14. Круглова Н.Н., Сельдимирова О.А., Зинатуллина А.Е. Каллус in vitro как модельная система для исследования стрессоустойчивости растений к абиотическим факторам (на примере злаков) // Успехи соврем. биол. 2018. Т. 138. № 3. С. 283–293.
  15. Круглова Н.Н., Титова Г.Е., Сельдимирова О.А. и др. Зародыш цветковых растений в критическую стадию относительной автономности эмбриогенеза (на примере злаков) // Онтогенез. 2020. Т. 51. № 1. С. 3–18.
  16. Круглова Н.Н., Титова Г.Е., Зинатуллина А.Е. Критические стадии эмбриогенеза злаков: теоретическое и практическое значение // Онтогенез. 2022. Т. 53. № 6. С. 437–453.
  17. Пикало С., Демидов О., Юрченко Т. и др. Методи оцінки посухостійкості селекційного матеріалу пшениці // Вісн. Львівськ. ун-ту. Сер. біол. 2020. Вип. 82. С. 63–79.
  18. Светлов П.Г. Теория критических периодов развития и ее значение для понимания принципов действия среды на онтогенез // Вопросы цитологии и общей физиологии / Ред. Ю.И. Полянский. М., Л.: АН СССР, 1960. С. 263–285.
  19. Шаманин В.П., Трущенко А.Ю., Пинкаль А.В. и др. Проблема засухоустойчивости яровой мягкой пшеницы в Западной Сибири и современные экспресс-методы ее оценки в полевых условиях // Вест. НГАУ. 2016. № 3 (40). С. 57–64.
  20. Abdolshahi R., Nazari M., Safarian A. et al. Integrated selection criteria for drought tolerance in wheat (Triticum aestivum L.) breeding programs using discriminant analysis // Field Crops Res. 2015. V. 174. P. 20–29.
  21. Ali N., Akmal M. Wheat growth, yield, and quality under water deficit and reduced nitrogen supply. A review // Ges. Pflanzen. 2022. V. 74. P. 1–13. https://doi.org/10.1007/s10343-021-00615-w
  22. Åstrand J., Knight C., Robson J. et al. Evolution and diversity of the angiosperm anther: trends in function and development // Plant Reprod. 2021. V. 34. P. 307–319. https://doi.org/10.1007/s00497-021-00416-1
  23. Baillo E.H., Kimotho R.N., Zhang Z., Xu P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement // Genes. 2019. V. 10. P. 771. https://doi.org/10.3390/genes10100771
  24. Basu S., Ramegowda V., Kumar A., Pereira A. Plant adaptation to drought stress // F1000Research. 2016. V. 5. P. 1554. https://doi.org/10.12688/f1000research.7678.1
  25. Bednarek P.T., Pachota K.A., Dynkowska W.M. et al. Understanding in vitro tissue culture-induced variation phenomenon in microspore system // Int. J. Mol. Sci. 2021. V. 22. P. 7546. https://doi.org/10.3390/ijms22147546
  26. Bélander S., Pokhler S., Czymmek K., Meyers B.C. Premeiotic, 24-nucleotide reproductive phasiRNAs are abundant in anthers of wheat and barley but not rice and maize // Plant Physiol. 2020. V. 184. P. 1407–1423.
  27. Begcy K., Nosenko T., Zhou L.Z. et al. Male sterility in maize after transient heat stress during the tetrad stage of pollen development // Plant Physiol. 2019. V. 181. P. 683–700.
  28. Bheemanahalli R., Impa S.M., Krassovskaya I. et al. Enhanced N-metabolites, ABA and IAA-conjugate in anthers instigate heat sensitivity in spring wheat // Physiol. Plant. 2020. V. 169. P. 501–514.
  29. Bokshi A.I., Tan D., Thistlethwaite R.J. et al. Impact of elevated CO2 and heat stress on wheat pollen viability and grain production // Funct. Plant Biol. 2021. V. 48. P. 503–514.
  30. Brás T.A., Seixas J., Carvalhais N., Jägermeyr J. Severity of drought and heatwave crop losses tripled over the last five decades in Europe // Environ. Res. Lett. 2021. V. 16. P. 065012. https://doi.org/10.1088/1748-9326/abf004
  31. Browne R.G., Iacuone S., Li S.F. et al. Anther morphological development and stage determination in Tritium aestivum // Front. Plant Sci. 2018. V. 9. P. 228. https://doi.org/10.3389/fpls.2018.00228
  32. Browne R.G., Li S.F., Iacuone S. et al. Differential responses of anthers of stress tolerant and sensitive wheat cultivars to high temperature stress // Planta. 2021. V. 254. P. 4. https://doi.org/10.1007/s00425-021-03656-7
  33. Chaturvedi P., Wiesse A.J., Ghatak A. et al. Heat stress response mechanisms in pollen development // New Phytol. 2021. V. 231. P. 571–585. https://doi.org/10.1111/nph.17380
  34. Chen Z., Galli M., Gallavotti A. Mechanisms of temperature-regulated growth and thermotolerance in crop species // Curr. Opin. Plant Biol. 2022. V. 65. P. 102134. https://doi.org/10.1016/j.pbi.2021.102134
  35. Chowdhury M.K., Hasan M.A., Bahadur M.M. et al. Evaluation of drought tolerance of some wheat (Triticum aestivum L.) genotypes through phenology, growth, and physiological indices // Agronomy. 2021. V. 11. P. 1792. https://doi.org/10.3390/agronomy11091792
  36. Climate change and food security with emphasis on wheat / Eds M. Ozturk, A. Cul. L.: Acad. Press, 2020. 370 p.
  37. Coast O., Murdoch A.J., Ellis R.H. et al. Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress // Plant Cell Environ. 2016. V. 39. P. 26–37.
  38. Da Costa M.V.J., Ramegowda V., Sreeman S., Nataraja K.N. Targeted phytohormone profiling identifies potential regulators of spikelet sterility in rice under combined drought and heat stress // Int. J. Mol. Sci. 2021. V. 22. P. 11690. https://doi.org/10.3390/ijms222111690
  39. Das S., Krishnan P., Nayak M., Ramakrishnan B. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes // Environ. Exp. Bot. 2014. V. 101. P. 36–46.
  40. Demydov O., Khomenko S., Fedorenko M. et al. Stability and plasticity of collection samples of durum spring wheat in the forest-steppe conditions of Ukraine // Am. J. Agr. Forest. 2021. V. 9. P. 83–88.
  41. Draeger T., Moore G. Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.) // Theor. Appl. Genet. 2017. V. 130. P. 1785–1800.
  42. El-Mowafi H.F., Alkahtani M.D.F., Abdallah R.M. et al. Combining ability and gene action for yield characteristics in novel aromatic cytoplasmic male sterile hybrid rice under water-stress conditions // Agriculture. 2021. V. 11. P. 226. https://doi.org/10.3390/agriculture11030226
  43. Endo M., Tsuchiya T., Hamada K. et al. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development // Plant Cell Physiol. 2009. V. 50. P. 1911–1922.
  44. Fábián A., Sáfrán E., Szabó-Eitel G. et al. Stigma functionality and fertility are reduced by heat and drought co-stress in wheat // Front. Plant Sci. 2019. V. 10. P. 244. https://doi.org/10.3389/fpls.2019.00244
  45. Fedotova O.A., Polyakova E.A., Grabelnykh O.I. Influence of high temperatures on heat tolerance and synthesis of heat shock proteins in spring wheat at the initial stages of development // Sib. J. Life Sci. Agricult. 2020. V. 12. P. 179–191.
  46. Feng B., Zhang C., Chen T. et al. Salicylic acid reverses pollen abortion of rice by heat stress // BMC Plant Biol. 2018. V. 18. P. 245. https://doi.org/10.1186/s12870-018-1472-5
  47. Fernández-Gómez J., Talle B., Tidy A.C., Wilson Z.A. Accurate staging of reproduction development in Cadenza wheat by non-destructive spike analysis // J. Exp. Bot. 2020. V. 71. P. 3475–3484.
  48. Fuchs L.K., Jenkins G., Phillips D.W. Anthropogenic impacts on meiosis in plants // Front. Plant Sci. 2018. V. 9. P. 1429. https://doi.org/10.3389/fpls.2018.01429
  49. Gahlaut V., Jaiswal V., Kumar A., Gupta P.K. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.) // Theor. Appl. Genet. 2016. V. 129. P. 2019–2042.
  50. González-Schain N., Dreni L., Lawas L.M. et al. Genome-wide transcriptome analysis during anthesis reveals new insights into the molecular basis of heat stress responses in tolerant and sensitive rice varieties // Plant Cell Physiol. 2016. V. 57. P. 57–68.
  51. González-Schain N., Roig-Villanova I., Kater M.M. Early cold stress responses in post-meiotic anthers from tolerant and sensitive rice cultivars // Rice. 2019. V. 12. P. 94. https://doi.org/10.1186/s12284-019-0350-6
  52. Guo J., Gu X., Lu W., Lu D. Multiomics analysis of kernel development in response to short-term heat stress at the grain formation stage in waxy maize // J. Exp. Bot. 2021. V. 72. P. 6291–6304.
  53. Guo X., Li L., Liu X. et al. MYB2 is important for tapetal PCD and pollen development by directly activating protease expression in Arabidopsis // Int. J. Mol. Sci. 2022. V. 23. P. 3563. https://doi.org/10.3390/ijms23073563
  54. Gyawali A., Upadhyaya K., Panthi B. et al. Heat stress effect on wheat: a review // i TECH MAG. 2021. V. 3. P. 5–8. https://doi.org/10.26480/itechmag.03.2021.05.08
  55. Hu Q., Wang W., Lu Q. et al. Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage // BMC Plant Biol. 2021. V. 21. P. 428. https://doi.org/10.1186/s12870-021-03209-w
  56. Huang J., Zhang T., Linstroth L. et al. Control of anther cell differentiation by the small protein ligand TPD1 and its receptor EMS1 in Arabidopsis // PLoS Genet. 2016. V. 12. P. e1006147. https://doi.org/10.1371/journal.pgen.1006147
  57. Hussain J., Khaliq T., Ahmad A. et al. Wheat responses to climate change and its adaptations: a focus on arid and semi-arid environment // Int. J. Environ. Res. 2018. V. 12. P. 117–126. https://doi.org/10.1007/s41742-018-0074-2
  58. Jagadish S. Heat stress during flowering in cereals – effects and adaptation strategies // New Phytol. 2020. V. 226. P. 1567–1572.
  59. Jagadish S., Way D., Sharkey T. Scaling plant responses to high temperature from cell to ecosystem // Plant Cell Environ. 2021. V. 44. № 7. P. 1987–1991.
  60. Jogawat A., Yadav B., Lakra N. et al. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: a review // Physiol. Plant. 2021. V. 172. P. 1106–1132. https://doi.org/10.1111/ppl.13328
  61. Kanbar O.Z., Lantos C., Pauk J. In vitro anther culture as efficiently applied technique for doubled haploid production of wheat (Triticum aestivum L.) // Ratar. Povrtar. 2021. V. 58. P. 31–45.
  62. Kandel S. Wheat responses, defense mechanisms and tolerance to drought stress: a review article // Int. J. Res. Appl. Sci. Biotechnol. 2021. V. 8. Iss. 5. P. 99–109. https://doi.org/10.31033/ijrasb.8.5.14
  63. Khan A., Ahmad M., Ahmed M., Hussain I.M. Rising atmospheric temperature impact on wheat and thermotolerance strategies // Plants. 2020. V. 10. P. 43. https://doi.org/10.3390/plants10010043
  64. Khan R.M., Yu P., Sun L. et al. DCET1 controls male sterility through callose regulation, exine formation and tapetal programmed cell death in rice // Front. Genet. 2021. V. 12. P. 790789. https://doi.org/10.3389/fgene.2021.790789
  65. Khan S., Anwar S., Yu M. et al. Development of drought-tolerant transgenic wheat: achievements and limitations // Int. J. Mol. Sci. 2019. V. 20. P. 3350. https://doi.org/10.3390/ijms20133350
  66. Khlaimongkhon S., Chakhonkaen S., Tongmark K. et al. RNA sequencing reveals rice genes involved in male reproductive development under temperature alteration // Plants. 2021. V. 10. P. 663. https://doi.org/10.3390/plants10040663
  67. Kimotho R.N., Baillo E.H., Zhang Z. Transcription factors involved in abiotic stress responses in maize (Zea mays L.) and their roles in enhanced productivity in the post genomics era // PeerJ. 2019. V. 7. P. e7211. https://doi.org/10.7717/peerj.7211
  68. Kruglova N.N., Zinatullina A.E. In vitro culture of autonomous embryos as a model system for the study of plant stress tolerance to abiotic factors (on the example of cereals) // Biol. Bull. Rev. 2022. V. 12. P. 201–211.
  69. Kruglova N.N., Seldimirova O.A., Zinatullina A.E. In vitro callus as a model system for the study of plant stress-resistance to abiotic factors (on the example of cereals) // Biol. Bull. Rev. 2018. V. 8. P. 518–526.
  70. Kruglova N.N., Titova G.E., Seldimirova O.A., Zinatullina A.E. Embryo of flowering plants at the critical stage of embryogenesis relative autonomy // Russ. J. Dev. Biol. 2020. V. 51. P. 1–15.
  71. Kumar S., Thakur M., Mitra R. et al. Sugar metabolism during pre- and post-fertilization events in plants under high temperature stress // Plant Cell Rep. 2022. V. 41. P. 655–673.
  72. Lamers J., van der Meer T., Testerink C. How plants sense and respond to stressful environments // Plant Physiol. 2020. V. 182. P. 1624–1635.
  73. Langridge P., Reynolds M. Breeding for drought and heat tolerance in wheat // Theor. Appl. Genet. 2021. V. 134. P. 1753–1769.
  74. Lawas L.M.F., Erban A., Kopka J. et al. Metabolic responses of rice source and sink organs during recovery from combined drought and heat stress in the field // Gigascience. 2019. V. 8. P. giz102. https://doi.org/10.1093/gigascience/giz102
  75. Laza H.E., Kaur-Kapoor H., Xin Z. et al. Morphological analysis and stage determination of anther development in Sorghum (Sorghum bicolor (L.) Moench) // Planta. 2022. V. 255. P. 86. https://doi.org/10.1007/s00425-022-03853-y
  76. Lei T., Zhang L., Feng P. et al. OsMYB103 is essential for tapetum degradation in rice // Theor. Appl. Genet. 2022. V. 135. P. 929–945.
  77. Lei X., Ning Y., Elesawi I.E. et al. Heat stress interferes with chromosome segregation and cytokinesis during male meiosis in Arabidopsis thaliana // Plant Signal. Behav. 2020. V. 15. P. 1746985. https://doi.org/10.1080/15592324.2020.1746985
  78. Leng P., Zhao J. Transcription factors as molecular switches to regulate drought adaptation in maize // Theor. Appl. Genet. 2020. V. 133. P. 1455–1465. https://doi.org/10.1007/s00122-019-03494-y
  79. Li L., Zheng Z., Biederman J.A. et al. Drought and heat wave impacts on grassland carbon cycling across hierarchical levels // Plant Cell Environ. 2020. V. 44. P. 2402–2413.
  80. Li X., Lawas L.M.F., Malo R. et al. Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress // Plant Cell Environ. 2015. V. 38. P. 2171–2192.
  81. Liu J., Zhou Y., Wang L. et al. Cytological analysis and fine mapping of paa1 (post-meiosis abnormal anther 1) mutant with abnormal tapetum and microspore development // Biochem. Genet. 2022. V. 60. P. 2268–2285. https://doi.org/10.1007/s10528-022-10217-4
  82. Liu Y., Liu X., Wang X. et al. Heterologous expression of heat stress-responsive AtPLC9 confers heat tolerance in transgenic rice // BMC Plant Biol. 2020. V. 20. P. 514. https://doi.org/10.1186/s12870-020-02709-5
  83. Liu Z., Qin J., Tian X. et al. Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L.) // Plant Biotechnol. J. 2018. V. 16. P. 714–726.
  84. Lohani N., Singh M.B., Bhalla P.L. High temperature susceptibility of sexual reproduction in crop plants // J. Exp. Bot. 2020. V. 71. P. 555–568.
  85. Lv S., Feng K., Peng S. et al. Comparative analysis of the transcriptional response of tolerant and sensitive wheat genotypes to drought stress in field condition // Agronomy. 2018. V. 8. P. 247. https://doi.org/10.3390/agronomy8110247
  86. Maleki M., Ghorbanpour M., Nikabadi S., Wani S.H. In vitro screening of crop plants for abiotic stress tolerance // Recent approaches in omics for plant resilience to climate change / Ed. S. Wani. Cham: Springer, 2019. P. 75–91.
  87. Marone D., Mastrangelo A.M., Borelli G.M. et al. Specialized metabolites: physiological and biochemical role in stress resistance, strategies to improve their accumulation, and new applications in crop breeding and management // Plant Physiol. Biochem. 2022. V. 172. P. 48–55.
  88. Matsui T., Hasegawa T. Effect of long anther dehiscence on seed set at high temperature during flowering in rice (Oryza sativa L.) // Sci. Rep. 2019. V. 9. P. 20363. https://doi.org/10.1038/s41598-019-56792-2
  89. Matsui T., Kobayasi K., Kagata H., Horie T. Correlation between viability of pollination and length of basal dehiscence of the theca in rice under a hot-and-humid condition // Plant Prod. Sci. 2005. V. 8. P. 109–114.
  90. Mesihovic A., Iannacone R., Firon N., Fragkostefanakis S. Heat stress regimes for the investigation of pollen thermotolerance in crop plants // Plant Reprod. 2016. V. 29. P. 93–105.
  91. Omidi M., Siahpoosh M.R., Mamghani R., Modarresi M. The influence of terminal heat stress on meiosis abnormalities in pollen mother cells of wheat // Cytologia. 2014. V. 79. P. 49–58.
  92. Pan X., Yan W., Chang Z. et al. OsMYB80 regulates anther development and pollen fertility by targeting multiple biological pathways // Plant Cell Physiol. 2020. V. 61. P. 988–1004.
  93. Plant life under changing environment: responses and management / Eds D.K. Tripathi, V.P.P. Singh, D.K. Chauhan et al. L.: Acad. Press, 2020. 1020 p.
  94. Prasad P.V., Bheemanahalli R., Jagadish S.K. Field crops and the fear of heat stress – opportunities, challenges and future directions // Field Crops Res. 2017. V. 200. P. 114–121.
  95. Qaseem M.F., Qureshi R., Muqaddasi Q.H. et al. Genome-wide association mapping in bread wheat subjected to independent and combined high temperature and drought stress // PLoS One. 2018. V. 13. P. e0199121. https://doi.org/10.1371/journal.pone.0199121
  96. Ranjan R., Malik N., Sharma S. et al. OsCPK29 interacts with MADS68 to regulate pollen development in rice // Plant Sci. 2022. V. 321. P. 111297. https://doi.org/10.1016/j.plantsci.2022.111297
  97. Raveena, Bharti R., Chaudhary N. Drought resistance in wheat (Triticum aestivum L.): a review // Int. J. Curr. Microbiol. App. Sci. 2019. V. 8. P. 1780–1792.
  98. Raza Q., Riaz A., Bashir K., Sabar M. Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars // Plant Mol. Biol. 2020. V. 104. P. 97–112.
  99. Sakkar T., Thankappan R., Mishra G.P., Nawade B.D. Advances in the development and use of DREB for improved abiotic stress tolerance in transgenic crop plants // Physiol. Mol. Biol. Plants. 2019. V. 25. P. 1323–1334.
  100. Sallam A., Alqudah A.M., Dawood M.F. et al. Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research // Int. J. Mol. Sci. 2019. V. 20. P. 3137. https://doi.org/10.3390/ijms20133137
  101. Sattar S., Afzal R., Bashir I. et al. Biochemical, molecular and morpho-physiological attributes of wheat to upgrade grain production and compete with water stress // Int. J. Innov. Appr. Agricult. Res. 2019. V. 3. P. 510–528.
  102. Schindfessel C., Drozdowska Z., De Mooij L., Geelen D. Loss of obligate crossovers, defective cytokinesis and male sterility in barley caused by short-term heat stress // Plant Reprod. 2021. V. 34. P. 243–253.
  103. Severtsova E.A., Severtsov A.S. Crucial stages of embryogenesis of R. arvalis. Part 1. Linear measurements of embryonic structures // Russ. J. Dev. Biol. 2011. V. 42. P. 331–341.
  104. Severtsova E.A., Severtsov A.S. Crucial stages of embryogenesis of R. arvalis. Part 2. Development of head structures // Russ. J. Dev. Biol. 2012. V. 43. P. 164–171.
  105. Severtsova E.A., Severtsov A.S. Crucial stages of embryogenesis of R. arvalis. Part 3. Modularity of developmental integrity // Russ. J. Dev. Biol. 2013. V. 44. P. 273–278.
  106. Sinha R., Fritschi F.B., Zandalinas S.I., Mittler R. The impact of stress combination on reproductive process in crops // Plant Sci. 2021. V. 311. P. 111007. https://doi.org/10.1016/j.plantsci.2021.111007
  107. Sun S., Wang D., Li J. et al. Transcriptome analysis reveals photoperiod-associated genes expressed in rice anthers // Front. Plant Sci. 2021. V. 12. P. 621561. https://doi.org/10.3389/fpls.2021.621561
  108. Sun Y., Wang X., Chen Z. et al. Quantitative proteomics and transcriptomics reveals differences in proteins during anthers development in Oryza longistaminata // Front. Plant Sci. 2021. V. 12. P. 744792. https://doi.org/10.3389/fpls.2021.744792
  109. Tang H., Song Y., Guo J. et al. Physiological and metabolome changes during anther development in wheat (Triticum aestivum L.) // Plant Physiol. Biochem. 2018. V. 132. P. 18–32.
  110. Ullah A., Nadeem F., Nawaz A. et al. Heat stress effects on the reproductive physiology and yield of wheat // J. Agronom. Crop Sci. 2022. V. 208. P. 1–17.
  111. van Es S.W. Too hot to handle, the adverse effect of heat stress on crop yield // Physiol. Plant. 2020. V. 169. P. 499–500.
  112. Wada H., Hatakeyama Y., Nakashima T. et al. On-site single pollen metabolomics reveals varietal differences in phosphatidylinositol synthesis under heat stress conditions in rice // Sci. Rep. 2020. V. 10. P. 2013. https://doi.org/10.1038/s41598-020-58869-9
  113. Wu C., Cui K., Li Q. et al. Estimating the yield stability of heat-tolerant rice genotypes under various heat conditions across reproductive stages: a 5-year case study // Sci. Rep. 2021. V. 11. P. 13604. https://doi.org/10.1038/s41598-021-93079-x
  114. Wu L., Jing X., Zhang B. et al. A natural allele of OsMS1 responds to temperature changes and confers thermosensitive genic male sterility // Nat. Commun. 2022. V. 13. P. 2055. https://doi.org/10.1038/s41467-022-29648-z
  115. Yadav S., Sharma K.D. Molecular and morphophysiological analysis of drought stress in plants // Plant growth. Ch. 10 / Ed. E.C. Rigobelo. Rijeka: IntechOpen, 2016. P. 149. https://doi.org/10.5772/65246
  116. Yadav A.K., Carroll A.J., Estavillo G.M. et al. Wheat drought tolerance in the field is predicted by amino acid responses to glasshouse-imposed drought // J. Exp. Bot. 2019. V. 70. P. 4931–4948.
  117. Yadav B., Jogawat A., Rahman M.S., Narayan O.P. Secondary metabolites in the drought stress tolerance of crop plants: a review // Gene Rep. 2021. V. 23. P. 101040. https://doi.org/10.1016/j.genrep.2021.101040
  118. Yu J., Jiang M., Guo C. Crop pollen development under drought: from the phenotype to the mechanism // Int. J. Mol. Sci. 2019. V. 20. P. 1550. https://doi.org/10.3390/ijms20071550
  119. Zahoor I., Hasan H., Gul A. et al. Molecular mechanism of drought tolerance in wheat // Climate change and food security with emphasis on wheat / Eds M. Ozturk, A. Gul. L.: Acad. Press, 2020. P. 129–154.
  120. Zhan X., Chen Z., Chen R., Shen C. Environmental and genetic factors involved in plant protection-associated secondary metabolite biosynthesis pathways // Front. Plant Sci. 2022. V. 13. P. 877304. https://doi.org/10.3389/fpls.2022.877304
  121. Zhang D., Luo X., Zhu L. Cytological analysis and genetic control of rice anther development // J. Genet. Genom. 2011. V. 38. P. 379–390.
  122. Zhang C., Li G., Chen T. et al. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistil // Rice. 2018. V. 11. P. 14. https://doi.org/10.1186/s12284-018-0206-5
  123. Zhang Z., Hu M., Xu W. et al. Understanding the molecular mechanism of anther development under abiotic stresses // Plant Mol. Biol. 2021. V. 105. P. 1–10.

Copyright (c) 2023 Н.Н. Круглова, А.Е. Зинатуллина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies