A New Methanogenic, Hydrogenotrophic Archaeon from Spitsbergen Permafrost

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract—A new strain of methanogenic archaea, designated VTT, was isolated from a sample of Spitsbergen permafrost. The cells were nonmotile curved rods, 2.7–5.3 × 0.3 µm. The optimal conditions for growth were 20°C, pH 6.6, and NaCl concentrations 0.03–0.05 M. The H2/CO2 gas mixture was the only substrate used. In the presence of H2/CO2, growth was stimulated by addition of yeast extract or rumen fluid. Phylogenetic analysis of the 16S rRNA gene sequences indicated that strain VTT belonged to the genus Methanobacterium and was most closely related to M. lacus 17A1T (97.02% similarity). Comparison of the sequenced and assembled genome of strain VTT with the genomes of other members of this genus confirmed these results and revealed species-level differences. Our results indicate that this methanogenic isolate belongs to a new species of methanogenic archaea, for which the name Methanobacterium spitsbergensе sp. nov. was proposed, with the type strain VTT (=VKM B-3566T = JCM 39284T).

About the authors

V. E. Trubitsyn

Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Author for correspondence.
Email: lichoradkin43@gmail.com
Russia, 142290, Pushchino,

N. E. Suzina

Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Email: lichoradkin43@gmail.com
Russia, 142290, Pushchino,

E. M. Rivkina

Institute of Physicochemical and Biological Problems of Agriculture, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Email: lichoradkin43@gmail.com
Russia, 142290, Pushchino,

V. A. Shcherbakova

Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences

Email: lichoradkin43@gmail.com
Russia, 142290, Pushchino,

References

  1. Демидов Н.Э., Караевская Е.С., Веркулич С.Р., Никулина А.Л., Саватюгин Л.М. Первые результаты мерзлотных наблюдений на криосферном полигоне Российского научного центра на архипелаге Шпицберген (РНЦШ) // Проблемы Арктики и Антирктики. 2016. Т. 4. № 110. С. 67–79.
  2. Demidov N.E., Karaevskaya E.S., Verkulich S.R., Nikulina A.L., Savatyugin L.M. First results of permafrost monitoring on the cryospheric site of Russian Scientifi c Center on Spitsbergen (RSCS) // Problemy Arktiki i Antarktiki [Arctic and Antarctic Problems]. 2016. V. 4. № 110. P. 67–79 (in Russian).
  3. Кадников В.В., Марданов А.В., Белецкий А.В., Ивасенко Д.А., Пименов Н.В., Карначук О.В., Равин Н.В., Франк Ю.А. Вариабельность состава микробного сообщества резервуара подземных термальных вод в Западной Сибири // Микробиология. 2017. Т. 86. С. 739–747.
  4. Kadnikov V.V., Mardanov A.V., Beletsky A.V., Ivasenko D.A., Pimenov N.V., Karnachuk O.V., Ravin N.V., Frank Y.A. Variability of microbial community composition of the Western Siberia underground thermal waters reservoir // Microbiology (Moscow). 2017. V. 86. P. 765–772.
  5. Каллистова А.Ю. Меркель А.Ю., Тарновецкий И.Ю., Пименов Н.В. Образование и окисление метана прокариотами // Микробиология. 2017. Т. 86. С. 661–683.
  6. Kallistova A.U., Merkel A.U., Tarnovetskiy I.U., Pimenov N.V. Formation and oxidation of methane by prokaryotes // Microbiology (Moscow). 2017. V. 86. P. 671‒691.
  7. Трубицын В.Э., Рыжманова Я.В., Захарюк А.Г., Ошуркова В.И., Лауринавичюс К.С., Спирина Е.В., Щербакова В.А., Ривкина Е.М. Разнообразие культивируемых прокариот в образцах многолетнемерзлых отложений острова Западный Шпицберген // Криосфера Земли. 2019. Т. 23. № 6. С. 37–46.
  8. Trubitsyn V.E., Rhyzhmanova Y.V., Zaharuk A.G., Oshurkova V.I., Laurinavichius K.S., Spirina E.V., Shcherbakova V.A., Rivkina E.M. Diversity of cultured prokaryotes in permafrost sediment samples of West Spitsbergen Island // Earth’s Cryosph. 2019. V. 23. № 6. P. 37–46 (in Russian).
  9. Borrel G., Joblin K., Guedon A., Colombet J., Tardy V., Lehours A.-C., Fonty G. Methanobacterium lacus sp. nov., isolated from the profundal sediment of a freshwater meromictic lake // Int. J. Syst. Evol. Microbiol. 2012. V. 62. P. 1625–1629.
  10. Bryant M.P., Boone D.R. Emended description of strain MST (DSM 800T), the type strain of Methanosarcina barkeri // Int. J. Syst. Bacteriol. 1987. V. 37. P. 169–170.
  11. Buongiorno J., Herbert L.C., Wehrmann L.M., Michaud A.B., Laufer K., Røy H., Jørgensen B.B., Szynkiewicz A., Faiia A., Yeager K.M., Schindler K., Lloyd K.G. Complex microbial communities drive iron and sulfur cycling in Arctic fjord sediments // Appl. Environ. Microbiol. 2019. V. 85. e00949-19. https://doi.org/10.1128/AEM.00949-19
  12. Cadillo-Quiroz H., Bräuer S.L., Goodson N., Yavitt J.B., Zinder S.H. Methanobacterium paludis sp. nov. and a novel strain of Methanobacterium lacus isolated from northern peatlands // Int. J. Syst. Evol. Microbiol. 2014. V. 64. P. 1473–1480.
  13. DeLong E.F. Archaea in coastal marine environments // Proc. Natl. Acad. Sci. USA. 1992. V. 89. P. 5685–5689.
  14. Garcia J.L., Patel B.K.C., Ollivier B. Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea // Anaerobe. 2000. V. 6. P. 205–226.
  15. Hansen A.A., Herbert R.A., Mikkelsen K., Jensen L.L. Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, Northern Norway // Environ. Microbiol. 2007. V. 9. P. 2870–2884.
  16. Hugelius G., Strauss J., Zubrzycki S., Harden J.W., Schuur E.A.G., Ping C.L., Schirrmeister L., Grosse G., Michaelson G.J., Koven C.D., O’Donnell J.A., Elberling B., Mishra U., Camill P., Yu Z., Palmtag J., Kuhry P. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps // Biogeosciences. 2014. V. 11. P. 6573–6593.
  17. Hultman J., Waldrop M.P., Mackelprang R., David M.M., McFarland J., Blazewicz S.J., Harden J., Turetsky M.R., M-cGuire A.D., Shah M.B., VerBerkmoes N.C., Lee L.H., Mavrommatis K., Jansson J.K. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes // Nature. 2015. V. 521. P. 208–212.
  18. Humlum O., Instanes A., Sollid J.L. Permafrost in Svalbard: A review of research history, climatic background and engineering challenges // Polar Res. 2003. V. 22. P. 191–215.
  19. Hungate R.E. Chapter IV. A roll tube method for cultivation of strict anaerobes // Methods in Microbiology. 1969. P. 117–132.
  20. Jørgensen B.B., Laufer K., Michaud A.B., Wehrmann L.M. Biogeochemistry and microbiology of high Arctic marine sediment ecosystems – case study of Svalbard fjords // Limnol. Oceanogr. 2021. V. 66. P. S273–S292.
  21. Knoblauch C., Jørgensen B.B., Harder J. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments // Appl. Environ. Microbiol. 1999. V. 65. P. 4230–4233.
  22. Krivushin K.V., Shcherbakova V.A., Petrovskaya L.E., Rivkina E.M. Methanobacterium veterum sp. nov., from ancient Siberian permafrost // Int. J. Syst. Evol. Microbiol. 2010. V. 60. P. 455–459.
  23. Ma K., Liu X., Dong X. Methanobacterium beijingense sp. nov., a novel methanogen isolated from anaerobic digesters // Int. J. Syst. Evol. Microbiol. 2005. V. 55. P. 325–329.
  24. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms // J. Mol. Biol. 1961. V. 3. P. 208–218.
  25. Oshurkova V., Troshina O., Trubitsyn V., Ryzhmanova Y., Bochkareva O., Shcherbakova V. Characterization of Methanosarcina mazei JL01 isolated from holocene arctic permafrost and study of the archaeon cooperation with bacterium Sphaerochaeta associata GLS2T // The 1st International Electronic Conference on Microbiology. Basel Switzerland: MDPI, 2020. P. 4.
  26. Ran Y., Li X., Cheng G., Zhang T., Wu Q., Jin H., Jin R. Distribution of permafrost in China: An overview of existing permafrost maps // Permafr. Periglac. Process. 2012. V. 23. P. 322–333.
  27. Rivkina E., Petrovskaya L., Vishnivetskaya T., Krivushin K., Shmakova L., Tutukina M., Meyers A., Kondrashov F. Metagenomic analyses of the late Pleistocene permafrost – additional tools for reconstruction of environmental conditions // Biogeosciences. 2016. V. 13. P. 2207–2219.
  28. Schirmack J., Mangelsdorf K., Ganzert L., Sand W., Hillebrand-Voiculescu A., Wagner D. Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary-alcohol-utilizing methanogen from the anoxic sediment of a subsurface lake // Int. J. Syst. Evol. Microbiol. 2014. V. 64. P. 522–527.
  29. Schuur E.A.G., McGuire A.D., Schädel C., Grosse G., Harden J.W., Hayes D.J., Hugelius G., Koven C.D., Kuhry P., Lawrence D.M., Natali S.M., Olefeldt D., Romanovsky V.E., Schaefer K., Turetsky M.R., Treat C.C., Vonk J.E. Climate change and the permafrost carbon feedback // Nature. 2015. V. 520. P. 171–179.
  30. Serrano P., Hermelink A., Lasch P., de Vera J.-P., Konig N., Burckhardt O., Wagner D. Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil // FEMS Microbiol. Ecol. 2015. V. 91. fiv126.
  31. Shcherbakova V., Rivkina E., Pecheritsyna S., Laurinavichius K., Suzina N., Gilichinsky D. Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost // Int. J. Syst. Evol. Microbiol. 2011. V. 61. P. 144–147.
  32. Shcherbakova V.A., Chuvilskaya N.A., Rivkina E.M., Pecheritsyna S.A., Laurinavichius K.S., Suzina N.E., Osipov G.A., Lysenko A.M., Gilichinsky D.A., Akimenko V.K. Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: description Clostridium algoriphilum sp. nov. // Extremophiles. 2005. V. 9. P. 239–246.
  33. Simankova M.V., Kotsyurbenko O.R., Lueders T., Nozhevnikova A.N., Wagner B., Conrad R., Friedrich M.W. Isolation and characterization of new strains of methanogens from cold terrestrial habitats // Syst. Appl. Microbiol. 2003. V. 26. P. 312–318.
  34. Singh P., Singh S.M., Singh R.N., Naik S., Roy U., Srivastava A., Bölter M. Bacterial communities in ancient permafrost profiles of Svalbard, Arctic // J. Basic Microbiol. 2017. V. 57. P. 1018–1036.
  35. Trubitsyn V., Rivkina E., Shcherbakova V. Draft genome sequence of a methanogenic archaeon from West Spitsbergen permafrost // Microbiol. Resour. Announc. 2022. V. 11. https://doi.org/10.1128/mra.00938-21
  36. Vishnivetskaya T.A., Buongiorno J., Bird J., Krivushin K., Spirina E.V., Oshurkova V., Shcherbakova V.A., Wilson G., Lloyd K.G., Rivkina E.M. Methanogens in the Antarctic Dry Valley permafrost // FEMS Microbiol. Ecol. 2018. V. 94. https://doi.org/10.1093/femsec/fiy109
  37. Wagner D., Liebner S. Methanogenesis in Arctic permafrost habitats // Handbook of Hydrocarbon Microbiology: Microbial Interactions with Hydrocarbons, Oils, Fats and Related Hydrophobic Substrates and Products. Section B: The Microbiology of Production of Hydrocarbons, Lipids / Ed. Timmis K.N. Springer, 2010. P. 663–666.
  38. Wagner D., Schirmack J., Ganzert L., Morozova D., Mangelsdorf K. Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil // Int. J. Syst. Evol. Microbiol. 2013. V. 63. P. 2986–2991.
  39. Xue Y., Jonassen I., Øvreås L., Taş N. Metagenome-assembled genome distribution and key functionality highlight importance of aerobic metabolism in Svalbard permafrost // FEMS Microbiol. Ecol. 2020. V. 96. fiaa057.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (203KB)
4.

Download (203KB)
5.

Download (178KB)

Copyright (c) 2023 В.Э. Трубицын, Н.Е. Сузина, Е.М. Ривкина, В.А. Щербакова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies