SOLUTION-GROWN TRANS-STILBENE SINGLE CRYSTAL AND ITS SCINTILLATION PROPERTIES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Trans-stilbene single crystals are of great interest for researchers as scintillators characterized by a high specific light yield. Bulk trans-stilbene single crystals have been grown from an anisole solution. The transmission and photoluminescence spectra have been recorded, and the single-crystal photoluminescence quenching kinetics has been investigated. The scintillation properties of an element (17 × 12 × 5 mm in size) prepared from a grown trans-stilbene crystal, irradiated by γ radiation and X rays, have also been investigated. It is shown that the specific light yield of the obtained crystal is no less than that of a scintillation detector (31.5 × 10 mm) based on a trans-stilbene crystal grown from melt.

About the authors

M. S. Lyasnikova

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: mlyasnikova@yandex.ru
Россия, Москва

A. A. Kulishov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: postva@yandex.ru
Россия, Москва

G. A. Yurasik

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia; Center of Photochemistry, Federal Scientific Research Centre“Crystallography and Photonics,”Russian Academy of Sciences, Moscow, Russia

Email: postva@yandex.ru
Россия, Москва; Россия, Москва

V. A. Postnikov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: postva@yandex.ru
Россия, Москва

A. I. Karakash

SPC DOZA, Zelenograd, Moscow, 124498 Russia

Email: postva@yandex.ru
Россия, Зеленоград

A. E. Voloshin

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Author for correspondence.
Email: postva@yandex.ru
Россия, Москва

References

  1. Birks J.B. The Theory and Practice of Scintillation Counting: International Series of Monographs on Electronics and Instrumentation. Pergamon Press Ltd, 1967. 662 p.
  2. Красовицкий Б.М., Болотин Б.М. Органические люминофоры. 2-е изд. М.: Химия, 1984. 336 с.
  3. Gorbacheva T.E., Galunov N.Z., Lazarev I.V. et al. // J. Appl. Spectrosc. 2014. V. 81. P. 164. https://doi.org/10.1007/s10812-014-9904-y
  4. Arulchakkaravarthi A., Laksmanaperumal C.K., Santhanaraghavan P. et al. // J. Cryst. Growth. 2002. V. 246. P. 85. https://doi.org/10.1016/S0022-0248(02)01696-2
  5. Ai Q., Chen P., Feng Y., Xu Y. // AIP Conf. Proc. 2017. V. 1879. https://doi.org/10.1063/1.5000464
  6. Yamato S., Yamaji A., Kurosawa S. et al. // Opt. Mater. 2019. V. 94. P. 58. https://doi.org/10.1016/j.optmat.2019.04.051
  7. Hong I.H., Tan K.J., Toh M. et al. // J. Cryst. Growth. 2013. V. 363. P. 61. https://doi.org/10.1016/j.jcrysgro.2012.10.002
  8. Bhukkal S., Kumar B. // J. Cryst. Growth. 2020. V. 535. P. 125534. https://doi.org/10.1016/j.jcrysgro.2020.125534
  9. Будаковский С.В., Крайнов И.П., Мнацаканова Т.Р., Ткаченко В.Ф. Сцинтиллятор на основе монокристалла стильбена и способ его получения: патент SU 948171 A1. СССР: Государственный комитет по делам изобретений и открытий, 1998.
  10. Zaitseva N.P., Newby J., Hamel S. et al. // Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XI. 2009. V. 7449. P. 744911. https://doi.org/10.1117/12.829870
  11. Zaitseva N., Carman L., Glenn A. et al. // J. Cryst. Growth. 2011. V. 314. P. 163. https://doi.org/10.1016/j.jcrysgro.2010.10.139
  12. Carman L., Zaitseva N., Martinez H.P. et al. // J. Cryst. Growth. 2013. V. 368. P. 56. https://doi.org/10.1016/j.jcrysgro.2013.01.019
  13. Katoh R., Katoh S., Furube A. et al. // J. Phys. Chem. C. 2009. V. 113. P. 2961. https://doi.org/10.1021/jp807684m
  14. Birks J.B. Photophysics of aromatic molecules. London: Wiley-Interscience, 1970. 704 p.
  15. Клименков Е.Е., Кащук Ю.А., Красильников и др. // Приборы и техника эксперимента. 2004. Т. 2. С. 35.
  16. Маноменова В.Л., Степнова М.Н., Гребенев В.В. и др. // Кристаллография. 2013. Т. 58. С. 505. https://doi.org/10.7868/s0023476113030156
  17. Руднева Е.Б., Маноменова В.Л., Волошин А.Э. // Кристаллография. 2018. Т. 63. С. 963. https://doi.org/10.1134/s0023476118060255
  18. http://www.lnhb.fr/nuclear-data/nuclear-data-table/
  19. Harada J., Ogawa K. // J. Am. Chem. Soc. 2001. V. 123. P. 10884. https://doi.org/10.1021/ja011197d
  20. Kaminsky W. // J. Appl. Cryst. 2007. V. 40. P. 382. https://doi.org/10.1107/S0021889807003986
  21. Klapper H., Zaitseva N., Carman L. // J. Cryst. Growth. 2015. V. 429. P. 74. https://doi.org/10.1016/j.jcrysgro.2015.07.012
  22. Tranca D.C., Neufeld A.A. // J. Chem. Phys. 2009. V. 130. P. 141102. https://doi.org/10.1063/1.3116786
  23. Harihar P., Chen H., Stapor W.J. // Nucl. Instrum. Methods Phys. Res. A. 1994. V. 345. P. 500. https://doi.org/10.1016/0168-9002(94)90506-1

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (2MB)
4.

Download (1MB)
5.

Download (80KB)
6.

Download (591KB)
7.

Download (1MB)
8.

Download (226KB)
9.

Download (306KB)
10.

Download (291KB)
11.

Download (51KB)

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies